file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.Int128.fst
FStar.Int128.shift_left
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (0 <= v a /\ v a * pow2 (UInt32.v s) <= max_int n /\ UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_left (v a) (UInt32.v s) = v c))
let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
{ "file_name": "ulib/FStar.Int128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 69, "start_col": 0, "start_line": 69 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int128 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v irreducible let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int64.fsti.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int128.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int128.t
Prims.Pure
[]
[]
[ "FStar.Int128.t", "FStar.UInt32.t", "FStar.Int128.Mk", "FStar.Int.shift_left", "FStar.Int128.n", "FStar.Int128.v", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let shift_left a s =
Mk (shift_left (v a) (UInt32.v s))
false
FStar.Int128.fst
FStar.Int128.mul
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
let mul a b = Mk (mul (v a) (v b))
{ "file_name": "ulib/FStar.Int128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 53, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int128 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v irreducible let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int64.fsti.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int128.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int128.t -> b: FStar.Int128.t -> Prims.Pure FStar.Int128.t
Prims.Pure
[]
[]
[ "FStar.Int128.t", "FStar.Int128.Mk", "FStar.Int.mul", "FStar.Int128.n", "FStar.Int128.v" ]
[]
false
false
false
false
false
let mul a b =
Mk (mul (v a) (v b))
false
FStar.Int128.fst
FStar.Int128.div
val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c))
val div (a:t) (b:t{v b <> 0}) : Pure t // division overflows on INT_MIN / -1 (requires (size (v a / v b) n)) (ensures (fun c -> v a / v b = v c))
let div a b = Mk (div (v a) (v b))
{ "file_name": "ulib/FStar.Int128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int128 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v irreducible let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int64.fsti.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int128.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int128.t -> b: FStar.Int128.t{FStar.Int128.v b <> 0} -> Prims.Pure FStar.Int128.t
Prims.Pure
[]
[]
[ "FStar.Int128.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.Int128.v", "FStar.Int128.Mk", "FStar.Int.div", "FStar.Int128.n" ]
[]
false
false
false
false
false
let div a b =
Mk (div (v a) (v b))
false
FStar.Int128.fst
FStar.Int128.shift_arithmetic_right
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
val shift_arithmetic_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.Int.shift_arithmetic_right (v a) (UInt32.v s) = v c))
let shift_arithmetic_right a s = Mk (shift_arithmetic_right (v a) (UInt32.v s))
{ "file_name": "ulib/FStar.Int128.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 71, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.Int128 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.Int open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" (* NOTE: anything that you fix/update here should be reflected in [FStar.UIntN.fstp], which is mostly * a copy-paste of this module. *) type t : eqtype = | Mk: v:int_t n -> t let v x = x.v irreducible let int_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = int_to_t 0 let one = FStar.Math.Lemmas.pow2_lt_compat (n - 1) 1; int_to_t 1 let add a b = Mk (add (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s)) let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int64.fsti.checked", "FStar.Int.fsti.checked" ], "interface_file": true, "source_file": "FStar.Int128.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Int", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.Int128.t -> s: FStar.UInt32.t -> Prims.Pure FStar.Int128.t
Prims.Pure
[]
[]
[ "FStar.Int128.t", "FStar.UInt32.t", "FStar.Int128.Mk", "FStar.Int.shift_arithmetic_right", "FStar.Int128.n", "FStar.Int128.v", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let shift_arithmetic_right a s =
Mk (shift_arithmetic_right (v a) (UInt32.v s))
false
IMST.fst
IMST.f
val f: Prims.unit -> IMST nat ((| nat, nat_rel |) >< (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1))
val f: Prims.unit -> IMST nat ((| nat, nat_rel |) >< (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1))
let f () : IMST nat ((|nat , nat_rel|) >< (fun p s0 -> forall s1 . s1 > s0 ==> p s0 s1)) = let s0 = get #nat #nat_rel () in put #nat #nat_rel (s0 + 1); let s1 = get #nat #nat_rel () in assert (s1 > 0); witness #nat #nat_rel (fun n -> n > 0); put #nat #nat_rel (s1 * 42); recall #nat #nat_rel (fun n -> n > 0); let s2 = get #nat #nat_rel () in assert (s2 > 0); s0
{ "file_name": "examples/indexed_effects/IMST.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 6, "end_line": 151, "start_col": 0, "start_line": 140 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMST (* A proof-of-concept example of indexed effects (the state-and-preorder indexed MST effect) encoded using standard F* WP calculi *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> preorder s -> s -> M (a * s) // - pi-types currently not supported by DM4F //repr' = s:Type0 -> rel:preorder s -> s0:s -> M (a * s1:s{rel s0 s1}) // - pi-types currently not supported by DM4F; // refinement types also currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } // For effects where subtyping parameters is sound, e.g., // // exn:Type -> exns:set exn -> M (either a e:exn{mem e exns}) // // there is also the problem of needing to subtype postconditions according to the chosen (subset) order on exns. // // The precise typing would (highly likely) be needed to ensure that reification/reflection are sound. (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) unfold let (><) (#a:Type) (sr:(s:Type0 & preorder s)) (wp:st_wp' a (dfst sr)) : st_wp a = fun s rel post s0 -> s == dfst sr /\ (forall x y . rel x y <==> dsnd sr x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s ((|s , rel|) >< (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit ((|s , rel|) >< (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit ((|s , rel|) >< (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit ((|s , rel|) >< (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j let nat_rel : preorder nat = nat_rel' open FStar.Mul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMST.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> IMST.IMST Prims.nat
IMST.IMST
[]
[]
[ "Prims.unit", "Prims._assert", "Prims.b2t", "Prims.op_GreaterThan", "Prims.nat", "IMST.get", "IMST.nat_rel", "IMST.recall", "IMST.put", "FStar.Mul.op_Star", "IMST.witness", "Prims.op_Addition", "IMST.op_Greater_Less", "FStar.Pervasives.dfst", "FStar.Preorder.preorder", "Prims.Mkdtuple2", "IMST.st_post", "Prims.l_Forall", "Prims.int", "Prims.op_GreaterThanOrEqual", "Prims.l_imp" ]
[]
false
true
false
false
false
let f () : IMST nat ((| nat, nat_rel |) >< (fun p s0 -> forall s1. s1 > s0 ==> p s0 s1)) =
let s0 = get #nat #nat_rel () in put #nat #nat_rel (s0 + 1); let s1 = get #nat #nat_rel () in assert (s1 > 0); witness #nat #nat_rel (fun n -> n > 0); put #nat #nat_rel (s1 * 42); recall #nat #nat_rel (fun n -> n > 0); let s2 = get #nat #nat_rel () in assert (s2 > 0); s0
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser_precond_precond
val make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}) : GTot Type0
val make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}) : GTot Type0
let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 49, "start_col": 0, "start_line": 42 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> s1: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s1 == sz} -> s2: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s2 == sz} -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "Prims.l_and", "Prims.l_or", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some" ]
[]
false
false
false
false
true
let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}) : GTot Type0 =
(Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2
false
IMST.fst
IMST.nat_rel
val nat_rel:preorder nat
val nat_rel:preorder nat
let nat_rel : preorder nat = nat_rel'
{ "file_name": "examples/indexed_effects/IMST.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 136, "start_col": 0, "start_line": 136 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module IMST (* A proof-of-concept example of indexed effects (the state-and-preorder indexed MST effect) encoded using standard F* WP calculi *) open FStar.Preorder module W = FStar.Monotonic.Witnessed (* The state-and-preorder indexed MST effect; defined explicitly rather than via DM4F due to the pi-types used in it *) //s is at a fixed universe level (here #u0) because because otherwise sub_effect complains about being too universe polymorphic let st_pre (s:Type0) = s -> GTot Type0 let st_post' (s:Type0) (a:Type) (pre:Type) = a -> (_:s{pre}) -> GTot Type0 let st_post (s:Type0) (a:Type) = st_post_h' s a True let st_wp (a:Type) = s:Type0 -> (preorder s) -> st_post_h s a -> Tot (st_pre_h s) unfold let st_return (a:Type) (x:a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall v. v == x ==> post v s0 unfold let st_bind (a:Type) (b:Type) (wp1:st_wp a) (wp2: (a -> Tot (st_wp b))) (s:Type0) (rel:preorder s) (post:st_post s b) (s0:s) = wp1 s rel (fun x s1 -> wp2 x s rel post s1) s0 unfold let st_if_then_else (a:Type) (p:Type) (wp_then:st_wp a) (wp_else:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = l_ITE p (wp_then s rel post s0) (wp_else s rel post s0) unfold let st_ite (a:Type) (wp:st_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = forall (k:st_post s a). (forall (x:a) (s1:s).{:pattern (guard_free (k x s1))} post x s1 ==> k x s1) ==> wp s rel k s0 unfold let st_stronger (a:Type) (wp1:st_wp a) (wp2:st_wp a) = forall (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) . wp1 s rel p s0 ==> wp2 s rel p s0 unfold let st_close (a:Type) (b:Type) (wp:(b -> GTot (st_wp a))) (s:Type0) (rel:preorder s) (p:st_post s a) (s0:s) = forall x. wp x s rel p s0 unfold let st_trivial (a:Type) (wp:st_wp a) = forall s rel s0. wp s rel (fun _ _ -> True) s0 new_effect { IMST : result:Type -> wp:st_wp result -> Effect with //repr = s:Type0 -> preorder s -> s -> M (a * s) // - pi-types currently not supported by DM4F //repr' = s:Type0 -> rel:preorder s -> s0:s -> M (a * s1:s{rel s0 s1}) // - pi-types currently not supported by DM4F; // refinement types also currently not supported by DM4F return_wp = st_return ; bind_wp = st_bind ; if_then_else = st_if_then_else ; ite_wp = st_ite ; stronger = st_stronger ; close_wp = st_close ; trivial = st_trivial } // For effects where subtyping parameters is sound, e.g., // // exn:Type -> exns:set exn -> M (either a e:exn{mem e exns}) // // there is also the problem of needing to subtype postconditions according to the chosen (subset) order on exns. // // The precise typing would (highly likely) be needed to ensure that reification/reflection are sound. (* Standard lifting *) unfold let lift_div_imst (a:Type) (wp:pure_wp a) (s:Type0) (rel:preorder s) (post:st_post s a) (s0:s) = wp (fun x -> post x s0) sub_effect DIV ~> IMST = lift_div_imst (* Non-indexed MST WPs and syntactic sugar for writing effect indices *) let st_wp' (a:Type) (s:Type0) = st_post s a -> Tot (st_pre s) unfold let (><) (#a:Type) (sr:(s:Type0 & preorder s)) (wp:st_wp' a (dfst sr)) : st_wp a = fun s rel post s0 -> s == dfst sr /\ (forall x y . rel x y <==> dsnd sr x y) /\ wp post s0 (* Standard, but now state-and-preorder indexed get, put, witness, and recall actions *) assume val get (#s:Type0) (#rel:preorder s) (_:unit) : IMST s ((|s , rel|) >< (fun p s0 -> p s0 s0)) assume val put (#s:Type0) (#rel:preorder s) (s1:s) : IMST unit ((|s , rel|) >< (fun p s0 -> rel s0 s1 /\ p () s1)) let witnessed (#s:Type) (#rel:preorder s) (p:predicate s) :Type0 = W.witnessed rel p assume val witness (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit ((|s , rel|) >< (fun p s0 -> stable q rel /\ q s0 /\ (witnessed #s #rel q ==> p () s0))) assume val recall (#s:Type) (#rel:preorder s) (q:predicate s) : IMST unit ((|s , rel|) >< (fun p s0 -> stable q rel /\ witnessed #s #rel q /\ (q s0 ==> p () s0))) (* Some sample code *) let nat_rel' : relation nat = fun i j -> i <= j
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Monotonic.Witnessed.fsti.checked" ], "interface_file": false, "source_file": "IMST.fst" }
[ { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
FStar.Preorder.preorder Prims.nat
Prims.Tot
[ "total" ]
[]
[ "IMST.nat_rel'" ]
[]
false
false
false
true
false
let nat_rel:preorder nat =
nat_rel'
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser_precond
val make_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0
val make_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0
let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 57, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "Prims.l_Forall", "Prims.l_imp", "MiniParse.Spec.Combinators.make_constant_size_parser_precond_precond", "FStar.Seq.Base.equal" ]
[]
false
false
false
false
true
let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0 =
forall (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}). make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2
false
Hacl.Bignum.Convert.fst
Hacl.Bignum.Convert.bn_to_bytes_be_
val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b))
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 88, "end_line": 172, "start_col": 0, "start_line": 163 }
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t{Lib.IntTypes.numbytes t * Lib.IntTypes.v len <= Lib.IntTypes.max_size_t} -> b: Hacl.Bignum.Definitions.lbignum t len -> res: Lib.Buffer.lbuffer Lib.IntTypes.uint8 (Lib.IntTypes.size (Lib.IntTypes.numbytes t) *! len) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "FStar.Pervasives.norm_spec", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta_only", "Prims.string", "Prims.Nil", "Lib.Sequence.lseq", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Hacl.Bignum.Definitions.limb", "Prims.unit", "Lib.Buffer.fill_blocks", "FStar.Monotonic.HyperStack.mem", "Lib.IntTypes.size_nat", "LowStar.Monotonic.Buffer.loc_none", "LowStar.Monotonic.Buffer.loc", "Prims.l_and", "LowStar.Monotonic.Buffer.loc_disjoint", "Lib.Buffer.loc", "LowStar.Monotonic.Buffer.loc_includes", "LowStar.Monotonic.Buffer.address_liveness_insensitive_locs", "Prims.op_LessThan", "Lib.ByteBuffer.uint_to_bytes_be", "Lib.IntTypes.SEC", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.IntTypes.op_Subtraction_Bang", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "Prims.nat", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Convert.bn_to_bytes_be_f", "Prims.eqtype", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let bn_to_bytes_be_ #t len b res =
[@@ inline_let ]let numb = size (numbytes t) in let h0 = ST.get () in [@@ inline_let ]let a_spec (i: nat{i <= v len}) = unit in [@@ inline_let ]let spec (h: mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_total_constant_size_parser_precond
val make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : GTot Type0
val make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : GTot Type0
let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 115, "start_col": 0, "start_line": 109 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot t) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "Prims.l_Forall", "Prims.l_imp", "FStar.Seq.Base.equal" ]
[]
false
false
false
false
true
let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : GTot Type0 =
forall (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}). f s1 == f s2 ==> Seq.equal s1 s2
false
Hacl.Bignum.Convert.fst
Hacl.Bignum.Convert.mk_bn_to_bytes_le
val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
let mk_bn_to_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b end else begin uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len) end; pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 267, "start_col": 0, "start_line": 247 }
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin HyperStack.ST.break_vc (); bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame () [@CInline] let bn_to_bytes_be_uint32 len : bn_to_bytes_be_st U32 len = mk_bn_to_bytes_be #U32 false len let bn_to_bytes_be_uint64 len : bn_to_bytes_be_st U64 len = mk_bn_to_bytes_be #U64 false len inline_for_extraction noextract val bn_to_bytes_be: #t:_ -> len:_ -> bn_to_bytes_be_st t len let bn_to_bytes_be #t = match t with | U32 -> bn_to_bytes_be_uint32 | U64 -> bn_to_bytes_be_uint64 inline_for_extraction noextract let bn_to_bytes_le_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_le: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_le_st t len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is_known_len: Prims.bool -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_le_st t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Lib.ByteBuffer.uints_to_bytes_le", "Lib.IntTypes.SEC", "LowStar.Ignore.ignore", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.Buffer.copy", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.Buffer.sub", "FStar.UInt32.__uint_to_t", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let mk_bn_to_bytes_le #t is_known_len len b res =
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then (LowStar.Ignore.ignore tmp; uints_to_bytes_le bnLen res b) else (uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len)) else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in uints_to_bytes_le bnLen tmp b; copy res (sub tmp 0ul len)); pop_frame ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.fail_parser'
val fail_parser' (t: Type0) : Tot (bare_parser t)
val fail_parser' (t: Type0) : Tot (bare_parser t)
let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 149, "start_col": 0, "start_line": 146 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type0 -> MiniParse.Spec.Base.bare_parser t
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.bytes", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
true
false
let fail_parser' (t: Type0) : Tot (bare_parser t) =
fun _ -> None
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_empty
val parse_empty:parser_spec unit
val parse_empty:parser_spec unit
let parse_empty : parser_spec unit = parse_ret ()
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 139, "start_col": 0, "start_line": 138 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
MiniParse.Spec.Base.parser_spec Prims.unit
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Combinators.parse_ret", "Prims.unit" ]
[]
false
false
false
true
false
let parse_empty:parser_spec unit =
parse_ret ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser_precond'
val make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0
val make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0
let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 71, "end_line": 65, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "Prims.l_Forall", "Prims.l_imp", "MiniParse.Spec.Combinators.make_constant_size_parser_precond_precond", "Prims.l_or" ]
[]
false
false
false
false
true
let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : GTot Type0 =
forall (s1: bytes{Seq.length s1 == sz}) (s2: bytes{Seq.length s2 == sz}). make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2
false
Hacl.Impl.Ed25519.Ladder.fst
Hacl.Impl.Ed25519.Ladder.lemma_exp_four_fw_local
val lemma_exp_four_fw_local: b:BSeq.lbytes 32 -> Lemma (let bn = BSeq.nat_from_bytes_le b in let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in let cm = S.mk_ed25519_comm_monoid in LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 == S.to_aff_point (S.point_mul_g b))
val lemma_exp_four_fw_local: b:BSeq.lbytes 32 -> Lemma (let bn = BSeq.nat_from_bytes_le b in let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in let cm = S.mk_ed25519_comm_monoid in LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 == S.to_aff_point (S.point_mul_g b))
let lemma_exp_four_fw_local b = let bn = BSeq.nat_from_bytes_le b in let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in let cm = S.mk_ed25519_comm_monoid in let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff bn); SPT256.lemma_point_mul_base_precomp4 cm g_aff bn; assert (res == LE.pow cm g_aff bn); SE.exp_fw_lemma S.mk_ed25519_concrete_ops g_c 256 bn 4; LE.exp_fw_lemma cm g_aff 256 bn 4; assert (S.to_aff_point (S.point_mul_g b) == LE.pow cm g_aff bn)
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Ladder.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 235, "start_col": 0, "start_line": 225 }
module Hacl.Impl.Ed25519.Ladder module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module BSeq = Lib.ByteSequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module ME = Hacl.Impl.MultiExponentiation module PT = Hacl.Impl.PrecompTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module BD = Hacl.Bignum.Definitions module SD = Hacl.Spec.Bignum.Definitions module S = Spec.Ed25519 open Hacl.Impl.Ed25519.PointConstants include Hacl.Impl.Ed25519.Group include Hacl.Ed25519.PrecompTable #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let table_inv_w4 : BE.table_inv_t U64 20ul 16ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract let table_inv_w5 : BE.table_inv_t U64 20ul 32ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 5ul in [@inline_let] let table_len = 32ul in assert_norm (pow2 (v l) = v table_len); BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract val convert_scalar: scalar:lbuffer uint8 32ul -> bscalar:lbuffer uint64 4ul -> Stack unit (requires fun h -> live h scalar /\ live h bscalar /\ disjoint scalar bscalar) (ensures fun h0 _ h1 -> modifies (loc bscalar) h0 h1 /\ BD.bn_v h1 bscalar == BSeq.nat_from_bytes_le (as_seq h0 scalar)) let convert_scalar scalar bscalar = let h0 = ST.get () in Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #U64 32 (as_seq h0 scalar); Hacl.Bignum.Convert.mk_bn_from_bytes_le true 32ul scalar bscalar inline_for_extraction noextract val point_mul_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q:point -> Stack unit (requires fun h -> live h bscalar /\ live h q /\ live h out /\ disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\ F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\ BD.bn_v h bscalar < pow2 256) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\ S.to_aff_point (F51.point_eval h1 out) == LE.exp_fw S.mk_ed25519_comm_monoid (S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4) let point_mul_noalloc out bscalar q = BE.lexp_fw_consttime 20ul 0ul mk_ed25519_concrete_ops 4ul (null uint64) q 4ul 256ul bscalar out let point_mul out scalar q = let h0 = ST.get () in SE.exp_fw_lemma S.mk_ed25519_concrete_ops (F51.point_eval h0 q) 256 (BSeq.nat_from_bytes_le (as_seq h0 scalar)) 4; push_frame (); let bscalar = create 4ul (u64 0) in convert_scalar scalar bscalar; point_mul_noalloc out bscalar q; pop_frame () val precomp_get_consttime: BE.pow_a_to_small_b_st U64 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul (BE.table_inv_precomp 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul) [@CInline] let precomp_get_consttime ctx a table bits_l tmp = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp inline_for_extraction noextract val point_mul_g_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q1:point -> q2:point -> q3:point -> q4:point -> Stack unit (requires fun h -> live h bscalar /\ live h out /\ live h q1 /\ live h q2 /\ live h q3 /\ live h q4 /\ disjoint out bscalar /\ disjoint out q1 /\ disjoint out q2 /\ disjoint out q3 /\ disjoint out q4 /\ disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\ disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\ BD.bn_v h bscalar < pow2 256 /\ F51.linv (as_seq h q1) /\ refl (as_seq h q1) == g_aff /\ F51.linv (as_seq h q2) /\ refl (as_seq h q2) == g_pow2_64 /\ F51.linv (as_seq h q3) /\ refl (as_seq h q3) == g_pow2_128 /\ F51.linv (as_seq h q4) /\ refl (as_seq h q4) == g_pow2_192) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.linv (as_seq h1 out) /\ (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v h0 bscalar) in S.to_aff_point (F51.point_eval h1 out) == LE.exp_four_fw S.mk_ed25519_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4)) let point_mul_g_noalloc out bscalar q1 q2 q3 q4 = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in [@inline_let] let bLen = 1ul in [@inline_let] let bBits = 64ul in let h0 = ST.get () in recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4; let h1 = ST.get () in precomp_basepoint_table_lemma_w4 (); assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4)); recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4; let h1 = ST.get () in precomp_g_pow2_64_table_lemma_w4 (); assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4)); recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4; let h1 = ST.get () in precomp_g_pow2_128_table_lemma_w4 (); assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4)); recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4; let h1 = ST.get () in precomp_g_pow2_192_table_lemma_w4 (); assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4)); let r1 = sub bscalar 0ul 1ul in let r2 = sub bscalar 1ul 1ul in let r3 = sub bscalar 2ul 1ul in let r4 = sub bscalar 3ul 1ul in SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 bscalar); ME.mk_lexp_four_fw_tables len ctx_len k l table_len table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4 precomp_get_consttime precomp_get_consttime precomp_get_consttime precomp_get_consttime (null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4 (to_const precomp_basepoint_table_w4) (to_const precomp_g_pow2_64_table_w4) (to_const precomp_g_pow2_128_table_w4) (to_const precomp_g_pow2_192_table_w4) out; LowStar.Ignore.ignore q2; // q2, q3, q4 are unused variables LowStar.Ignore.ignore q3; LowStar.Ignore.ignore q4 inline_for_extraction noextract val point_mul_g_mk_q1234: out:point -> bscalar:lbuffer uint64 4ul -> q1:point -> Stack unit (requires fun h -> live h bscalar /\ live h out /\ live h q1 /\ disjoint out bscalar /\ disjoint out q1 /\ BD.bn_v h bscalar < pow2 256 /\ F51.linv (as_seq h q1) /\ refl (as_seq h q1) == g_aff) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.linv (as_seq h1 out) /\ (let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v h0 bscalar) in S.to_aff_point (F51.point_eval h1 out) == LE.exp_four_fw S.mk_ed25519_comm_monoid g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4)) let point_mul_g_mk_q1234 out bscalar q1 = push_frame (); let q2 = mk_ext_g_pow2_64 () in let q3 = mk_ext_g_pow2_128 () in let q4 = mk_ext_g_pow2_192 () in ext_g_pow2_64_lseq_lemma (); ext_g_pow2_128_lseq_lemma (); ext_g_pow2_192_lseq_lemma (); point_mul_g_noalloc out bscalar q1 q2 q3 q4; pop_frame () val lemma_exp_four_fw_local: b:BSeq.lbytes 32 -> Lemma (let bn = BSeq.nat_from_bytes_le b in let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in let cm = S.mk_ed25519_comm_monoid in LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 == S.to_aff_point (S.point_mul_g b))
{ "checked_file": "/", "dependencies": [ "Spec.Exponentiation.fsti.checked", "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "LowStar.Ignore.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.MultiExponentiation.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.Group.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Ed25519.PrecompTable.fsti.checked", "Hacl.Bignum25519.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Ed25519.Ladder.fst" }
[ { "abbrev": false, "full_module": "Hacl.Ed25519.PrecompTable", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.PointConstants", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Impl.MultiExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Lib.ByteSequence.lbytes 32 -> FStar.Pervasives.Lemma (ensures (let bn = Lib.ByteSequence.nat_from_bytes_le b in let _ = Hacl.Spec.PrecompBaseTable256.decompose_nat256_as_four_u64 bn in (let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ b0 b1 b2 b3 = _ in let cm = Spec.Ed25519.mk_ed25519_comm_monoid in Lib.Exponentiation.exp_four_fw cm Hacl.Ed25519.PrecompTable.g_aff 64 b0 Hacl.Ed25519.PrecompTable.g_pow2_64 b1 Hacl.Ed25519.PrecompTable.g_pow2_128 b2 Hacl.Ed25519.PrecompTable.g_pow2_192 b3 4 == Spec.Ed25519.PointOps.to_aff_point (Spec.Ed25519.point_mul_g b)) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Lib.ByteSequence.lbytes", "Prims.int", "Prims._assert", "Prims.eq2", "Spec.Ed25519.PointOps.aff_point", "Spec.Ed25519.PointOps.to_aff_point", "Spec.Ed25519.point_mul_g", "Lib.Exponentiation.Definition.pow", "Spec.Ed25519.aff_point_c", "Hacl.Ed25519.PrecompTable.g_aff", "Prims.unit", "Lib.Exponentiation.exp_fw_lemma", "Spec.Exponentiation.exp_fw_lemma", "Spec.Ed25519.ext_point_c", "Spec.Ed25519.mk_ed25519_concrete_ops", "Hacl.Ed25519.PrecompTable.g_c", "Hacl.Spec.PrecompBaseTable256.lemma_point_mul_base_precomp4", "Hacl.Spec.PrecompBaseTable256.exp_as_exp_four_nat256_precomp", "Lib.Exponentiation.exp_four_fw", "Hacl.Ed25519.PrecompTable.g_pow2_64", "Hacl.Ed25519.PrecompTable.g_pow2_128", "Hacl.Ed25519.PrecompTable.g_pow2_192", "Lib.Exponentiation.Definition.comm_monoid", "Spec.Ed25519.mk_ed25519_comm_monoid", "FStar.Pervasives.Native.tuple4", "Hacl.Spec.PrecompBaseTable256.decompose_nat256_as_four_u64", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Multiply", "Lib.Sequence.length", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.ByteSequence.nat_from_bytes_le" ]
[]
false
false
true
false
false
let lemma_exp_four_fw_local b =
let bn = BSeq.nat_from_bytes_le b in let b0, b1, b2, b3 = SPT256.decompose_nat256_as_four_u64 bn in let cm = S.mk_ed25519_comm_monoid in let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff bn); SPT256.lemma_point_mul_base_precomp4 cm g_aff bn; assert (res == LE.pow cm g_aff bn); SE.exp_fw_lemma S.mk_ed25519_concrete_ops g_c 256 bn 4; LE.exp_fw_lemma cm g_aff 256 bn 4; assert (S.to_aff_point (S.point_mul_g b) == LE.pow cm g_aff bn)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_cases_injective
val and_then_cases_injective (#t #t': Type) (p': (t -> Tot (parser_spec t'))) : GTot Type0
val and_then_cases_injective (#t #t': Type) (p': (t -> Tot (parser_spec t'))) : GTot Type0
let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p')
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 288, "start_col": 0, "start_line": 283 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p': (_: t -> MiniParse.Spec.Base.parser_spec t') -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.and_then_cases_injective'", "MiniParse.Spec.Combinators.coerce_to_bare_param_parser" ]
[]
false
false
false
false
true
let and_then_cases_injective (#t #t': Type) (p': (t -> Tot (parser_spec t'))) : GTot Type0 =
and_then_cases_injective' (coerce_to_bare_param_parser p')
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_cases_injective'
val and_then_cases_injective' (#t #t': Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0
val and_then_cases_injective' (#t #t': Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0
let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 273, "start_col": 0, "start_line": 266 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "Prims.l_Forall", "MiniParse.Spec.Base.bytes", "Prims.l_imp", "MiniParse.Spec.Combinators.and_then_cases_injective_precond", "Prims.eq2" ]
[]
false
false
false
false
true
let and_then_cases_injective' (#t #t': Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 =
forall (x1: t) (x2: t) (b1: bytes) (b2: bytes). and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser_injective
val make_constant_size_parser_injective (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Lemma (requires (make_constant_size_parser_precond sz t f)) (ensures (injective (make_constant_size_parser_aux sz t f)))
val make_constant_size_parser_injective (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Lemma (requires (make_constant_size_parser_precond sz t f)) (ensures (injective (make_constant_size_parser_aux sz t f)))
let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 81, "end_line": 94, "start_col": 0, "start_line": 67 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Combinators.make_constant_size_parser_precond sz t f) (ensures MiniParse.Spec.Base.injective (MiniParse.Spec.Combinators.make_constant_size_parser_aux sz t f))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "FStar.Classical.forall_intro_2", "Prims.l_imp", "MiniParse.Spec.Base.injective_precond", "MiniParse.Spec.Base.injective_postcond", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "MiniParse.Spec.Base.consumed_length", "Prims._assert", "MiniParse.Spec.Combinators.make_constant_size_parser_precond'", "MiniParse.Spec.Combinators.make_constant_size_parser_precond_precond", "FStar.Seq.Base.slice", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.bparse", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Combinators.make_constant_size_parser_aux", "MiniParse.Spec.Combinators.make_constant_size_parser_precond", "MiniParse.Spec.Base.injective" ]
[]
false
false
true
false
false
let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Lemma (requires (make_constant_size_parser_precond sz t f)) (ensures (injective (make_constant_size_parser_aux sz t f))) =
let p:bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let Some (v1, len1) = bparse p b1 in let Some (v2, len2) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.coerce_to_bare_param_parser
val coerce_to_bare_param_parser (#t #t': Type) (p': (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t')
val coerce_to_bare_param_parser (#t #t': Type) (p': (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t')
let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 281, "start_col": 0, "start_line": 275 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p': (_: t -> MiniParse.Spec.Base.parser_spec t') -> x: t -> MiniParse.Spec.Base.bare_parser t'
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
true
false
let coerce_to_bare_param_parser (#t #t': Type) (p': (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') =
coerce_to_bare_parser _ (p' x)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser_aux
val make_constant_size_parser_aux (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Tot (bare_parser t)
val make_constant_size_parser_aux (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Tot (bare_parser t)
let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 40, "start_col": 0, "start_line": 25 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> MiniParse.Spec.Base.bare_parser t
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "Prims.op_LessThan", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "Prims.bool", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.slice", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
false
false
let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Tot (bare_parser t) =
fun (s: bytes) -> if Seq.length s < sz then None else let s':bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let sz:consumed_length s = sz in Some (v, sz)
false
Hacl.Bignum.Convert.fst
Hacl.Bignum.Convert.mk_bn_from_bytes_le
val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t
val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t
let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 135, "start_col": 0, "start_line": 116 }
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is_known_len: Prims.bool -> Hacl.Bignum.Convert.bn_from_bytes_le_st t
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "Hacl.Bignum.Definitions.lbignum", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Lib.ByteBuffer.uints_from_bytes_le", "Lib.IntTypes.SEC", "Lib.Buffer.update_sub", "Lib.Buffer.MUT", "FStar.UInt32.__uint_to_t", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let mk_bn_from_bytes_le #t is_known_len len b res =
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp); pop_frame ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_total_constant_size_parser
val make_total_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : Pure (parser_spec t) (requires (make_total_constant_size_parser_precond sz t f)) (ensures (fun _ -> True))
val make_total_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : Pure (parser_spec t) (requires (make_total_constant_size_parser_precond sz t f)) (ensures (fun _ -> True))
let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 126, "start_col": 0, "start_line": 117 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot t) -> Prims.Pure (MiniParse.Spec.Base.parser_spec t)
Prims.Pure
[]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "MiniParse.Spec.Combinators.make_constant_size_parser", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.make_total_constant_size_parser_precond", "Prims.l_True" ]
[]
false
false
false
false
false
let make_total_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot t)) : Pure (parser_spec t) (requires (make_total_constant_size_parser_precond sz t f)) (ensures (fun _ -> True)) =
make_constant_size_parser sz t (fun x -> Some (f x))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.make_constant_size_parser
val make_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Pure (parser_spec t) (requires (make_constant_size_parser_precond sz t f)) (ensures (fun _ -> True))
val make_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Pure (parser_spec t) (requires (make_constant_size_parser_precond sz t f)) (ensures (fun _ -> True))
let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 107, "start_col": 0, "start_line": 96 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: Prims.nat -> t: Type0 -> f: (s: MiniParse.Spec.Base.bytes{FStar.Seq.Base.length s == sz} -> Prims.GTot (FStar.Pervasives.Native.option t)) -> Prims.Pure (MiniParse.Spec.Base.parser_spec t)
Prims.Pure
[]
[]
[ "Prims.nat", "MiniParse.Spec.Base.bytes", "Prims.eq2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.Parser", "Prims.unit", "MiniParse.Spec.Combinators.make_constant_size_parser_injective", "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Combinators.make_constant_size_parser_aux", "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.make_constant_size_parser_precond", "Prims.l_True" ]
[]
false
false
false
false
false
let make_constant_size_parser (sz: nat) (t: Type0) (f: (s: bytes{Seq.length s == sz} -> GTot (option t))) : Pure (parser_spec t) (requires (make_constant_size_parser_precond sz t f)) (ensures (fun _ -> True)) =
let p:bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.bare_serialize_nondep_then
val bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2))
val bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2))
let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 491, "start_col": 0, "start_line": 481 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> s1: MiniParse.Spec.Base.serializer_spec p1 -> p2: MiniParse.Spec.Base.parser_spec t2 -> s2: MiniParse.Spec.Base.serializer_spec p2 -> MiniParse.Spec.Base.bare_serializer (t1 * t2)
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "FStar.Pervasives.Native.tuple2", "FStar.Seq.Base.append", "MiniParse.Spec.Base.byte", "MiniParse.Spec.Base.serialize", "MiniParse.Spec.Base.bytes", "MiniParse.Spec.Base.bare_serializer" ]
[]
false
false
false
false
false
let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) =
fun (x: t1 * t2) -> let x1, x2 = x in Seq.append (serialize s1 x1) (serialize s2 x2)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_ret'
val parse_ret' (#t: Type) (v: t) : Tot (bare_parser t)
val parse_ret' (#t: Type) (v: t) : Tot (bare_parser t)
let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 133, "start_col": 0, "start_line": 132 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: t -> MiniParse.Spec.Base.bare_parser t
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.bytes", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
true
false
let parse_ret' (#t: Type) (v: t) : Tot (bare_parser t) =
fun (b: bytes) -> Some (v, (0 <: consumed_length b))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.serialize_empty
val serialize_empty:serializer_spec parse_empty
val serialize_empty:serializer_spec parse_empty
let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 142, "start_col": 0, "start_line": 141 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
MiniParse.Spec.Base.serializer_spec MiniParse.Spec.Combinators.parse_empty
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.Serializer", "Prims.unit", "MiniParse.Spec.Combinators.parse_empty", "FStar.Seq.Base.empty", "MiniParse.Spec.Base.byte", "MiniParse.Spec.Base.bytes" ]
[]
false
false
false
true
false
let serialize_empty:serializer_spec parse_empty =
Serializer (fun _ -> Seq.empty)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.synth_inverse
val synth_inverse (#t1 #t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0
val synth_inverse (#t1 #t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0
let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 574, "start_col": 0, "start_line": 568 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f2: (_: t1 -> Prims.GTot t2) -> g1: (_: t2 -> Prims.GTot t1) -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.l_Forall", "Prims.eq2" ]
[]
false
false
false
false
true
let synth_inverse (#t1 #t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 =
(forall (x: t2). f2 (g1 x) == x)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.fail_parser
val fail_parser (t: Type0) : Tot (parser_spec t)
val fail_parser (t: Type0) : Tot (parser_spec t)
let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 155, "start_col": 0, "start_line": 151 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: Type0 -> MiniParse.Spec.Base.parser_spec t
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.Parser", "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Combinators.fail_parser'", "MiniParse.Spec.Base.parser_spec" ]
[]
false
false
false
true
false
let fail_parser (t: Type0) : Tot (parser_spec t) =
let p = fail_parser' t in Parser p
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_ret
val parse_ret (#t: Type) (v: t) : Tot (parser_spec t)
val parse_ret (#t: Type) (v: t) : Tot (parser_spec t)
let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 136, "start_col": 0, "start_line": 135 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: t -> MiniParse.Spec.Base.parser_spec t
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.Parser", "MiniParse.Spec.Combinators.parse_ret'", "MiniParse.Spec.Base.parser_spec" ]
[]
false
false
false
true
false
let parse_ret (#t: Type) (v: t) : Tot (parser_spec t) =
Parser (parse_ret' v)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.bare_serialize_synth
val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2)
val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2)
let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 625, "start_col": 0, "start_line": 624 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> f2: (_: t1 -> Prims.GTot t2) -> s1: MiniParse.Spec.Base.serializer_spec p1 -> g1: (_: t2 -> Prims.GTot t1) -> MiniParse.Spec.Base.bare_serializer t2
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "MiniParse.Spec.Base.serialize", "MiniParse.Spec.Base.bytes" ]
[]
false
false
false
false
false
let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 =
fun (x: t2) -> serialize s1 (g1 x)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_cases_injective_precond
val and_then_cases_injective_precond (#t #t': Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0
val and_then_cases_injective_precond (#t #t': Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0
let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 )
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 264, "start_col": 0, "start_line": 252 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> x1: t -> x2: t -> b1: MiniParse.Spec.Base.bytes -> b2: MiniParse.Spec.Base.bytes -> Prims.GTot Type0
Prims.GTot
[ "sometrivial" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Base.bytes", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "Prims.eq2", "Prims.logical", "FStar.Pervasives.Native.option" ]
[]
false
false
false
false
true
let and_then_cases_injective_precond (#t #t': Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 =
Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ (let Some (v1, _) = (p' x1) b1 in let Some (v2, _) = (p' x2) b2 in v1 == v2)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_bare
val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t')
val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t')
let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 176, "start_col": 0, "start_line": 163 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) ->
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.bare_parser t -> p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> MiniParse.Spec.Base.bare_parser t'
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Base.bytes", "MiniParse.Spec.Base.bparse", "MiniParse.Spec.Base.consumed_length", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Prims.op_Addition", "FStar.Pervasives.Native.None", "FStar.Pervasives.Native.option", "FStar.Seq.Base.slice", "MiniParse.Spec.Base.byte", "FStar.Seq.Base.length" ]
[]
false
false
false
true
false
let and_then_bare #t #t' p p' =
fun (b: bytes) -> match bparse p b with | Some (v, l) -> let p'v = p' v in let s':bytes = Seq.slice b l (Seq.length b) in (match bparse p'v s' with | Some (v', l') -> let res:consumed_length b = l + l' in Some (v', res) | None -> None) | None -> None
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.lift_parser'
val lift_parser' (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (bare_parser t)
val lift_parser' (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (bare_parser t)
let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 677, "start_col": 0, "start_line": 673 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Prims.unit -> Prims.GTot (MiniParse.Spec.Base.parser_spec t)) -> MiniParse.Spec.Base.bare_parser t
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.bytes", "MiniParse.Spec.Base.parse", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
false
false
let lift_parser' (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (bare_parser t) =
fun (input: bytes) -> parse (f ()) input
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_filter_payload
val parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t{f x == true}))
val parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t{f x == true}))
let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) )
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 3, "end_line": 703, "start_col": 0, "start_line": 692 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: t -> Prims.GTot Prims.bool) -> v: t -> MiniParse.Spec.Base.parser_spec (x: t{f x == true})
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "MiniParse.Spec.Combinators.lift_parser", "Prims.eq2", "Prims.unit", "MiniParse.Spec.Combinators.parse_ret", "MiniParse.Spec.Combinators.fail_parser", "MiniParse.Spec.Base.parser_spec" ]
[]
false
false
false
false
false
let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t{f x == true})) =
lift_parser (fun () -> if f v then let v':(x: t{f x == true}) = v in (parse_ret v') else fail_parser (x: t{f x == true}))
false
Hacl.Bignum.Convert.fst
Hacl.Bignum.Convert.mk_bn_to_bytes_be
val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
let mk_bn_to_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then begin LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res end else begin HyperStack.ST.break_vc (); bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len) end; pop_frame ()
{ "file_name": "code/bignum/Hacl.Bignum.Convert.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 213, "start_col": 0, "start_line": 192 }
module Hacl.Bignum.Convert open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer open Hacl.Bignum.Definitions module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module S = Hacl.Spec.Bignum.Convert #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract val bn_from_uint: #t:limb_t -> len:size_t{0 < v len} -> x:limb t -> b:lbignum t len -> Stack unit (requires fun h -> live h b) (ensures fun h0 _ h1 -> modifies (loc b) h0 h1 /\ as_seq h1 b == S.bn_from_uint (v len) x) let bn_from_uint #t len x b = memset b (uint #t 0) len; b.(0ul) <- x inline_for_extraction noextract val bn_from_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbuffer uint8 (size (numbytes t) *! len) -> res:lbignum t len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be_ (v len) (as_seq h0 b)) let bn_from_bytes_be_ #t len b res = let h0 = ST.get () in [@inline_let] let spec h = S.bn_from_bytes_be_f (v len) (as_seq h b) in fill h0 len res spec (fun j -> uint_from_bytes_be (sub b ((len -! j -! 1ul) *! (size (numbytes t))) (size (numbytes t)))) inline_for_extraction noextract let bn_from_bytes_be_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_be: #t:limb_t -> is_known_len:bool -> bn_from_bytes_be_st t let mk_bn_from_bytes_be #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then bn_from_bytes_be_ bnLen b res else begin let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp (tmpLen -! len) len b; bn_from_bytes_be_ bnLen tmp res end; pop_frame () [@CInline] let bn_from_bytes_be_uint32 : bn_from_bytes_be_st U32 = mk_bn_from_bytes_be #U32 false let bn_from_bytes_be_uint64 : bn_from_bytes_be_st U64 = mk_bn_from_bytes_be #U64 false inline_for_extraction noextract val bn_from_bytes_be: #t:limb_t -> bn_from_bytes_be_st t let bn_from_bytes_be #t = match t with | U32 -> bn_from_bytes_be_uint32 | U64 -> bn_from_bytes_be_uint64 inline_for_extraction noextract let bn_from_bytes_le_st (t:limb_t) = len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> b:lbuffer uint8 len -> res:lbignum t (blocks len (size (numbytes t))) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_from_bytes_le (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_from_bytes_le: #t:limb_t -> is_known_len:bool -> bn_from_bytes_le_st t let mk_bn_from_bytes_le #t is_known_len len b res = push_frame (); if is_known_len then begin [@inline_let] let numb = size (numbytes t) in [@inline_let] let bnLen = blocks len numb in [@inline_let] let tmpLen = numb *! bnLen in if tmpLen =. len then uints_from_bytes_le res b else begin let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end end else begin [@inline_let] let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in update_sub tmp 0ul len b; uints_from_bytes_le res tmp end; pop_frame () [@CInline] let bn_from_bytes_le_uint32 : bn_from_bytes_le_st U32 = mk_bn_from_bytes_le #U32 false [@CInline] let bn_from_bytes_le_uint64 : bn_from_bytes_le_st U64 = mk_bn_from_bytes_le #U64 false inline_for_extraction noextract val bn_from_bytes_le: #t:limb_t -> bn_from_bytes_le_st t let bn_from_bytes_le #t = match t with | U32 -> bn_from_bytes_le_uint32 | U64 -> bn_from_bytes_le_uint64 inline_for_extraction noextract val bn_to_bytes_be_: #t:limb_t -> len:size_t{numbytes t * v len <= max_size_t} -> b:lbignum t len -> res:lbuffer uint8 (size (numbytes t) *! len) -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be_ (v len) (as_seq h0 b)) let bn_to_bytes_be_ #t len b res = [@inline_let] let numb = size (numbytes t) in let h0 = ST.get () in [@ inline_let] let a_spec (i:nat{i <= v len}) = unit in [@ inline_let] let spec (h:mem) = S.bn_to_bytes_be_f (v len) (as_seq h b) in fill_blocks h0 numb len res a_spec (fun _ _ -> ()) (fun _ -> LowStar.Buffer.loc_none) spec (fun j -> uint_to_bytes_be (sub res (j *! numb) numb) b.(len -! j -! 1ul)); norm_spec [delta_only [`%S.bn_to_bytes_be_]] (S.bn_to_bytes_be_ (v len) (as_seq h0 b)) inline_for_extraction noextract let bn_to_bytes_be_st (t:limb_t) (len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t}) = b:lbignum t (blocks len (size (numbytes t))) -> res:lbuffer uint8 len -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint res b) (ensures fun h0 _ h1 -> modifies (loc res) h0 h1 /\ as_seq h1 res == S.bn_to_bytes_be (v len) (as_seq h0 b)) inline_for_extraction noextract val mk_bn_to_bytes_be: #t:limb_t -> is_known_len:bool -> len:size_t{0 < v len /\ numbytes t * v (blocks len (size (numbytes t))) <= max_size_t} -> bn_to_bytes_be_st t len
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowStar.Ignore.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Bignum.Definitions.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Bignum.Convert.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Convert", "short_module": "S" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Bignum.Definitions", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Bignum", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
is_known_len: Prims.bool -> len: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v len /\ Lib.IntTypes.numbytes t * Lib.IntTypes.v (Hacl.Bignum.Definitions.blocks len (Lib.IntTypes.size (Lib.IntTypes.numbytes t))) <= Lib.IntTypes.max_size_t } -> Hacl.Bignum.Convert.bn_to_bytes_be_st t len
Prims.Tot
[ "total" ]
[]
[ "Hacl.Bignum.Definitions.limb_t", "Prims.bool", "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.numbytes", "Hacl.Bignum.Definitions.blocks", "Lib.IntTypes.size", "Lib.IntTypes.max_size_t", "Hacl.Bignum.Definitions.lbignum", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8", "FStar.HyperStack.ST.pop_frame", "Prims.unit", "Lib.IntTypes.op_Equals_Dot", "Hacl.Bignum.Convert.bn_to_bytes_be_", "LowStar.Ignore.ignore", "Lib.Buffer.copy", "Lib.Buffer.MUT", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Buffer.sub", "Lib.IntTypes.op_Subtraction_Bang", "FStar.HyperStack.ST.break_vc", "Lib.Buffer.create", "Lib.IntTypes.u8", "Lib.IntTypes.op_Star_Bang", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Prims.op_GreaterThan", "Prims.op_Subtraction", "Prims.pow2", "Prims.op_Multiply", "Hacl.Spec.Bignum.Definitions.blocks", "FStar.HyperStack.ST.push_frame" ]
[]
false
false
false
false
false
let mk_bn_to_bytes_be #t is_known_len len b res =
push_frame (); if is_known_len then [@@ inline_let ]let numb = size (numbytes t) in [@@ inline_let ]let bnLen = blocks len numb in [@@ inline_let ]let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in if tmpLen =. len then (LowStar.Ignore.ignore tmp; bn_to_bytes_be_ bnLen b res) else (HyperStack.ST.break_vc (); bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len)) else ([@@ inline_let ]let numb = size (numbytes t) in let bnLen = blocks len numb in let tmpLen = numb *! bnLen in let tmp = create tmpLen (u8 0) in bn_to_bytes_be_ bnLen b tmp; copy res (sub tmp (tmpLen -! len) len)); pop_frame ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.serialize_filter'
val serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t{f x == true}))
val serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t{f x == true}))
let serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t { f x == true } )) = fun (input: t { f input == true } ) -> serialize s input
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 58, "end_line": 718, "start_col": 0, "start_line": 712 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *) let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) ) let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t { f x == true })) = p `and_then` (parse_filter_payload f)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: MiniParse.Spec.Base.serializer_spec p -> f: (_: t -> Prims.GTot Prims.bool) -> MiniParse.Spec.Base.bare_serializer (x: t{f x == true})
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "Prims.bool", "Prims.eq2", "MiniParse.Spec.Base.serialize", "MiniParse.Spec.Base.bytes", "MiniParse.Spec.Base.bare_serializer" ]
[]
false
false
false
false
false
let serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t{f x == true})) =
fun (input: t{f input == true}) -> serialize s input
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.cond_true
val cond_true (cond: bool) : Tot Type0
val cond_true (cond: bool) : Tot Type0
let cond_true (cond: bool) : Tot Type0 = squash (cond == true)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 730, "start_col": 0, "start_line": 730 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *) let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) ) let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t { f x == true })) = p `and_then` (parse_filter_payload f) let serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t { f x == true } )) = fun (input: t { f input == true } ) -> serialize s input let serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f)) = Serializer (serialize_filter' s f) (* Helpers to define `if` combinators *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: Prims.bool -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.squash", "Prims.eq2" ]
[]
false
false
false
true
true
let cond_true (cond: bool) : Tot Type0 =
squash (cond == true)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.cond_false
val cond_false (cond: bool) : Tot Type0
val cond_false (cond: bool) : Tot Type0
let cond_false (cond: bool) : Tot Type0 = squash (cond == false)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 732, "start_col": 0, "start_line": 732 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *) let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) ) let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t { f x == true })) = p `and_then` (parse_filter_payload f) let serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t { f x == true } )) = fun (input: t { f input == true } ) -> serialize s input let serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f)) = Serializer (serialize_filter' s f) (* Helpers to define `if` combinators *) let cond_true (cond: bool) : Tot Type0 = squash (cond == true)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cond: Prims.bool -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.squash", "Prims.eq2" ]
[]
false
false
false
true
true
let cond_false (cond: bool) : Tot Type0 =
squash (cond == false)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_no_lookahead
val and_then_no_lookahead (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'))))
val and_then_no_lookahead (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'))))
let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 151, "end_line": 410, "start_col": 0, "start_line": 400 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.parser_spec t -> p': (_: t -> MiniParse.Spec.Base.parser_spec t') -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Combinators.and_then_cases_injective p') (ensures MiniParse.Spec.Base.no_lookahead (MiniParse.Spec.Combinators.and_then_bare (MiniParse.Spec.Base.coerce_to_bare_parser t p) (MiniParse.Spec.Combinators.coerce_to_bare_param_parser p')))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "FStar.Classical.forall_intro_2", "MiniParse.Spec.Base.bytes", "Prims.l_imp", "Prims.l_and", "MiniParse.Spec.Base.no_lookahead", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Base.injective", "Prims.l_Forall", "MiniParse.Spec.Combinators.coerce_to_bare_param_parser", "MiniParse.Spec.Base.no_lookahead_on", "MiniParse.Spec.Combinators.and_then_bare", "FStar.Classical.move_requires", "MiniParse.Spec.Combinators.and_then_no_lookahead_on", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "MiniParse.Spec.Combinators.and_then_cases_injective" ]
[]
false
false
true
false
false
let and_then_no_lookahead (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_no_lookahead_weak
val and_then_no_lookahead_weak (#t #t': Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires (no_lookahead_weak p /\ (forall (x: t). no_lookahead_weak (p' x)))) (ensures (no_lookahead_weak (and_then_bare p p')))
val and_then_no_lookahead_weak (#t #t': Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires (no_lookahead_weak p /\ (forall (x: t). no_lookahead_weak (p' x)))) (ensures (no_lookahead_weak (and_then_bare p p')))
let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 100, "end_line": 250, "start_col": 0, "start_line": 239 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.bare_parser t -> p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Base.no_lookahead_weak p /\ (forall (x: t). MiniParse.Spec.Base.no_lookahead_weak (p' x))) (ensures MiniParse.Spec.Base.no_lookahead_weak (MiniParse.Spec.Combinators.and_then_bare p p') )
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "FStar.Classical.forall_intro_2", "MiniParse.Spec.Base.bytes", "Prims.l_imp", "Prims.l_and", "MiniParse.Spec.Base.no_lookahead_weak", "Prims.l_Forall", "MiniParse.Spec.Base.no_lookahead_weak_on", "MiniParse.Spec.Combinators.and_then_bare", "FStar.Classical.move_requires", "MiniParse.Spec.Combinators.and_then_no_lookahead_weak_on", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let and_then_no_lookahead_weak (#t #t': Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires (no_lookahead_weak p /\ (forall (x: t). no_lookahead_weak (p' x)))) (ensures (no_lookahead_weak (and_then_bare p p'))) =
Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_fret
val parse_fret (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (parser_spec t')
val parse_fret (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (parser_spec t')
let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 566, "start_col": 0, "start_line": 565 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: t -> Prims.GTot t') -> v: t -> MiniParse.Spec.Base.parser_spec t'
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.Parser", "MiniParse.Spec.Combinators.parse_fret'", "MiniParse.Spec.Base.parser_spec" ]
[]
false
false
false
false
false
let parse_fret (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (parser_spec t') =
Parser (parse_fret' f v)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then
val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True))
val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True))
let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 448, "start_col": 0, "start_line": 445 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.parser_spec t -> p': (_: t -> MiniParse.Spec.Base.parser_spec t') -> Prims.Pure (MiniParse.Spec.Base.parser_spec t')
Prims.Pure
[]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.Parser", "Prims.unit", "MiniParse.Spec.Combinators.and_then_correct", "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Combinators.and_then_bare", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Combinators.coerce_to_bare_param_parser" ]
[]
false
false
false
false
false
let and_then #t p #t' p' =
let f:bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p'; Parser f
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.nondep_then
val nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2))
val nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2))
let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2))))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 460, "start_col": 0, "start_line": 454 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> p2: MiniParse.Spec.Base.parser_spec t2 -> MiniParse.Spec.Base.parser_spec (t1 * t2)
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.and_then", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Combinators.parse_ret", "FStar.Pervasives.Native.Mktuple2" ]
[]
false
false
false
true
false
let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) =
p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2))))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_correct
val and_then_correct (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'))) )
val and_then_correct (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'))) )
let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p'
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 430, "start_col": 0, "start_line": 414 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 8, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.parser_spec t -> p': (_: t -> MiniParse.Spec.Base.parser_spec t') -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Combinators.and_then_cases_injective p') (ensures MiniParse.Spec.Base.no_lookahead_weak (MiniParse.Spec.Combinators.and_then_bare (MiniParse.Spec.Base.coerce_to_bare_parser t p) (MiniParse.Spec.Combinators.coerce_to_bare_param_parser p')) /\ MiniParse.Spec.Base.injective (MiniParse.Spec.Combinators.and_then_bare (MiniParse.Spec.Base.coerce_to_bare_parser t p) (MiniParse.Spec.Combinators.coerce_to_bare_param_parser p')) /\ MiniParse.Spec.Base.no_lookahead (MiniParse.Spec.Combinators.and_then_bare (MiniParse.Spec.Base.coerce_to_bare_parser t p) (MiniParse.Spec.Combinators.coerce_to_bare_param_parser p')))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.and_then_no_lookahead", "Prims.unit", "MiniParse.Spec.Combinators.and_then_injective", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Combinators.coerce_to_bare_param_parser", "MiniParse.Spec.Combinators.and_then_no_lookahead_weak", "MiniParse.Spec.Combinators.and_then_cases_injective", "Prims.squash", "Prims.l_and", "MiniParse.Spec.Base.no_lookahead_weak", "MiniParse.Spec.Combinators.and_then_bare", "MiniParse.Spec.Base.injective", "MiniParse.Spec.Base.no_lookahead", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let and_then_correct (#t: Type) (p: parser_spec t) (#t': Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires (and_then_cases_injective p')) (ensures (no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'))) ) =
and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p'
false
FStar.Matrix.fst
FStar.Matrix.foldm
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
val foldm : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> c
let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 64, "start_col": 0, "start_line": 64 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> c
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Seq.Permutation.foldm_snoc" ]
[]
false
false
false
false
false
let foldm #c #eq #m #n cm mx =
SP.foldm_snoc cm mx
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.seq_slice_append_l
val seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1)
val seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1)
let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 498, "start_col": 0, "start_line": 493 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq t -> s2: FStar.Seq.Base.seq t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (FStar.Seq.Base.append s1 s2) 0 (FStar.Seq.Base.length s1) == s1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Base.append", "FStar.Seq.Base.length", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) =
assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1)
false
FStar.Matrix.fst
FStar.Matrix.matrix_of_seq
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
val matrix_of_seq : (#c: Type) -> (m:pos) -> (n:pos) -> (s: SB.seq c{SB.length s = m*n}) -> matrix c m n
let matrix_of_seq #c m n s = s
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 62, "start_col": 0, "start_line": 62 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.pos -> n: Prims.pos -> s: FStar.Seq.Base.seq c {FStar.Seq.Base.length s = m * n} -> FStar.Matrix.matrix c m n
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "FStar.Matrix.matrix" ]
[]
false
false
false
false
false
let matrix_of_seq #c m n s =
s
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.seq_slice_append_r
val seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2)
val seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2)
let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 102, "end_line": 505, "start_col": 0, "start_line": 500 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: FStar.Seq.Base.seq t -> s2: FStar.Seq.Base.seq t -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.slice (FStar.Seq.Base.append s1 s2) (FStar.Seq.Base.length s1) (FStar.Seq.Base.length (FStar.Seq.Base.append s1 s2)) == s2)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Seq.Base.seq", "Prims._assert", "FStar.Seq.Base.equal", "FStar.Seq.Base.slice", "FStar.Seq.Base.append", "FStar.Seq.Base.length", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) =
assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_injective
val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') ))
val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') ))
let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 332, "start_col": 0, "start_line": 305 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') ))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.bare_parser t -> p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Base.injective p /\ (forall (x: t). MiniParse.Spec.Base.injective (p' x)) /\ MiniParse.Spec.Combinators.and_then_cases_injective' p') (ensures MiniParse.Spec.Base.injective (MiniParse.Spec.Combinators.and_then_bare p p'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "FStar.Classical.forall_intro_2", "MiniParse.Spec.Base.bytes", "Prims.l_imp", "MiniParse.Spec.Base.injective_precond", "MiniParse.Spec.Base.injective_postcond", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "MiniParse.Spec.Base.consumed_length", "Prims._assert", "FStar.Seq.Properties.lemma_split", "MiniParse.Spec.Base.byte", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.eq2", "Prims.nat", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.injective", "MiniParse.Spec.Combinators.and_then_cases_injective_precond", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "FStar.Seq.Base.length", "MiniParse.Spec.Combinators.and_then_bare" ]
[]
false
false
true
false
false
let and_then_injective #t #t' p p' =
let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let Some (v1, len1) = p b1 in let Some (v2, len2) = p b2 in let b1':bytes = Seq.slice b1 len1 (Seq.length b1) in let b2':bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let Some (_, len1') = (p' v1) b1' in let Some (_, len2') = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_no_lookahead_weak_on
val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x'))
val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x'))
let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> ()
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 237, "start_col": 0, "start_line": 192 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x'))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.bare_parser t -> p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> x: MiniParse.Spec.Base.bytes -> x': MiniParse.Spec.Base.bytes -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Base.no_lookahead_weak p /\ (forall (x: t). MiniParse.Spec.Base.no_lookahead_weak (p' x))) (ensures MiniParse.Spec.Base.no_lookahead_weak_on (MiniParse.Spec.Combinators.and_then_bare p p') x x')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Base.bytes", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_and", "Prims.b2t", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "FStar.Pervasives.Native.uu___is_Some", "MiniParse.Spec.Base.bparse", "Prims.nat", "Prims.logical", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "MiniParse.Spec.Base.no_lookahead_weak_on", "Prims.op_Addition", "Prims.int", "FStar.Pervasives.Native.option", "Prims.bool", "MiniParse.Spec.Combinators.and_then_bare" ]
[]
false
false
true
false
false
let and_then_no_lookahead_weak_on #t #t' p p' x x' =
let f = and_then_bare p p' in match f x with | Some v -> let y, off = v in let off:nat = off in let off_x:consumed_length x = off in if off <= Seq.length x' then let off_x':consumed_length x' = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures (Some? (bparse f x') /\ (let Some v' = bparse f x' in let y', off' = v' in y == y' /\ (off <: nat) == (off' <: nat)))) = assert (Some? (bparse p x)); let Some (y1, off1) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let Some v1' = bparse p x' in let y1', off1' = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2:bytes = Seq.slice x off1 (Seq.length x) in let x2':bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let Some (y', off2) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () | _ -> ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.serialize_nondep_then
val serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2))
val serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2))
let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 556, "start_col": 0, "start_line": 547 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: MiniParse.Spec.Base.serializer_spec p1 -> s2: MiniParse.Spec.Base.serializer_spec p2 -> MiniParse.Spec.Base.serializer_spec (MiniParse.Spec.Combinators.nondep_then p1 p2)
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "MiniParse.Spec.Base.Serializer", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Combinators.nondep_then", "MiniParse.Spec.Combinators.bare_serialize_nondep_then", "Prims.unit", "MiniParse.Spec.Combinators.bare_serialize_nondep_then_correct" ]
[]
false
false
false
false
false
let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) =
bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.lift_parser
val lift_parser (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (parser_spec t)
val lift_parser (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (parser_spec t)
let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 10, "end_line": 688, "start_col": 0, "start_line": 680 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Prims.unit -> Prims.GTot (MiniParse.Spec.Base.parser_spec t)) -> MiniParse.Spec.Base.parser_spec t
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.Parser", "MiniParse.Spec.Base.injective_ext", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Base.no_lookahead_ext", "MiniParse.Spec.Base.no_lookahead_weak_ext", "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Combinators.lift_parser'" ]
[]
false
false
false
false
false
let lift_parser (#t: Type0) (f: (unit -> GTot (parser_spec t))) : Tot (parser_spec t) =
let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.and_then_no_lookahead_on
val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x'))
val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x'))
let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> ()
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 398, "start_col": 0, "start_line": 349 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x'))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.bare_parser t -> p': (_: t -> MiniParse.Spec.Base.bare_parser t') -> x: MiniParse.Spec.Base.bytes -> x': MiniParse.Spec.Base.bytes -> FStar.Pervasives.Lemma (requires MiniParse.Spec.Base.no_lookahead p /\ MiniParse.Spec.Base.injective p /\ (forall (x: t). MiniParse.Spec.Base.no_lookahead (p' x))) (ensures MiniParse.Spec.Base.no_lookahead_on (MiniParse.Spec.Combinators.and_then_bare p p') x x')
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.bare_parser", "MiniParse.Spec.Base.bytes", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "FStar.Classical.move_requires", "Prims.unit", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Prims.l_and", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Prims.logical", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims._assert", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.no_lookahead_on", "Prims.op_Addition", "Prims.int", "Prims.nat", "MiniParse.Spec.Base.injective_precond", "Prims.bool", "MiniParse.Spec.Combinators.and_then_bare" ]
[]
false
false
true
false
false
let and_then_no_lookahead_on #t #t' p p' x x' =
let f = and_then_bare p p' in match f x with | Some v -> let y, off = v in let off:nat = off in let off_x:consumed_length x = off in if off <= Seq.length x' then let off_x':consumed_length x' = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures (Some? (f x') /\ (let Some v' = f x' in let y', off' = v' in y == y'))) = assert (Some? (p x)); let Some (y1, off1) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let Some v1' = p x' in let y1', off1' = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2:bytes = Seq.slice x off1 (Seq.length x) in let x2':bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let Some (y2, off2) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let Some v2' = p2 x2' in let y2', _ = v2' in assert (y2 == y2') in Classical.move_requires g () | _ -> ()
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_synth
val parse_synth (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Pure (parser_spec t2) (requires (synth_inverse g1 f2)) (ensures (fun _ -> True))
val parse_synth (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Pure (parser_spec t2) (requires (synth_inverse g1 f2)) (ensures (fun _ -> True))
let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 599, "start_col": 0, "start_line": 588 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> f2: (_: t1 -> Prims.GTot t2) -> g1: (_: t2 -> Prims.GTot t1) -> Prims.Pure (MiniParse.Spec.Base.parser_spec t2)
Prims.Pure
[]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.and_then", "MiniParse.Spec.Combinators.parse_fret", "MiniParse.Spec.Combinators.synth_inverse", "Prims.l_True" ]
[]
false
false
false
false
false
let parse_synth (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Pure (parser_spec t2) (requires (synth_inverse g1 f2)) (ensures (fun _ -> True)) =
(and_then p1 (fun v1 -> parse_fret f2 v1))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_fret'
val parse_fret' (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (bare_parser t')
val parse_fret' (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (bare_parser t')
let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 562, "start_col": 0, "start_line": 561 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: t -> Prims.GTot t') -> v: t -> MiniParse.Spec.Base.bare_parser t'
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.bytes", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.tuple2", "MiniParse.Spec.Base.consumed_length", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.bare_parser" ]
[]
false
false
false
false
false
let parse_fret' (#t #t': Type) (f: (t -> GTot t')) (v: t) : Tot (bare_parser t') =
fun (b: bytes) -> Some (f v, (0 <: consumed_length b))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_synth'
val parse_synth' (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) : Pure (parser_spec t2) (requires (forall (x: t1) (x': t1). f2 x == f2 x' ==> x == x')) (ensures (fun _ -> True))
val parse_synth' (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) : Pure (parser_spec t2) (requires (forall (x: t1) (x': t1). f2 x == f2 x' ==> x == x')) (ensures (fun _ -> True))
let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1))
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 586, "start_col": 0, "start_line": 576 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> f2: (_: t1 -> Prims.GTot t2) -> Prims.Pure (MiniParse.Spec.Base.parser_spec t2)
Prims.Pure
[]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Combinators.and_then", "MiniParse.Spec.Combinators.parse_fret", "Prims.l_Forall", "Prims.l_imp", "Prims.eq2", "Prims.l_True" ]
[]
false
false
false
false
false
let parse_synth' (#t1 #t2: Type0) (p1: parser_spec t1) (f2: (t1 -> GTot t2)) : Pure (parser_spec t2) (requires (forall (x: t1) (x': t1). f2 x == f2 x' ==> x == x')) (ensures (fun _ -> True)) =
(and_then p1 (fun v1 -> parse_fret f2 v1))
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.parse_filter
val parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t{f x == true}))
val parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t{f x == true}))
let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t { f x == true })) = p `and_then` (parse_filter_payload f)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 710, "start_col": 0, "start_line": 705 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *) let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: MiniParse.Spec.Base.parser_spec t -> f: (_: t -> Prims.GTot Prims.bool) -> MiniParse.Spec.Base.parser_spec (x: t{f x == true})
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "Prims.bool", "MiniParse.Spec.Combinators.and_then", "Prims.eq2", "MiniParse.Spec.Combinators.parse_filter_payload" ]
[]
false
false
false
false
false
let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t{f x == true})) =
p `and_then` (parse_filter_payload f)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.serialize_synth
val serialize_synth (#t1 #t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) (u: squash (synth_inverse f2 g1 /\ synth_inverse g1 f2)) : Tot (serializer_spec (parse_synth p1 f2 g1))
val serialize_synth (#t1 #t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) (u: squash (synth_inverse f2 g1 /\ synth_inverse g1 f2)) : Tot (serializer_spec (parse_synth p1 f2 g1))
let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 667, "start_col": 0, "start_line": 654 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: MiniParse.Spec.Base.serializer_spec p1 -> f2: (_: t1 -> Prims.GTot t2) -> g1: (_: t2 -> Prims.GTot t1) -> u450: Prims.squash (MiniParse.Spec.Combinators.synth_inverse f2 g1 /\ MiniParse.Spec.Combinators.synth_inverse g1 f2) -> MiniParse.Spec.Base.serializer_spec (MiniParse.Spec.Combinators.parse_synth p1 f2 g1)
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "Prims.squash", "Prims.l_and", "MiniParse.Spec.Combinators.synth_inverse", "MiniParse.Spec.Base.Serializer", "MiniParse.Spec.Combinators.parse_synth", "MiniParse.Spec.Combinators.bare_serialize_synth", "Prims.unit", "MiniParse.Spec.Combinators.bare_serialize_synth_correct" ]
[]
false
false
false
false
false
let serialize_synth (#t1 #t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) (u: squash (synth_inverse f2 g1 /\ synth_inverse g1 f2)) : Tot (serializer_spec (parse_synth p1 f2 g1)) =
bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1)
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.serialize_filter
val serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f))
val serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f))
let serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f)) = Serializer (serialize_filter' s f)
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 726, "start_col": 0, "start_line": 720 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2) let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf let serialize_nondep_then (#t1: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (#p2: parser_spec t2) (s2: serializer_spec p2) : Tot (serializer_spec (nondep_then p1 p2)) = bare_serialize_nondep_then_correct p1 s1 p2 s2; Serializer (bare_serialize_nondep_then p1 s1 p2 s2) /// monadic return for the parser monad unfold let parse_fret' (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (bare_parser t') = fun (b: bytes) -> Some (f v, (0 <: consumed_length b)) unfold let parse_fret (#t #t':Type) (f: t -> GTot t') (v:t) : Tot (parser_spec t') = Parser (parse_fret' f v) let synth_inverse (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : GTot Type0 = (forall (x : t2) . f2 (g1 x) == x) let parse_synth' (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) : Pure (parser_spec t2) (requires ( forall (x x' : t1) . f2 x == f2 x' ==> x == x' )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) : Pure (parser_spec t2) (requires ( synth_inverse g1 f2 )) (ensures (fun _ -> True)) = (and_then p1 (fun v1 -> parse_fret f2 v1)) let parse_synth_eq (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (b: bytes) : Lemma (requires (synth_inverse g1 f2)) (ensures (parse (parse_synth p1 f2 g1) b == (match parse p1 b with | None -> None | Some (x1, consumed) -> Some (f2 x1, consumed)))) = () val bare_serialize_synth (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Tot (bare_serializer t2) let bare_serialize_synth #t1 #t2 p1 f2 s1 g1 = fun (x: t2) -> serialize s1 (g1 x) val bare_serialize_synth_correct (#t1: Type0) (#t2: Type0) (p1: parser_spec t1) (f2: t1 -> GTot t2) (s1: serializer_spec p1) (g1: t2 -> GTot t1) : Lemma (requires ( synth_inverse g1 f2 /\ synth_inverse f2 g1 )) (ensures (serializer_correct (parse_synth p1 f2 g1) (bare_serialize_synth p1 f2 s1 g1 ))) let bare_serialize_synth_correct #k #t1 p1 f2 s1 g1 = () let synth_inverse_intro (#t1: Type0) (#t2: Type0) (f2: (t1 -> GTot t2)) (g1: (t2 -> GTot t1)) : Lemma (requires (forall (x : t2) . f2 (g1 x) == x)) (ensures (synth_inverse f2 g1)) = () let serialize_synth (#t1: Type0) (#t2: Type0) (#p1: parser_spec t1) (s1: serializer_spec p1) (f2: t1 -> GTot t2) (g1: t2 -> GTot t1) (u: squash ( synth_inverse f2 g1 /\ synth_inverse g1 f2 )) : Tot (serializer_spec (parse_synth p1 f2 g1)) = bare_serialize_synth_correct p1 f2 s1 g1; Serializer (bare_serialize_synth p1 f2 s1 g1) (** Tot vs. Ghost *) unfold let lift_parser' (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (bare_parser t) = fun (input: bytes) -> parse (f ()) input unfold let lift_parser (#t: Type0) (f: unit -> GTot (parser_spec t)) : Tot (parser_spec t) = let p = lift_parser' f in no_lookahead_weak_ext p (coerce_to_bare_parser _ (f ())); no_lookahead_ext p (coerce_to_bare_parser _ (f ())); injective_ext p (coerce_to_bare_parser _ (f ())); Parser p (** Refinements *) let parse_filter_payload (#t: Type0) (f: (t -> GTot bool)) (v: t) : Tot (parser_spec (x: t { f x == true })) = lift_parser (fun () -> if f v then let v' : (x: t { f x == true } ) = v in (parse_ret v') else fail_parser (x: t {f x == true} ) ) let parse_filter (#t: Type0) (p: parser_spec t) (f: (t -> GTot bool)) : Tot (parser_spec (x: t { f x == true })) = p `and_then` (parse_filter_payload f) let serialize_filter' (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (bare_serializer (x: t { f x == true } )) = fun (input: t { f input == true } ) -> serialize s input
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: MiniParse.Spec.Base.serializer_spec p -> f: (_: t -> Prims.GTot Prims.bool) -> MiniParse.Spec.Base.serializer_spec (MiniParse.Spec.Combinators.parse_filter p f)
Prims.Tot
[ "total" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "Prims.bool", "MiniParse.Spec.Base.Serializer", "Prims.eq2", "MiniParse.Spec.Combinators.parse_filter", "MiniParse.Spec.Combinators.serialize_filter'" ]
[]
false
false
false
false
false
let serialize_filter (#t: Type0) (#p: parser_spec t) (s: serializer_spec p) (f: (t -> GTot bool)) : Tot (serializer_spec (parse_filter p f)) =
Serializer (serialize_filter' s f)
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_equals_fold_of_seq
val matrix_fold_equals_fold_of_seq : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
val matrix_fold_equals_fold_of_seq : (#c:Type) -> (#eq:CE.equiv c) -> (#m:pos) -> (#n:pos) -> (cm: CE.cm c eq) -> (mx:matrix c m n) -> Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)]
let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 68, "start_col": 0, "start_line": 66 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Matrix.foldm cm mx) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.seq_of_matrix mx))) [SMTPat (FStar.Matrix.foldm cm mx)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.Matrix.foldm", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Matrix.seq_of_matrix", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures (foldm cm mx) `eq.eq` (SP.foldm_snoc cm (seq_of_matrix mx))) [SMTPat (foldm cm mx)] =
eq.reflexivity (foldm cm mx)
false
FStar.Matrix.fst
FStar.Matrix.seq_of_matrix
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (s:SB.seq c { SB.length s=m*n /\ (forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij))) })
val seq_of_matrix : (#c: Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (s:SB.seq c { SB.length s=m*n /\ (forall (ij: under (m*n)). SB.index s ij == SB.index s (get_ij m n (get_i m n ij) (get_j m n ij))) })
let seq_of_matrix #c #m #n mx = mx
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mx: FStar.Matrix.matrix c m n -> s: FStar.Seq.Base.seq c { FStar.Seq.Base.length s = m * n /\ (forall (ij: FStar.IntegerIntervals.under (m * n)). FStar.Seq.Base.index s ij == FStar.Seq.Base.index s (FStar.Matrix.get_ij m n (FStar.Matrix.get_i m n ij) (FStar.Matrix.get_j m n ij))) }
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j" ]
[]
false
false
false
false
false
let seq_of_matrix #c #m #n mx =
mx
false
FStar.Matrix.fst
FStar.Matrix.ijth
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) -> (t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
val ijth : (#c:Type) -> (#m:pos) -> (#n:pos) -> (mx: matrix c m n) -> (i: under m) -> (j: under n) -> (t:c{t == SB.index (seq_of_matrix mx) (get_ij m n i j)})
let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 57, "start_col": 0, "start_line": 57 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mx: FStar.Matrix.matrix c m n -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under n -> t: c{t == FStar.Seq.Base.index (FStar.Matrix.seq_of_matrix mx) (FStar.Matrix.get_ij m n i j)}
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "Prims.eq2", "FStar.Matrix.seq_of_matrix" ]
[]
false
false
false
false
false
let ijth #c #m #n mx i j =
SB.index mx (get_ij m n i j)
false
FStar.Matrix.fst
FStar.Matrix.matrix_eq_fun
val matrix_eq_fun : eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> Prims.prop
let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 430, "start_col": 0, "start_line": 429 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> Prims.prop
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Matrix.matrix", "FStar.Seq.Equiv.eq_of_seq", "FStar.Matrix.seq_of_matrix", "Prims.prop" ]
[]
false
false
false
false
true
let matrix_eq_fun #c (#m: pos) (#n: pos) (eq: CE.equiv c) (ma: matrix c m n) (mb: matrix c m n) =
eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb)
false
FStar.Matrix.fst
FStar.Matrix.matrix_seq
val matrix_seq (#c #m #n: _) (gen: matrix_generator c m n) : (t: SB.seq c { (SB.length t = (m * n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall (ij: under (m * n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) })
val matrix_seq (#c #m #n: _) (gen: matrix_generator c m n) : (t: SB.seq c { (SB.length t = (m * n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall (ij: under (m * n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) })
let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 99, "start_col": 8, "start_line": 96 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
gen: FStar.Matrix.matrix_generator c m n -> t: FStar.Seq.Base.seq c { FStar.Seq.Base.length t = m * n /\ (forall (i: FStar.IntegerIntervals.under m) (j: FStar.IntegerIntervals.under n). FStar.Seq.Base.index t (FStar.Matrix.get_ij m n i j) == gen i j) /\ (forall (ij: FStar.IntegerIntervals.under (m * n)). FStar.Seq.Base.index t ij == gen (FStar.Matrix.get_i m n ij) (FStar.Matrix.get_j m n ij) ) }
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Matrix.init", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "FStar.Mul.op_Star", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j" ]
[]
false
false
false
false
false
let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t: SB.seq c { (SB.length t = (m * n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall (ij: under (m * n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) =
init gen
false
FStar.Matrix.fst
FStar.Matrix.terminal_case_aux
val terminal_case_aux (#c #eq: _) (#p: pos{p = 1}) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) ))
val terminal_case_aux (#c #eq: _) (#p: pos{p = 1}) (#n: _) (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) ))
let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 187, "start_col": 0, "start_line": 184 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c p n -> m: Prims.pos{m <= p} -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.slice (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator)) 0 (m * n))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))) )))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "Prims.op_LessThanOrEqual", "FStar.Matrix.one_row_matrix_fold_aux", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.slice", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Mul.op_Star", "FStar.Seq.Base.init", "FStar.IntegerIntervals.under", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let terminal_case_aux #c #eq (#p: pos{p = 1}) #n (cm: CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m <= p}) : Lemma (ensures (SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m * n))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) )) =
one_row_matrix_fold_aux cm generator
false
FStar.Matrix.fst
FStar.Matrix.matrix_append_snoc_lemma
val matrix_append_snoc_lemma (#c: _) (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m - 1) * n)) `SB.append` (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
val matrix_append_snoc_lemma (#c: _) (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m - 1) * n)) `SB.append` (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 109, "start_col": 0, "start_line": 103 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.matrix_seq generator == FStar.Seq.Base.append (FStar.Seq.Base.slice (FStar.Matrix.matrix_seq generator) 0 ((m - 1) * n)) (FStar.Seq.Base.slice (FStar.Matrix.matrix_seq generator) ((m - 1) * n) (m * n)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.matrix_seq", "FStar.Seq.Base.append", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_append_snoc_lemma #c (#m: pos) (#n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m - 1) * n)) `SB.append` (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))) =
SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m - 1) * n)) (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
false
FStar.Matrix.fst
FStar.Matrix.matrix_submatrix_lemma
val matrix_submatrix_lemma (#c: _) (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == ((matrix_seq (fun (i: under (m - 1)) (j: under n) -> generator i j)) `SB.append` (SB.init n (generator (m - 1)))))
val matrix_submatrix_lemma (#c: _) (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == ((matrix_seq (fun (i: under (m - 1)) (j: under n) -> generator i j)) `SB.append` (SB.init n (generator (m - 1)))))
let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 149, "start_col": 0, "start_line": 141 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.matrix_seq generator == FStar.Seq.Base.append (FStar.Matrix.matrix_seq (fun i j -> generator i j)) (FStar.Seq.Base.init n (generator (m - 1))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.IntegerIntervals.not_less_than", "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Matrix.matrix_seq_decomposition_lemma", "Prims.unit", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.slice", "FStar.Matrix.matrix_seq", "FStar.Mul.op_Star", "Prims.op_Subtraction", "FStar.Seq.Base.init", "FStar.IntegerIntervals.under", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == ((matrix_seq (fun (i: under (m - 1)) (j: under n) -> generator i j)) `SB.append` (SB.init n (generator (m - 1))))) =
SB.lemma_eq_elim (matrix_seq (fun (i: under (m - 1)) (j: under n) -> generator i j)) (matrix_seq #c #(m - 1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)) (SB.init n (generator (m - 1))); matrix_seq_decomposition_lemma generator
false
MiniParse.Spec.Combinators.fst
MiniParse.Spec.Combinators.bare_serialize_nondep_then_correct
val bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2)))
val bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2)))
let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) = let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (_, len')) = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let (Some (x1, len1)) = v1 in let (Some (x1', len1')) = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf
{ "file_name": "examples/miniparse/MiniParse.Spec.Combinators.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 545, "start_col": 0, "start_line": 507 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module MiniParse.Spec.Combinators include MiniParse.Spec.Base module Seq = FStar.Seq module U8 = FStar.UInt8 module U32 = FStar.UInt32 (** Constant-size parsers *) let make_constant_size_parser_aux (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Tot (bare_parser t) = fun (s: bytes) -> if Seq.length s < sz then None else begin let s' : bytes = Seq.slice s 0 sz in match f s' with | None -> None | Some v -> let (sz: consumed_length s) = sz in Some (v, sz) end let make_constant_size_parser_precond_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) (s1: bytes { Seq.length s1 == sz } ) (s2: bytes { Seq.length s2 == sz } ) : GTot Type0 = (Some? (f s1) \/ Some? (f s2)) /\ f s1 == f s2 let make_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> Seq.equal s1 s2 let make_constant_size_parser_precond' (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . make_constant_size_parser_precond_precond sz t f s1 s2 ==> s1 == s2 let make_constant_size_parser_injective (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Lemma (requires ( make_constant_size_parser_precond sz t f )) (ensures ( injective (make_constant_size_parser_aux sz t f) )) = let p : bare_parser t = make_constant_size_parser_aux sz t f in let prf1 (b1 b2: bytes) : Lemma (requires (injective_precond p b1 b2)) (ensures (injective_postcond p b1 b2)) = assert (Some? (bparse p b1)); assert (Some? (bparse p b2)); let (Some (v1, len1)) = bparse p b1 in let (Some (v2, len2)) = bparse p b2 in assert ((len1 <: nat) == (len2 <: nat)); assert ((len1 <: nat) == sz); assert ((len2 <: nat) == sz); assert (make_constant_size_parser_precond_precond sz t f (Seq.slice b1 0 len1) (Seq.slice b2 0 len2)); assert (make_constant_size_parser_precond' sz t f) in Classical.forall_intro_2 (fun (b1: bytes) -> Classical.move_requires (prf1 b1)) let make_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot (option t))) : Pure (parser_spec t) (requires ( make_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = let p : bare_parser t = make_constant_size_parser_aux sz t f in make_constant_size_parser_injective sz t f; Parser p let make_total_constant_size_parser_precond (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : GTot Type0 = forall (s1: bytes {Seq.length s1 == sz}) (s2: bytes {Seq.length s2 == sz}) . f s1 == f s2 ==> Seq.equal s1 s2 let make_total_constant_size_parser (sz: nat) (t: Type0) (f: ((s: bytes {Seq.length s == sz}) -> GTot t)) : Pure (parser_spec t) (requires ( make_total_constant_size_parser_precond sz t f )) (ensures (fun _ -> True)) = make_constant_size_parser sz t (fun x -> Some (f x)) (** Combinators *) /// monadic return for the parser monad unfold let parse_ret' (#t:Type) (v:t) : Tot (bare_parser t) = fun (b: bytes) -> Some (v, (0 <: consumed_length b)) let parse_ret (#t:Type) (v:t) : Tot (parser_spec t) = Parser (parse_ret' v) let parse_empty : parser_spec unit = parse_ret () let serialize_empty : serializer_spec parse_empty = Serializer (fun _ -> Seq.empty) #set-options "--z3rlimit 16" let fail_parser' (t: Type0) : Tot (bare_parser t) = fun _ -> None let fail_parser (t: Type0) : Tot (parser_spec t) = let p = fail_parser' t in Parser p /// monadic bind for the parser monad val and_then_bare : #t:Type -> #t':Type -> p:bare_parser t -> p': (t -> Tot (bare_parser t')) -> Tot (bare_parser t') let and_then_bare #t #t' p p' = fun (b: bytes) -> match bparse p b with | Some (v, l) -> begin let p'v = p' v in let s' : bytes = Seq.slice b l (Seq.length b) in match bparse p'v s' with | Some (v', l') -> let res : consumed_length b = l + l' in Some (v', res) | None -> None end | None -> None val and_then_no_lookahead_weak_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak_on (and_then_bare p p') x x')) let and_then_no_lookahead_weak_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.length x' <= Seq.length x /\ Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (bparse f x') /\ ( let (Some v') = bparse f x' in let (y', off') = v' in y == y' /\ (off <: nat) == (off' <: nat) ))) = assert (Some? (bparse p x)); let (Some (y1, off1)) = bparse p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_weak_on p x x'); assert (Some? (bparse p x')); let (Some v1') = bparse p x' in let (y1', off1') = v1' in assert (y1 == y1' /\ (off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (bparse p2 x2)); let (Some (y', off2)) = bparse p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.length x2' <= Seq.length x2); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_weak_on p2 x2 x2'); () in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead_weak (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( no_lookahead_weak p /\ (forall (x: t) . no_lookahead_weak (p' x)) )) (ensures (no_lookahead_weak (and_then_bare p p'))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_weak_on p p' x)) let and_then_cases_injective_precond (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) (x1 x2: t) (b1 b2: bytes) : GTot Type0 = Some? ((p' x1) b1) /\ Some? ((p' x2) b2) /\ ( let (Some (v1, _)) = (p' x1) b1 in let (Some (v2, _)) = (p' x2) b2 in v1 == v2 ) let and_then_cases_injective' (#t:Type) (#t':Type) (p': (t -> Tot (bare_parser t'))) : GTot Type0 = forall (x1 x2: t) (b1 b2: bytes) . and_then_cases_injective_precond p' x1 x2 b1 b2 ==> x1 == x2 let coerce_to_bare_param_parser (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) (x: t) : Tot (bare_parser t') = coerce_to_bare_parser _ (p' x) let and_then_cases_injective (#t: Type) (#t' : Type) (p' : (t -> Tot (parser_spec t'))) : GTot Type0 = and_then_cases_injective' (coerce_to_bare_param_parser p') val and_then_injective (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) : Lemma (requires ( injective p /\ (forall (x: t) . injective (p' x)) /\ and_then_cases_injective' p' )) (ensures ( injective (and_then_bare p p') )) let and_then_injective #t #t' p p' = let ps = and_then_bare p p' in let f (b1 b2: bytes) : Lemma (requires (injective_precond ps b1 b2)) (ensures (injective_postcond ps b1 b2)) = let (Some (v1, len1)) = p b1 in let (Some (v2, len2)) = p b2 in let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in assert (Some? ((p' v1) b1')); assert (Some? ((p' v2) b2')); assert (and_then_cases_injective_precond p' v1 v2 b1' b2'); assert (v1 == v2); assert (injective_precond p b1 b2); assert ((len1 <: nat) == (len2 <: nat)); assert (injective (p' v1)); assert (injective_precond (p' v1) b1' b2'); assert (injective_postcond (p' v1) b1' b2'); let (Some (_, len1')) = (p' v1) b1' in let (Some (_, len2')) = (p' v2) b2' in assert ((len1' <: nat) == (len2' <: nat)); Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len1; assert (injective_postcond ps b1 b2) in Classical.forall_intro_2 (fun x -> Classical.move_requires (f x)) val and_then_no_lookahead_on (#t:Type) (#t':Type) (p: bare_parser t) (p': (t -> Tot (bare_parser t'))) (x: bytes) (x' : bytes) : Lemma (requires ( no_lookahead p /\ injective p /\ (forall (x: t) . no_lookahead (p' x)) )) (ensures (no_lookahead_on (and_then_bare p p') x x')) let and_then_no_lookahead_on #t #t' p p' x x' = let f = and_then_bare p p' in match f x with | Some v -> let (y, off) = v in let off : nat = off in let (off_x : consumed_length x ) = off in if off <= Seq.length x' then let (off_x' : consumed_length x') = off in let g () : Lemma (requires (Seq.slice x' 0 off_x' == Seq.slice x 0 off_x)) (ensures ( Some? (f x') /\ ( let (Some v') = f x' in let (y', off') = v' in y == y' ))) = assert (Some? (p x)); let (Some (y1, off1)) = p x in assert (off1 <= off); assert (off1 <= Seq.length x'); assert (Seq.slice x' 0 off1 == Seq.slice (Seq.slice x' 0 off_x') 0 off1); assert (Seq.slice x' 0 off1 == Seq.slice x 0 off1); assert (no_lookahead_on p x x'); assert (Some? (p x')); let (Some v1') = p x' in let (y1', off1') = v1' in assert (y1 == y1'); assert (injective_precond p x x'); assert ((off1 <: nat) == (off1' <: nat)); let x2 : bytes = Seq.slice x off1 (Seq.length x) in let x2' : bytes = Seq.slice x' off1 (Seq.length x') in let p2 = p' y1 in assert (Some? (p2 x2)); let (Some (y2, off2)) = p2 x2 in assert (off == off1 + off2); assert (off2 <= Seq.length x2); assert (off2 <= Seq.length x2'); assert (Seq.slice x2' 0 off2 == Seq.slice (Seq.slice x' 0 off_x') off1 (off1 + off2)); assert (Seq.slice x2' 0 off2 == Seq.slice x2 0 off2); assert (no_lookahead_on p2 x2 x2'); assert (Some? (p2 x2')); let (Some v2') = p2 x2' in let (y2', _) = v2' in assert (y2 == y2') in Classical.move_requires g () else () | _ -> () let and_then_no_lookahead (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures (no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')))) = Classical.forall_intro_2 (fun x -> Classical.move_requires (and_then_no_lookahead_on (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') x)) #set-options "--max_fuel 8 --max_ifuel 8 --z3rlimit 64" let and_then_correct (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Lemma (requires ( and_then_cases_injective p' )) (ensures ( no_lookahead_weak (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ injective (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) /\ no_lookahead (and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p')) )) = and_then_no_lookahead_weak (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_injective (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p'); and_then_no_lookahead p p' #reset-options val and_then (#t:Type) (p:parser_spec t) (#t':Type) (p': (t -> Tot (parser_spec t'))) : Pure (parser_spec t') (requires ( and_then_cases_injective p' )) (ensures (fun _ -> True)) let and_then #t p #t' p' = let f : bare_parser t' = and_then_bare (coerce_to_bare_parser _ p) (coerce_to_bare_param_parser p') in and_then_correct p p' ; Parser f (* Special case for non-dependent parsing *) #set-options "--z3rlimit 16" let nondep_then (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) : Tot (parser_spec (t1 * t2)) = p1 `and_then` (fun v1 -> p2 `and_then` (fun v2 -> (parse_ret (v1, v2)))) let nondep_then_eq (#t1: Type0) (p1: parser_spec t1) (#t2: Type0) (p2: parser_spec t2) (b: bytes) : Lemma (parse (nondep_then p1 p2) b == (match parse p1 b with | Some (x1, consumed1) -> let b' = Seq.slice b consumed1 (Seq.length b) in begin match parse p2 b' with | Some (x2, consumed2) -> Some ((x1, x2), consumed1 + consumed2) | _ -> None end | _ -> None )) = () let bare_serialize_nondep_then (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Tot (bare_serializer (t1 * t2)) = fun (x: t1 * t2) -> let (x1, x2) = x in Seq.append (serialize s1 x1) (serialize s2 x2) let seq_slice_append_l (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1) == s1) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) 0 (Seq.length s1)) s1) let seq_slice_append_r (#t: Type) (s1 s2: Seq.seq t) : Lemma (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2)) == s2) = assert (Seq.equal (Seq.slice (Seq.append s1 s2) (Seq.length s1) (Seq.length (Seq.append s1 s2))) s2)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "MiniParse.Spec.Base.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": false, "source_file": "MiniParse.Spec.Combinators.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "MiniParse.Spec.Base", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "MiniParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p1: MiniParse.Spec.Base.parser_spec t1 -> s1: MiniParse.Spec.Base.serializer_spec p1 -> p2: MiniParse.Spec.Base.parser_spec t2 -> s2: MiniParse.Spec.Base.serializer_spec p2 -> FStar.Pervasives.Lemma (ensures MiniParse.Spec.Base.serializer_correct (MiniParse.Spec.Combinators.nondep_then p1 p2) (MiniParse.Spec.Combinators.bare_serialize_nondep_then p1 s1 p2 s2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "MiniParse.Spec.Base.parser_spec", "MiniParse.Spec.Base.serializer_spec", "FStar.Classical.forall_intro", "FStar.Pervasives.Native.tuple2", "Prims.eq2", "FStar.Pervasives.Native.option", "MiniParse.Spec.Base.consumed_length", "MiniParse.Spec.Combinators.bare_serialize_nondep_then", "MiniParse.Spec.Base.parse", "MiniParse.Spec.Combinators.nondep_then", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.length", "MiniParse.Spec.Base.byte", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "MiniParse.Spec.Base.serialize", "FStar.Pervasives.Native.fst", "Prims._assert", "MiniParse.Spec.Combinators.seq_slice_append_r", "FStar.Pervasives.Native.snd", "MiniParse.Spec.Base.bytes", "FStar.Seq.Base.seq", "FStar.Seq.Base.append", "Prims.nat", "MiniParse.Spec.Base.injective_postcond", "MiniParse.Spec.Base.coerce_to_bare_parser", "MiniParse.Spec.Base.injective_precond", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "MiniParse.Spec.Base.no_lookahead_on_postcond", "MiniParse.Spec.Base.no_lookahead_on_precond", "MiniParse.Spec.Combinators.seq_slice_append_l", "FStar.Seq.Base.slice", "Prims.op_LessThanOrEqual", "MiniParse.Spec.Base.no_lookahead_on", "MiniParse.Spec.Base.serializer_correct" ]
[]
false
false
true
false
false
let bare_serialize_nondep_then_correct (#t1: Type0) (p1: parser_spec t1) (s1: serializer_spec p1) (#t2: Type0) (p2: parser_spec t2) (s2: serializer_spec p2) : Lemma (ensures (serializer_correct (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2))) =
let prf (x: t1 * t2) : Lemma (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))) = let v1' = parse p1 (bare_serialize_nondep_then p1 s1 p2 s2 x) in let v1 = parse p1 (serialize s1 (fst x)) in assert (Some? v1); assert (no_lookahead_on (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let Some (_, len') = parse p1 (serialize s1 (fst x)) in assert (len' == Seq.length (serialize s1 (fst x))); assert (len' <= Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Seq.slice (serialize s1 (fst x)) 0 len' == serialize s1 (fst x)); seq_slice_append_l (serialize s1 (fst x)) (serialize s2 (snd x)); assert (no_lookahead_on_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (no_lookahead_on_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (Some? v1'); assert (injective_precond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); assert (injective_postcond (coerce_to_bare_parser _ p1) (serialize s1 (fst x)) (bare_serialize_nondep_then p1 s1 p2 s2 x)); let Some (x1, len1) = v1 in let Some (x1', len1') = v1' in assert (x1 == x1'); assert ((len1 <: nat) == (len1' <: nat)); assert (x1 == fst x); assert (len1 == Seq.length (serialize s1 (fst x))); assert (bare_serialize_nondep_then p1 s1 p2 s2 x == Seq.append (serialize s1 (fst x)) (serialize s2 (snd x))); let s = bare_serialize_nondep_then p1 s1 p2 s2 x in seq_slice_append_r (serialize s1 (fst x)) (serialize s2 (snd x)); assert (parse (nondep_then p1 p2) (bare_serialize_nondep_then p1 s1 p2 s2 x) == Some (x, Seq.length (bare_serialize_nondep_then p1 s1 p2 s2 x))); () in Classical.forall_intro prf
false
FStar.Matrix.fst
FStar.Matrix.matrix_seq_of_one_row_matrix
val matrix_seq_of_one_row_matrix (#c #m #n: _) (generator: matrix_generator c m n) : Lemma (requires m == 1) (ensures matrix_seq generator == (SB.init n (generator 0)))
val matrix_seq_of_one_row_matrix (#c #m #n: _) (generator: matrix_generator c m n) : Lemma (requires m == 1) (ensures matrix_seq generator == (SB.init n (generator 0)))
let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 154, "start_col": 0, "start_line": 151 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (requires m == 1) (ensures FStar.Matrix.matrix_seq generator == FStar.Seq.Base.init n (generator 0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.matrix_seq", "FStar.Seq.Base.init", "Prims.unit", "Prims.eq2", "Prims.int", "Prims.squash", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_seq_of_one_row_matrix #c #m #n (generator: matrix_generator c m n) : Lemma (requires m == 1) (ensures matrix_seq generator == (SB.init n (generator 0))) =
SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0))
false
FStar.Matrix.fst
FStar.Matrix.math_aux_2
val math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j + (m - 1) * n) == j)
val math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j + (m - 1) * n) == j)
let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 217, "start_col": 0, "start_line": 214 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.pos -> n: Prims.pos -> j: FStar.IntegerIntervals.under n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.get_j m n (j + (m - 1) * n) == j)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.IntegerIntervals.under", "FStar.Math.Lemmas.small_mod", "Prims.unit", "FStar.Math.Lemmas.modulo_addition_lemma", "Prims.op_Subtraction", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Matrix.get_j", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j + (m - 1) * n) == j) =
Math.Lemmas.modulo_addition_lemma j n (m - 1); Math.Lemmas.small_mod j n
false
FStar.Matrix.fst
FStar.Matrix.init
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n) -> matrix_of generator
val init : (#c:Type) -> (#m:pos) -> (#n: pos) -> (generator: matrix_generator c m n) -> matrix_of generator
let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 94, "start_col": 0, "start_line": 75 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Matrix.matrix_of generator
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "Prims.unit", "FStar.Classical.forall_intro_2", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Seq.Properties.map_seq", "FStar.Matrix.get_ij", "FStar.Classical.forall_intro", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Properties.map_seq_index", "Prims._assert", "FStar.Matrix.consistency_of_ij", "FStar.Matrix.consistency_of_i_j", "Prims.nat", "FStar.Seq.Base.length", "FStar.Seq.Properties.map_seq_len", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.l_Forall", "FStar.IntegerIntervals.indices_seq", "Prims.op_Multiply", "FStar.Mul.op_Star", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "Prims.int", "FStar.Matrix.matrix_of" ]
[]
false
false
false
false
false
let init #c (#m: pos) (#n: pos) (generator: matrix_generator c m n) : matrix_of generator =
let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result
false
Hacl.Impl.Ed25519.Ladder.fst
Hacl.Impl.Ed25519.Ladder.precomp_get_consttime
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul (BE.table_inv_precomp 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul)
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul (BE.table_inv_precomp 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul)
let precomp_get_consttime ctx a table bits_l tmp = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
{ "file_name": "code/ed25519/Hacl.Impl.Ed25519.Ladder.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 76, "end_line": 109, "start_col": 0, "start_line": 102 }
module Hacl.Impl.Ed25519.Ladder module ST = FStar.HyperStack.ST open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Bignum25519 module F51 = Hacl.Impl.Ed25519.Field51 module BSeq = Lib.ByteSequence module LE = Lib.Exponentiation module SE = Spec.Exponentiation module BE = Hacl.Impl.Exponentiation module ME = Hacl.Impl.MultiExponentiation module PT = Hacl.Impl.PrecompTable module SPT256 = Hacl.Spec.PrecompBaseTable256 module BD = Hacl.Bignum.Definitions module SD = Hacl.Spec.Bignum.Definitions module S = Spec.Ed25519 open Hacl.Impl.Ed25519.PointConstants include Hacl.Impl.Ed25519.Group include Hacl.Ed25519.PrecompTable #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" inline_for_extraction noextract let table_inv_w4 : BE.table_inv_t U64 20ul 16ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 4ul in [@inline_let] let table_len = 16ul in BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract let table_inv_w5 : BE.table_inv_t U64 20ul 32ul = [@inline_let] let len = 20ul in [@inline_let] let ctx_len = 0ul in [@inline_let] let k = mk_ed25519_concrete_ops in [@inline_let] let l = 5ul in [@inline_let] let table_len = 32ul in assert_norm (pow2 (v l) = v table_len); BE.table_inv_precomp len ctx_len k l table_len inline_for_extraction noextract val convert_scalar: scalar:lbuffer uint8 32ul -> bscalar:lbuffer uint64 4ul -> Stack unit (requires fun h -> live h scalar /\ live h bscalar /\ disjoint scalar bscalar) (ensures fun h0 _ h1 -> modifies (loc bscalar) h0 h1 /\ BD.bn_v h1 bscalar == BSeq.nat_from_bytes_le (as_seq h0 scalar)) let convert_scalar scalar bscalar = let h0 = ST.get () in Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #U64 32 (as_seq h0 scalar); Hacl.Bignum.Convert.mk_bn_from_bytes_le true 32ul scalar bscalar inline_for_extraction noextract val point_mul_noalloc: out:point -> bscalar:lbuffer uint64 4ul -> q:point -> Stack unit (requires fun h -> live h bscalar /\ live h q /\ live h out /\ disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\ F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\ BD.bn_v h bscalar < pow2 256) (ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\ F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\ S.to_aff_point (F51.point_eval h1 out) == LE.exp_fw S.mk_ed25519_comm_monoid (S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4) let point_mul_noalloc out bscalar q = BE.lexp_fw_consttime 20ul 0ul mk_ed25519_concrete_ops 4ul (null uint64) q 4ul 256ul bscalar out let point_mul out scalar q = let h0 = ST.get () in SE.exp_fw_lemma S.mk_ed25519_concrete_ops (F51.point_eval h0 q) 256 (BSeq.nat_from_bytes_le (as_seq h0 scalar)) 4; push_frame (); let bscalar = create 4ul (u64 0) in convert_scalar scalar bscalar; point_mul_noalloc out bscalar q; pop_frame () val precomp_get_consttime: BE.pow_a_to_small_b_st U64 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul (BE.table_inv_precomp 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul)
{ "checked_file": "/", "dependencies": [ "Spec.Exponentiation.fsti.checked", "Spec.Ed25519.Lemmas.fsti.checked", "Spec.Ed25519.fst.checked", "prims.fst.checked", "LowStar.Ignore.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Exponentiation.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.PrecompBaseTable256.fsti.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.Convert.fst.checked", "Hacl.Impl.PrecompTable.fsti.checked", "Hacl.Impl.MultiExponentiation.fsti.checked", "Hacl.Impl.Exponentiation.fsti.checked", "Hacl.Impl.Ed25519.PointNegate.fst.checked", "Hacl.Impl.Ed25519.PointConstants.fst.checked", "Hacl.Impl.Ed25519.Group.fst.checked", "Hacl.Impl.Ed25519.Field51.fst.checked", "Hacl.Ed25519.PrecompTable.fsti.checked", "Hacl.Bignum25519.fsti.checked", "Hacl.Bignum.Definitions.fst.checked", "Hacl.Bignum.Convert.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked" ], "interface_file": true, "source_file": "Hacl.Impl.Ed25519.Ladder.fst" }
[ { "abbrev": false, "full_module": "Hacl.Ed25519.PrecompTable", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.Group", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519.PointConstants", "short_module": null }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Bignum.Definitions", "short_module": "BD" }, { "abbrev": true, "full_module": "Hacl.Spec.PrecompBaseTable256", "short_module": "SPT256" }, { "abbrev": true, "full_module": "Hacl.Impl.PrecompTable", "short_module": "PT" }, { "abbrev": true, "full_module": "Hacl.Impl.MultiExponentiation", "short_module": "ME" }, { "abbrev": true, "full_module": "Hacl.Impl.Exponentiation", "short_module": "BE" }, { "abbrev": true, "full_module": "Spec.Exponentiation", "short_module": "SE" }, { "abbrev": true, "full_module": "Lib.Exponentiation", "short_module": "LE" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "Spec.Ed25519", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Ed25519.Field51", "short_module": "F51" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": false, "full_module": "Hacl.Bignum25519", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Ed25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Hacl.Impl.Exponentiation.pow_a_to_small_b_st Lib.IntTypes.U64 20ul 0ul Hacl.Impl.Ed25519.Group.mk_ed25519_concrete_ops 4ul 16ul (Hacl.Impl.Exponentiation.table_inv_precomp 20ul 0ul Hacl.Impl.Ed25519.Group.mk_ed25519_concrete_ops 4ul 16ul)
Prims.Tot
[ "total" ]
[]
[ "Lib.Buffer.lbuffer", "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "FStar.UInt32.__uint_to_t", "FStar.Ghost.erased", "Lib.Sequence.lseq", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Buffer.clbuffer", "Lib.IntTypes.op_Star_Bang", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Hacl.Impl.Exponentiation.lprecomp_get_consttime", "Prims.unit", "FStar.UInt32.t", "Hacl.Impl.Exponentiation.Definitions.concrete_ops", "FStar.UInt32.uint_to_t", "Hacl.Impl.Ed25519.Group.mk_ed25519_concrete_ops" ]
[]
false
false
false
false
false
let precomp_get_consttime ctx a table bits_l tmp =
[@@ inline_let ]let len = 20ul in [@@ inline_let ]let ctx_len = 0ul in [@@ inline_let ]let k = mk_ed25519_concrete_ops in [@@ inline_let ]let l = 4ul in [@@ inline_let ]let table_len = 16ul in BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
false
FStar.Matrix.fst
FStar.Matrix.fold_of_subgen_aux
val fold_of_subgen_aux (#c #eq: _) (#m: pos{m > 1}) (#n: _) (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m - 1) n) : Lemma (requires subgen == (fun (i: under (m - 1)) (j: under n) -> gen i j)) (ensures forall (i: under (m - 1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i)))
val fold_of_subgen_aux (#c #eq: _) (#m: pos{m > 1}) (#n: _) (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m - 1) n) : Lemma (requires subgen == (fun (i: under (m - 1)) (j: under n) -> gen i j)) (ensures forall (i: under (m - 1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i)))
let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 180, "start_col": 0, "start_line": 173 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> gen: FStar.Matrix.matrix_generator c m n -> subgen: FStar.Matrix.matrix_generator c (m - 1) n -> FStar.Pervasives.Lemma (requires subgen == (fun i j -> gen i j)) (ensures forall (i: FStar.IntegerIntervals.under (m - 1)). FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (subgen i)) == FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (gen i)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "Prims.op_Subtraction", "FStar.Classical.forall_intro", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Base.lemma_eq_elim", "Prims.l_Forall" ]
[]
false
false
true
false
false
let fold_of_subgen_aux #c #eq (#m: pos{m > 1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m - 1) n) : Lemma (requires subgen == (fun (i: under (m - 1)) (j: under n) -> gen i j)) (ensures forall (i: under (m - 1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) =
let aux_pat (i: under (m - 1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat
false
FStar.Matrix.fst
FStar.Matrix.math_aux_3
val math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j + (m - 1) * n) == (m - 1))
val math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j + (m - 1) * n) == (m - 1))
let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 222, "start_col": 0, "start_line": 219 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.pos -> n: Prims.pos -> j: FStar.IntegerIntervals.under n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.get_i m n (j + (m - 1) * n) == m - 1)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.IntegerIntervals.under", "FStar.Math.Lemmas.small_div", "Prims.unit", "FStar.Math.Lemmas.division_addition_lemma", "Prims.op_Subtraction", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.int", "FStar.Matrix.get_i", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j + (m - 1) * n) == (m - 1)) =
Math.Lemmas.division_addition_lemma j n (m - 1); Math.Lemmas.small_div j n
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_equals_func_double_fold
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) -> (#m: pos) -> (#n: pos) -> (cm: CE.cm c eq) -> (generator: matrix_generator c m n) -> Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
val matrix_fold_equals_func_double_fold : (#c:Type) -> (#eq: CE.equiv c) -> (#m: pos) -> (#n: pos) -> (cm: CE.cm c eq) -> (generator: matrix_generator c m n) -> Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)))
let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 370, "start_col": 0, "start_line": 367 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Matrix.foldm cm (FStar.Matrix.init generator)) (FStar.Algebra.CommMonoid.Fold.fold cm 0 (m - 1) (fun i -> FStar.Algebra.CommMonoid.Fold.fold cm 0 (n - 1) (generator i))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "FStar.Matrix.matrix_fold_aux", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.foldm", "FStar.Matrix.init", "FStar.Algebra.CommMonoid.Fold.fold", "Prims.op_Subtraction", "FStar.IntegerIntervals.under", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma ((foldm cm (init generator)) `eq.eq` (CF.fold cm 0 (m - 1) (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)))) =
matrix_fold_aux cm m n generator
false
FStar.Matrix.fst
FStar.Matrix.transposed_matrix_gen
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j })
val transposed_matrix_gen (#c:_) (#m:pos) (#n:pos) (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j })
let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 377, "start_col": 0, "start_line": 375 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> f: FStar.Matrix.matrix_generator c n m { forall (i: FStar.IntegerIntervals.under m) (j: FStar.IntegerIntervals.under n). f j i == generator i j }
Prims.Tot
[ "total" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.IntegerIntervals.under", "Prims.l_Forall", "Prims.eq2" ]
[]
false
false
false
false
false
let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m {forall i j. f j i == generator i j}) =
fun j i -> generator i j
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_equals_fold_of_seq_folds
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) -> (#m: pos) -> (#n: pos) -> (cm: CE.cm c eq) -> (generator: matrix_generator c m n) -> Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) )
val matrix_fold_equals_fold_of_seq_folds : (#c:Type) -> (#eq: CE.equiv c) -> (#m: pos) -> (#n: pos) -> (cm: CE.cm c eq) -> (generator: matrix_generator c m n) -> Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) )
let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); ()
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 2, "end_line": 299, "start_col": 0, "start_line": 288 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Matrix.foldm cm (FStar.Matrix.init generator)) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))) )) /\ EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))) )))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "Prims.unit", "Prims._assert", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.Seq.Base.init", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Permutation.foldm_snoc", "FStar.IntegerIntervals.under", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.slice", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Mul.op_Star", "FStar.Matrix.matrix_fold_equals_double_fold", "Prims.l_True", "Prims.squash", "Prims.l_and", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.foldm", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures (foldm cm (init generator)) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) /\ (SP.foldm_snoc cm (seq_of_matrix (init generator))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))))) =
matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m * n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); ()
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) : matrix c m p
val matrix_mul (#c:_) (#eq:_) (#m #n #p:pos) (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) : matrix c m p
let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 523, "start_col": 0, "start_line": 522 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> FStar.Matrix.matrix c m p
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Matrix.init", "FStar.Matrix.matrix_mul_gen" ]
[]
false
false
false
false
false
let matrix_mul #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) =
init (matrix_mul_gen add mul mx my)
false
FStar.Matrix.fst
FStar.Matrix.seq_eq_from_member_eq
val seq_eq_from_member_eq (#c: _) (n: pos) (p q: (z: SB.seq c {SB.length z = n})) (proof: (i: under n -> Lemma (SB.index p i == SB.index q i))) : Lemma (p == q)
val seq_eq_from_member_eq (#c: _) (n: pos) (p q: (z: SB.seq c {SB.length z = n})) (proof: (i: under n -> Lemma (SB.index p i == SB.index q i))) : Lemma (p == q)
let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 230, "start_col": 0, "start_line": 226 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.pos -> p: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z = n} -> q: z: FStar.Seq.Base.seq c {FStar.Seq.Base.length z = n} -> proof: (i: FStar.IntegerIntervals.under n -> FStar.Pervasives.Lemma (ensures FStar.Seq.Base.index p i == FStar.Seq.Base.index q i)) -> FStar.Pervasives.Lemma (ensures p == q)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Seq.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Prims.op_GreaterThan", "FStar.Seq.Base.length", "FStar.IntegerIntervals.under", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.index", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Seq.Base.lemma_eq_elim", "FStar.Classical.forall_intro" ]
[]
false
false
true
false
false
let seq_eq_from_member_eq #c (n: pos) (p: (z: SB.seq c {SB.length z = n})) (q: (z: SB.seq c {SB.length z = n})) (proof: (i: under n -> Lemma (SB.index p i == SB.index q i))) : Lemma (p == q) =
Classical.forall_intro proof; SB.lemma_eq_elim p q
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_is_associative
val matrix_add_is_associative (#c #eq #m #n: _) (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma ((matrix_add add (matrix_add add ma mb) mc) `(matrix_equiv eq m n).eq` (matrix_add add ma (matrix_add add mb mc)))
val matrix_add_is_associative (#c #eq #m #n: _) (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma ((matrix_add add (matrix_add add ma mb) mc) `(matrix_equiv eq m n).eq` (matrix_add add ma (matrix_add add mb mc)))
let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 467, "start_col": 0, "start_line": 461 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> mc: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m n) (FStar.Matrix.matrix_add add (FStar.Matrix.matrix_add add ma mb) mc) (FStar.Matrix.matrix_add add ma (FStar.Matrix.matrix_add add mb mc)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.Matrix.matrix_add", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__associativity", "FStar.Matrix.ijth", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_equiv", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma: matrix c m n) (mb: matrix c m n) (mc: matrix c m n) : Lemma ((matrix_add add (matrix_add add ma mb) mc) `(matrix_equiv eq m n).eq` (matrix_add add ma (matrix_add add mb mc))) =
matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j))
false
FStar.Matrix.fst
FStar.Matrix.matrix_equiv
val matrix_equiv : (#c: Type) -> (eq: CE.equiv c) -> (m: pos) -> (n: pos) -> CE.equiv (matrix c m n)
val matrix_equiv : (#c: Type) -> (eq: CE.equiv c) -> (m: pos) -> (n: pos) -> CE.equiv (matrix c m n)
let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 108, "end_line": 441, "start_col": 0, "start_line": 437 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> m: Prims.pos -> n: Prims.pos -> FStar.Algebra.CommMonoid.Equiv.equiv (FStar.Matrix.matrix c m n)
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.EQ", "FStar.Matrix.matrix", "FStar.Matrix.matrix_eq_fun", "FStar.Seq.Equiv.eq_of_seq_reflexivity", "FStar.Matrix.seq_of_matrix", "Prims.unit", "FStar.Seq.Equiv.eq_of_seq_symmetry", "FStar.Seq.Equiv.eq_of_seq_transitivity" ]
[]
false
false
false
false
false
let matrix_equiv #c (eq: CE.equiv c) (m: pos) (n: pos) : CE.equiv (matrix c m n) =
CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc))
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_congruence
val matrix_add_congruence (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_eq_fun eq (matrix_add add ma mb) (matrix_add add mc md))
val matrix_add_congruence (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_eq_fun eq (matrix_add add ma mb) (matrix_add add mc md))
let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 481, "start_col": 0, "start_line": 474 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> mc: FStar.Matrix.matrix c m n -> md: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (requires FStar.Matrix.matrix_eq_fun eq ma mc /\ FStar.Matrix.matrix_eq_fun eq mb md) (ensures FStar.Matrix.matrix_eq_fun eq (FStar.Matrix.matrix_add add ma mb) (FStar.Matrix.matrix_add add mc md))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.Matrix.matrix_add", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.ijth", "Prims.unit", "FStar.Matrix.matrix_equiv_ijth", "Prims.l_and", "FStar.Matrix.matrix_eq_fun", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_add_congruence #c #eq (#m: pos) (#n: pos) (add: CE.cm c eq) (ma: matrix c m n) (mb: matrix c m n) (mc: matrix c m n) (md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_eq_fun eq (matrix_add add ma mb) (matrix_add add mc md)) =
matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j))
false
FStar.Matrix.fst
FStar.Matrix.matrix_seq_decomposition_lemma
val matrix_seq_decomposition_lemma (#c: _) (#m: greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m - 1) #n generator) (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
val matrix_seq_decomposition_lemma (#c: _) (#m: greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m - 1) #n generator) (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 117, "start_col": 0, "start_line": 111 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.matrix_seq generator == FStar.Seq.Base.append (FStar.Matrix.matrix_seq generator) (FStar.Seq.Base.slice (FStar.Matrix.matrix_seq generator) ((m - 1) * n) (m * n)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.IntegerIntervals.greater_than", "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Seq.Base.lemma_eq_elim", "FStar.Matrix.matrix_seq", "FStar.Seq.Base.append", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_seq_decomposition_lemma #c (#m: greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m - 1) #n generator) (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))) =
SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m - 1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n)))
false
FStar.Matrix.fst
FStar.Matrix.liat_equals_init
val liat_equals_init (#c: _) (m: pos) (gen: (under m -> c)) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m - 1) gen)
val liat_equals_init (#c: _) (m: pos) (gen: (under m -> c)) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m - 1) gen)
let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 76, "end_line": 210, "start_col": 0, "start_line": 208 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Prims.pos -> gen: (_: FStar.IntegerIntervals.under m -> c) -> FStar.Pervasives.Lemma (ensures FStar.Pervasives.Native.fst (FStar.Seq.Properties.un_snoc (FStar.Seq.Base.init m gen)) == FStar.Seq.Base.init (m - 1) gen)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.IntegerIntervals.under", "FStar.Seq.Base.lemma_eq_elim", "FStar.Pervasives.Native.fst", "FStar.Seq.Base.seq", "FStar.Seq.Properties.un_snoc", "FStar.Seq.Base.init", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let liat_equals_init #c (m: pos) (gen: (under m -> c)) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m - 1) gen) =
SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m - 1) gen)
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_identity
val matrix_add_identity (#c #eq: _) (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_eq_fun eq (matrix_add add (matrix_add_zero add m n) mx) mx)
val matrix_add_identity (#c #eq: _) (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_eq_fun eq (matrix_add add (matrix_add_zero add m n) mx) mx)
let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 65, "end_line": 490, "start_col": 0, "start_line": 487 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (ensures FStar.Matrix.matrix_eq_fun eq (FStar.Matrix.matrix_add add (FStar.Matrix.matrix_add_zero add m n) mx) mx)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.pos", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.Matrix.matrix_add", "FStar.Matrix.matrix_add_zero", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__identity", "FStar.Matrix.ijth", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Matrix.matrix_eq_fun", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_add_identity #c #eq (add: CE.cm c eq) (#m: pos) (#n: pos) (mx: matrix c m n) : Lemma (matrix_eq_fun eq (matrix_add add (matrix_add_zero add m n) mx) mx) =
matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j))
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_snoc_lemma
val matrix_fold_snoc_lemma (#c #eq: _) (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m - 1) * n < m * n); (SP.foldm_snoc cm (matrix_seq generator)) `eq.eq` (cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m - 1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m - 1) * n) (m * n)))))
val matrix_fold_snoc_lemma (#c #eq: _) (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m - 1) * n < m * n); (SP.foldm_snoc cm (matrix_seq generator)) `eq.eq` (cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m - 1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m - 1) * n) (m * n)))))
let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 134, "start_col": 0, "start_line": 121 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures (assert ((m - 1) * n < m * n); EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.matrix_seq generator)) (CM?.mult cm (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.matrix_seq generator)) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.slice (FStar.Matrix.matrix_seq generator) ((m - 1) * n) (m * n)))) ))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.IntegerIntervals.not_less_than", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "FStar.Seq.Permutation.foldm_snoc_append", "FStar.Matrix.matrix_seq", "Prims.op_Subtraction", "FStar.Seq.Base.slice", "FStar.Mul.op_Star", "Prims.unit", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.append", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Permutation.foldm_snoc", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "Prims._assert", "Prims.b2t", "Prims.op_LessThan", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m - 1) * n < m * n); (SP.foldm_snoc cm (matrix_seq generator)) `eq.eq` (cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m - 1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m - 1) * n) (m * n))))) =
SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m - 1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))); SP.foldm_snoc_append cm (matrix_seq #c #(m - 1) #n generator) (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_zero
val matrix_add_zero (#c #eq: _) (add: CE.cm c eq) (m n: pos) : (z: matrix c m n {forall (i: under m) (j: under n). ijth z i j == add.unit})
val matrix_add_zero (#c #eq: _) (add: CE.cm c eq) (m n: pos) : (z: matrix c m n {forall (i: under m) (j: under n). ijth z i j == add.unit})
let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 485, "start_col": 0, "start_line": 483 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> m: Prims.pos -> n: Prims.pos -> z: FStar.Matrix.matrix c m n { forall (i: FStar.IntegerIntervals.under m) (j: FStar.IntegerIntervals.under n). FStar.Matrix.ijth z i j == CM?.unit add }
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.pos", "FStar.Matrix.matrix_of_seq", "FStar.Seq.Base.create", "FStar.Mul.op_Star", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Matrix.matrix", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Matrix.ijth" ]
[]
false
false
false
false
false
let matrix_add_zero #c #eq (add: CE.cm c eq) (m: pos) (n: pos) : (z: matrix c m n {forall (i: under m) (j: under n). ijth z i j == add.unit}) =
matrix_of_seq m n (SB.create (m * n) add.unit)
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_is_commutative
val matrix_add_is_commutative (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma ((matrix_add add ma mb) `(matrix_equiv eq m n).eq` (matrix_add add mb ma))
val matrix_add_is_commutative (#c #eq: _) (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma ((matrix_add add ma mb) `(matrix_equiv eq m n).eq` (matrix_add add mb ma))
let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 472, "start_col": 0, "start_line": 469 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m n) (FStar.Matrix.matrix_add add ma mb) (FStar.Matrix.matrix_add add mb ma))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv_from_proof", "FStar.Matrix.matrix_add", "FStar.IntegerIntervals.under", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__commutativity", "FStar.Matrix.ijth", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_equiv", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_add_is_commutative #c #eq (#m: pos) (#n: pos) (add: CE.cm c eq) (ma: matrix c m n) (mb: matrix c m n) : Lemma ((matrix_add add ma mb) `(matrix_equiv eq m n).eq` (matrix_add add mb ma)) =
matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j))
false
FStar.Matrix.fst
FStar.Matrix.matrix_transpose_is_permutation
val matrix_transpose_is_permutation (#c:_) (#m #n: pos) (generator: matrix_generator c m n) : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n))
val matrix_transpose_is_permutation (#c:_) (#m #n: pos) (generator: matrix_generator c m n) : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n))
let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 405, "start_col": 0, "start_line": 381 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures FStar.Seq.Permutation.is_permutation (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator) ) (FStar.Matrix.seq_of_matrix (FStar.Matrix.init (FStar.Matrix.transposed_matrix_gen generator ))) (FStar.Matrix.transpose_ji m n))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Matrix.matrix_generator", "FStar.Seq.Permutation.reveal_is_permutation", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Matrix.transposed_matrix_gen", "FStar.Matrix.transpose_ji", "Prims.unit", "FStar.Classical.forall_intro_2", "FStar.IntegerIntervals.under", "FStar.Mul.op_Star", "Prims.l_imp", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "Prims.l_or", "FStar.IntegerIntervals.interval_condition", "FStar.Classical.move_requires_2", "FStar.Classical.forall_intro", "Prims.eq2", "FStar.Seq.Base.index", "Prims.op_Multiply", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "FStar.Matrix.dual_indices", "Prims.l_True", "FStar.Matrix.ijth_lemma", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Seq.Permutation.is_permutation" ]
[]
false
false
true
false
false
let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) =
let matrix_transposed_eq_lemma #c (#m: pos) (#n: pos) (gen: matrix_generator c m n) (ij: under (m * n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m * n)) (kl: under (n * m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)
false
FStar.Matrix.fst
FStar.Matrix.matrix_add_comm_monoid
val matrix_add_comm_monoid : (#c:Type) -> (#eq:CE.equiv c) -> (add: CE.cm c eq) -> (m:pos) -> (n: pos) -> CE.cm (matrix c m n) (matrix_equiv eq m n)
val matrix_add_comm_monoid : (#c:Type) -> (#eq:CE.equiv c) -> (add: CE.cm c eq) -> (m:pos) -> (n: pos) -> CE.cm (matrix c m n) (matrix_equiv eq m n)
let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 499, "start_col": 0, "start_line": 492 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> m: Prims.pos -> n: Prims.pos -> FStar.Algebra.CommMonoid.Equiv.cm (FStar.Matrix.matrix c m n) (FStar.Matrix.matrix_equiv eq m n)
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.CM", "FStar.Matrix.matrix", "FStar.Matrix.matrix_equiv", "FStar.Matrix.matrix_add_zero", "FStar.Matrix.matrix_add", "FStar.Matrix.matrix_add_identity", "FStar.Matrix.matrix_add_is_associative", "FStar.Matrix.matrix_add_is_commutative", "FStar.Matrix.matrix_add_congruence" ]
[]
false
false
false
false
false
let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m: pos) (n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) =
CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add)
false
FStar.Matrix.fst
FStar.Matrix.matrix_equiv_from_element_eq
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures (matrix_equiv eq m n).eq ma mb)
val matrix_equiv_from_element_eq (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures (matrix_equiv eq m n).eq ma mb)
let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 74, "end_line": 458, "start_col": 0, "start_line": 449 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> FStar.Pervasives.Lemma (requires forall (i: FStar.IntegerIntervals.under m) (j: FStar.IntegerIntervals.under n). EQ?.eq eq (FStar.Matrix.ijth ma i j) (FStar.Matrix.ijth mb i j)) (ensures EQ?.eq (FStar.Matrix.matrix_equiv eq m n) ma mb)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Matrix.matrix", "FStar.Seq.Equiv.eq_of_seq_from_element_equality", "FStar.Matrix.seq_of_matrix", "Prims.unit", "Prims._assert", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Mul.op_Star", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Seq.Base.index", "Prims.eq2", "FStar.Matrix.ijth", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "FStar.Matrix.get_ij", "Prims.nat", "Prims.squash", "FStar.Matrix.matrix_eq_fun", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_equiv_from_element_eq #c (#m: pos) (#n: pos) (eq: CE.equiv c) (ma: matrix c m n) (mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). (ijth ma i j) `eq.eq` (ijth mb i j))) (ensures matrix_eq_fun eq ma mb) =
assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m * n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m * n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m * n)). (SB.index s1 ij) `eq.eq` (SB.index s2 ij)); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
false
FStar.Matrix.fst
FStar.Matrix.one_row_matrix_fold_aux
val one_row_matrix_fold_aux (#c #eq #m #n: _) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (requires m = 1) (ensures (foldm cm (init generator)) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) /\ (SP.foldm_snoc cm (seq_of_matrix (init generator))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))))
val one_row_matrix_fold_aux (#c #eq #m #n: _) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (requires m = 1) (ensures (foldm cm (init generator)) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) /\ (SP.foldm_snoc cm (seq_of_matrix (init generator))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))))
let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 170, "start_col": 0, "start_line": 156 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (requires m = 1) (ensures EQ?.eq eq (FStar.Matrix.foldm cm (FStar.Matrix.init generator)) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))))) /\ EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.seq_of_matrix (FStar.Matrix.init generator))) (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init m (fun i -> FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.init n (generator i))))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "Prims.unit", "FStar.Matrix.matrix_seq_of_one_row_matrix", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Base.create", "FStar.Seq.Permutation.foldm_snoc", "FStar.Seq.Base.init", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Permutation.foldm_snoc_singleton", "FStar.Matrix.matrix_seq", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.foldm", "FStar.Matrix.init", "FStar.Matrix.seq_of_matrix", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let one_row_matrix_fold_aux #c #eq #m #n (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (requires m = 1) (ensures (foldm cm (init generator)) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) /\ (SP.foldm_snoc cm (seq_of_matrix (init generator))) `eq.eq` (SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))))) =
let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs
false
Hacl.HPKE.Curve64_CP256_SHA512.fsti
Hacl.HPKE.Curve64_CP256_SHA512.vale_p
val vale_p : Prims.logical
let vale_p = Vale.X64.CPU_Features_s.(adx_enabled /\ bmi2_enabled)
{ "file_name": "code/hpke/Hacl.HPKE.Curve64_CP256_SHA512.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 66, "end_line": 13, "start_col": 0, "start_line": 13 }
module Hacl.HPKE.Curve64_CP256_SHA512 open Hacl.Impl.HPKE module S = Spec.Agile.HPKE module DH = Spec.Agile.DH module AEAD = Spec.Agile.AEAD module Hash = Spec.Agile.Hash noextract unfold let cs:S.ciphersuite = (DH.DH_Curve25519, Hash.SHA2_256, S.Seal AEAD.CHACHA20_POLY1305, Hash.SHA2_512)
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Spec.Agile.HPKE.fsti.checked", "Spec.Agile.Hash.fsti.checked", "Spec.Agile.DH.fst.checked", "Spec.Agile.AEAD.fsti.checked", "prims.fst.checked", "Hacl.Impl.HPKE.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Hacl.HPKE.Curve64_CP256_SHA512.fsti" }
[ { "abbrev": true, "full_module": "Spec.Agile.Hash", "short_module": "Hash" }, { "abbrev": true, "full_module": "Spec.Agile.AEAD", "short_module": "AEAD" }, { "abbrev": true, "full_module": "Spec.Agile.DH", "short_module": "DH" }, { "abbrev": true, "full_module": "Spec.Agile.HPKE", "short_module": "S" }, { "abbrev": false, "full_module": "Hacl.Impl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "Hacl.HPKE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_and", "Prims.b2t", "Vale.X64.CPU_Features_s.adx_enabled", "Vale.X64.CPU_Features_s.bmi2_enabled" ]
[]
false
false
false
true
true
let vale_p =
let open Vale.X64.CPU_Features_s in adx_enabled /\ bmi2_enabled
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_equals_fold_of_transpose
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_) (#m #n: pos) (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen)))
val matrix_fold_equals_fold_of_transpose (#c:_) (#eq:_) (#m #n: pos) (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen)))
let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen)))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 63, "end_line": 427, "start_col": 0, "start_line": 408 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> gen: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Matrix.foldm cm (FStar.Matrix.init gen)) (FStar.Matrix.foldm cm (FStar.Matrix.init (FStar.Matrix.transposed_matrix_gen gen))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Matrix.foldm", "FStar.Matrix.init", "FStar.Seq.Permutation.foldm_snoc", "FStar.Matrix.transposed_matrix_gen", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Matrix.matrix_fold_equals_fold_of_seq", "FStar.Seq.Permutation.foldm_snoc_perm", "FStar.Matrix.transpose_ji", "FStar.Matrix.matrix_transpose_is_permutation", "FStar.Seq.Base.seq", "Prims.l_and", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Multiply", "Prims.l_Forall", "FStar.IntegerIntervals.under", "Prims.eq2", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Matrix.seq_of_matrix", "Prims.l_True", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma ((foldm cm (init gen)) `eq.eq` (foldm cm (init (transposed_matrix_gen gen)))) =
let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen)))
false
FStar.Matrix.fst
FStar.Matrix.matrix_mul_gen
val matrix_mul_gen : add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> i: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under p -> c
let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 520, "start_col": 0, "start_line": 517 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> mx: FStar.Matrix.matrix c m n -> my: FStar.Matrix.matrix c n p -> i: FStar.IntegerIntervals.under m -> k: FStar.IntegerIntervals.under p -> c
Prims.Tot
[ "total" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "FStar.Matrix.dot", "FStar.Matrix.row", "FStar.Matrix.col" ]
[]
false
false
false
false
false
let matrix_mul_gen #c #eq #m #n #p (add: CE.cm c eq) (mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) =
dot add mul (row mx i) (col my k)
false
FStar.Matrix.fst
FStar.Matrix.matrix_equiv_ijth
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j)
val matrix_equiv_ijth (#c:_) (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j)
let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 446, "start_col": 0, "start_line": 444 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
eq: FStar.Algebra.CommMonoid.Equiv.equiv c -> ma: FStar.Matrix.matrix c m n -> mb: FStar.Matrix.matrix c m n -> i: FStar.IntegerIntervals.under m -> j: FStar.IntegerIntervals.under n -> FStar.Pervasives.Lemma (requires EQ?.eq (FStar.Matrix.matrix_equiv eq m n) ma mb) (ensures EQ?.eq eq (FStar.Matrix.ijth ma i j) (FStar.Matrix.ijth mb i j))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Matrix.matrix", "FStar.IntegerIntervals.under", "FStar.Seq.Equiv.eq_of_seq_element_equality", "FStar.Matrix.seq_of_matrix", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Matrix.matrix_equiv", "Prims.squash", "FStar.Matrix.ijth", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let matrix_equiv_ijth #c (#m: pos) (#n: pos) (eq: CE.equiv c) (ma: matrix c m n) (mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures (ijth ma i j) `eq.eq` (ijth mb i j)) =
eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb)
false
FStar.Matrix.fst
FStar.Matrix.foldm_snoc_distributivity_right_eq
val foldm_snoc_distributivity_right_eq (#c #eq: _) (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add r))
val foldm_snoc_distributivity_right_eq (#c #eq: _) (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add r))
let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 576, "start_col": 0, "start_line": 571 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> s: FStar.Seq.Base.seq c -> a: c -> r: FStar.Seq.Base.seq c -> FStar.Pervasives.Lemma (requires FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul /\ FStar.Seq.Base.equal r (FStar.Matrix.seq_op_const mul s a)) (ensures EQ?.eq eq (CM?.mult mul (FStar.Seq.Permutation.foldm_snoc add s) a) (FStar.Seq.Permutation.foldm_snoc add r))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Seq.Base.seq", "FStar.Matrix.foldm_snoc_distributivity_right", "Prims.unit", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "FStar.Seq.Base.equal", "FStar.Matrix.seq_op_const", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let foldm_snoc_distributivity_right_eq #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures (mul.mult (SP.foldm_snoc add s) a) `eq.eq` (SP.foldm_snoc add r)) =
foldm_snoc_distributivity_right mul add s a
false
FStar.Matrix.fst
FStar.Matrix.matrix_fold_aux
val matrix_fold_aux (#c #eq: _) (#gen_m #gen_n: pos) (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) (generator: matrix_generator c gen_m gen_n) : Lemma (ensures (SP.foldm_snoc cm (matrix_seq #c #m #n generator)) `eq.eq` (CF.fold cm 0 (m - 1) (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)))) (decreases m)
val matrix_fold_aux (#c #eq: _) (#gen_m #gen_n: pos) (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) (generator: matrix_generator c gen_m gen_n) : Lemma (ensures (SP.foldm_snoc cm (matrix_seq #c #m #n generator)) `eq.eq` (CF.fold cm 0 (m - 1) (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)))) (decreases m)
let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 5, "end_line": 362, "start_col": 0, "start_line": 331 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> m: FStar.IntegerIntervals.ifrom_ito 1 gen_m -> n: FStar.IntegerIntervals.ifrom_ito 1 gen_n -> generator: FStar.Matrix.matrix_generator c gen_m gen_n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Matrix.matrix_seq generator)) (FStar.Algebra.CommMonoid.Fold.fold cm 0 (m - 1) (fun i -> FStar.Algebra.CommMonoid.Fold.fold cm 0 (n - 1) (generator i)))) (decreases m)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.IntegerIntervals.ifrom_ito", "FStar.Matrix.matrix_generator", "Prims.op_Equality", "Prims.int", "Prims._assert", "Prims.eq2", "FStar.Algebra.CommMonoid.Fold.fold", "Prims.op_Subtraction", "FStar.IntegerIntervals.under", "Prims.unit", "FStar.Algebra.CommMonoid.Fold.fold_singleton_lemma", "FStar.Matrix.matrix_last_line_equals_gen_fold", "FStar.Matrix.matrix_fold_equals_fold_of_seq", "FStar.Matrix.init", "Prims.bool", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__congruence", "FStar.Matrix.matrix_seq", "FStar.Mul.op_Star", "FStar.Matrix.matrix_fold_snoc_lemma", "FStar.Algebra.CommMonoid.Fold.fold_snoc_decomposition", "FStar.Algebra.CommMonoid.Fold.fold_equality", "FStar.Matrix.matrix_fold_aux", "FStar.Classical.forall_intro_3", "Prims.l_imp", "Prims.l_and", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Classical.move_requires_3", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "Prims.squash", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.prop", "Prims.Nil", "FStar.Seq.Base.lemma_eq_elim", "FStar.Seq.Permutation.foldm_snoc", "Prims.nat", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.length", "FStar.Seq.Base.slice", "FStar.Classical.forall_intro_2", "FStar.Matrix.ijth", "FStar.Seq.Base.index", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.get_ij", "FStar.Matrix.ijth_lemma", "Prims.l_True" ]
[ "recursion" ]
false
false
true
false
false
let rec matrix_fold_aux #c #eq (#gen_m: pos) (#gen_n: pos) (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) (generator: matrix_generator c gen_m gen_n) : Lemma (ensures (SP.foldm_snoc cm (matrix_seq #c #m #n generator)) `eq.eq` (CF.fold cm 0 (m - 1) (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)))) (decreases m) =
Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then (matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)); assert (CF.fold cm 0 (m - 1) (fun (i: under m) -> CF.fold cm 0 (n - 1) (generator i)) == CF.fold cm 0 (n - 1) (generator 0))) else (Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m - 1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n - 1) (generator i) in let outer_func_on_subdomain (i: under (m - 1)) = CF.fold cm 0 (n - 1) (generator i) in CF.fold_equality cm 0 (m - 2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m - 1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m - 1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m - 1) * n) (m * n))) (CF.fold cm 0 (m - 2) outer_func) (CF.fold cm 0 (n - 1) (generator (m - 1))))
false
FStar.Matrix.fst
FStar.Matrix.matrix_last_line_equals_gen_fold
val matrix_last_line_equals_gen_fold (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma ((SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))) `eq.eq` (CF.fold cm 0 (n - 1) (generator (m - 1))))
val matrix_last_line_equals_gen_fold (#c #eq: _) (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma ((SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))) `eq.eq` (CF.fold cm 0 (n - 1) (generator (m - 1))))
let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1)))
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 326, "start_col": 0, "start_line": 303 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cm: FStar.Algebra.CommMonoid.Equiv.cm c eq -> generator: FStar.Matrix.matrix_generator c m n -> FStar.Pervasives.Lemma (ensures EQ?.eq eq (FStar.Seq.Permutation.foldm_snoc cm (FStar.Seq.Base.slice (FStar.Matrix.matrix_seq generator) ((m - 1) * n) (m * n))) (FStar.Algebra.CommMonoid.Fold.fold cm 0 (n - 1) (generator (m - 1))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "Prims.pos", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Matrix.matrix_generator", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__transitivity", "FStar.Matrix.matrix_seq", "FStar.Mul.op_Star", "Prims.op_Subtraction", "FStar.IntegerIntervals.closed_interval_size", "FStar.Algebra.CommMonoid.Fold.fold", "Prims.unit", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__symmetry", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__reflexivity", "FStar.IntegerIntervals.counter_for", "Prims.op_Addition", "FStar.IntegerIntervals.ifrom_ito", "FStar.Algebra.CommMonoid.Fold.init_func_from_expr", "FStar.Algebra.CommMonoid.Fold.fold_equals_seq_foldm", "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "Prims.squash", "Prims.eq2", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.prop", "Prims.Nil", "FStar.Seq.Base.lemma_eq_elim", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Seq.Base.init", "Prims._assert", "Prims.l_or", "Prims.l_and", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "Prims.l_Forall", "FStar.IntegerIntervals.under", "FStar.Seq.Base.index", "FStar.Matrix.get_ij", "FStar.Matrix.get_i", "FStar.Matrix.get_j", "FStar.Matrix.seq_of_matrix", "FStar.Matrix.init", "FStar.Seq.Permutation.foldm_snoc", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Seq.Base.slice", "Prims.l_True", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq" ]
[]
true
false
true
false
false
let matrix_last_line_equals_gen_fold #c #eq (#m: pos) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma ((SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m - 1) * n) (m * n))) `eq.eq` (CF.fold cm 0 (n - 1) (generator (m - 1)))) =
let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m - 1) * n) (m * n)) (init n (generator (m - 1))); let g: ifrom_ito 0 (n - 1) -> c = generator (m - 1) in CF.fold_equals_seq_foldm cm 0 (n - 1) g; let gen = CF.init_func_from_expr g 0 (n - 1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n - 1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m - 1) * n) (m * n)) (init (closed_interval_size 0 (n - 1)) gen); eq.symmetry (CF.fold cm 0 (n - 1) (generator (m - 1))) (foldm_snoc cm (init (closed_interval_size 0 (n - 1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m - 1) * n) (m * n))) (foldm_snoc cm (init (closed_interval_size 0 (n - 1)) gen)) (CF.fold cm 0 (n - 1) (generator (m - 1)))
false
FStar.Matrix.fst
FStar.Matrix.foldm_snoc_distributivity_left_eq
val foldm_snoc_distributivity_left_eq (#c #eq: _) (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c {SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add r))
val foldm_snoc_distributivity_left_eq (#c #eq: _) (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c {SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add r))
let foldm_snoc_distributivity_left_eq #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c{SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a(SP.foldm_snoc add s)) `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_left mul add a s
{ "file_name": "ulib/FStar.Matrix.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 46, "end_line": 584, "start_col": 0, "start_line": 578 }
(* Copyright 2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Author: A. Rozanov *) (* In this module we provide basic definitions to work with matrices via seqs, and define transpose transform together with theorems that assert matrix fold equality of original and transposed matrices. *) module FStar.Matrix module CE = FStar.Algebra.CommMonoid.Equiv module CF = FStar.Algebra.CommMonoid.Fold module SP = FStar.Seq.Permutation module SB = FStar.Seq.Base module SProp = FStar.Seq.Properties module ML = FStar.Math.Lemmas open FStar.IntegerIntervals open FStar.Mul open FStar.Seq.Equiv (* A little glossary that might help reading this file We don't list common terms like associativity and reflexivity. lhs, rhs left hand side, right hand side liat subsequence of all elements except the last (tail read backwards) snoc construction of sequence from a pair (liat, last) (cons read backwards) un_snoc decomposition of sequence into a pair (liat, last) foldm sum or product of all elements in a sequence using given CommMonoid foldm_snoc recursively defined sum/product of a sequence, starting from the last element congruence respect of equivalence ( = ) by a binary operation ( * ), a=b ==> a*x = b*x unit identity element (xu=x, ux=x) (not to be confused with invertible elements) *) type matrix c m n = z:SB.seq c { SB.length z = m*n } let seq_of_matrix #c #m #n mx = mx let ijth #c #m #n mx i j = SB.index mx (get_ij m n i j) let ijth_lemma #c #m #n mx i j : Lemma (ijth mx i j == SB.index (seq_of_matrix mx) (get_ij m n i j)) = () let matrix_of_seq #c m n s = s let foldm #c #eq #m #n cm mx = SP.foldm_snoc cm mx let matrix_fold_equals_fold_of_seq #c #eq #m #n cm mx : Lemma (ensures foldm cm mx `eq.eq` SP.foldm_snoc cm (seq_of_matrix mx)) [SMTPat(foldm cm mx)] = eq.reflexivity (foldm cm mx) let matrix_fold_internal #c #eq #m #n (cm:CE.cm c eq) (mx: matrix c m n) : Lemma (ensures foldm cm mx == SP.foldm_snoc cm mx) = () (* A flattened matrix (seq) constructed from generator function Notice how the domains of both indices are strictly controlled. *) let init #c (#m #n: pos) (generator: matrix_generator c m n) : matrix_of generator = let mn = m * n in let generator_ij ij = generator (get_i m n ij) (get_j m n ij) in let flat_indices = indices_seq mn in let result = SProp.map_seq generator_ij flat_indices in SProp.map_seq_len generator_ij flat_indices; assert (SB.length result == SB.length flat_indices); let aux (i: under m) (j: under n) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) (get_ij m n i j) == generator i j) = consistency_of_i_j m n i j; consistency_of_ij m n (get_ij m n i j); assert (generator_ij (get_ij m n i j) == generator i j); SProp.map_seq_index generator_ij flat_indices (get_ij m n i j) in let aux1 (ij: under mn) : Lemma (SB.index (SProp.map_seq generator_ij flat_indices) ij == generator_ij ij) = SProp.map_seq_index generator_ij flat_indices ij in FStar.Classical.forall_intro aux1; FStar.Classical.forall_intro_2 aux; result private let matrix_seq #c #m #n (gen: matrix_generator c m n) : (t:SB.seq c{ (SB.length t = (m*n)) /\ (forall (i: under m) (j: under n). SB.index t (get_ij m n i j) == gen i j) /\ (forall(ij: under (m*n)). SB.index t ij == gen (get_i m n ij) (get_j m n ij)) }) = init gen (* This auxiliary lemma establishes the decomposition of the seq-matrix into the concatenation of its first (m-1) rows and its last row (thus snoc) *) let matrix_append_snoc_lemma #c (#m #n: pos) (generator: matrix_generator c m n) : Lemma (matrix_seq generator == (SB.slice (matrix_seq generator) 0 ((m-1)*n)) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) (SB.append (SB.slice (matrix_seq generator) 0 ((m-1)*n)) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) let matrix_seq_decomposition_lemma #c (#m:greater_than 1) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == SB.append (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))) (* This auxiliary lemma establishes the equality of the fold of the entire matrix to the op of folds of (the submatrix of the first (m-1) rows) and (the last row). *) let matrix_fold_snoc_lemma #c #eq (#m: not_less_than 2) (#n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (assert ((m-1)*n < m*n); SP.foldm_snoc cm (matrix_seq generator) `eq.eq` cm.mult (SP.foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (SP.foldm_snoc cm (SB.slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n)))) = SB.lemma_eq_elim (matrix_seq generator) ((matrix_seq #c #(m-1) #n generator) `SB.append` (SB.slice (matrix_seq generator) ((m-1)*n) (m*n))); SP.foldm_snoc_append cm (matrix_seq #c #(m-1) #n generator) (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (* There are many auxiliary lemmas like this that are extracted because lemma_eq_elim invocations often impact verification speed more than one might expect they would. *) let matrix_submatrix_lemma #c (#m: not_less_than 2) (#n: pos) (generator: matrix_generator c m n) : Lemma ((matrix_seq generator) == (matrix_seq (fun (i:under(m-1)) (j:under n) -> generator i j) `SB.append` SB.init n (generator (m-1)))) = SB.lemma_eq_elim (matrix_seq (fun (i:under (m-1)) (j:under n) -> generator i j)) (matrix_seq #c #(m-1) #n generator); SB.lemma_eq_elim (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) (SB.init n (generator (m-1))); matrix_seq_decomposition_lemma generator let matrix_seq_of_one_row_matrix #c #m #n (generator : matrix_generator c m n) : Lemma (requires m==1) (ensures matrix_seq generator == (SB.init n (generator 0))) = SB.lemma_eq_elim (matrix_seq generator) (SB.init n (generator 0)) let one_row_matrix_fold_aux #c #eq #m #n (cm:CE.cm c eq) (generator : matrix_generator c m n) : Lemma (requires m=1) (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = let lhs_seq = matrix_seq generator in let rhs_seq = SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))) in let lhs = SP.foldm_snoc cm (matrix_seq generator) in let rhs = SP.foldm_snoc cm rhs_seq in SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); SB.lemma_eq_elim (SB.create 1 (SP.foldm_snoc cm (SB.init n (generator 0)))) (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))); matrix_seq_of_one_row_matrix generator; eq.symmetry rhs lhs let fold_of_subgen_aux #c #eq (#m:pos{m>1}) #n (cm: CE.cm c eq) (gen: matrix_generator c m n) (subgen: matrix_generator c (m-1) n) : Lemma (requires subgen == (fun (i: under (m-1)) (j: under n) -> gen i j)) (ensures forall (i: under (m-1)). SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = let aux_pat (i: under (m-1)) : Lemma (SP.foldm_snoc cm (SB.init n (subgen i)) == SP.foldm_snoc cm (SB.init n (gen i))) = SB.lemma_eq_elim (SB.init n (subgen i)) (SB.init n (gen i)) in Classical.forall_intro aux_pat let arithm_aux (m: pos{m>1}) (n: pos) : Lemma ((m-1)*n < m*n) = () let terminal_case_aux #c #eq (#p:pos{p=1}) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = one_row_matrix_fold_aux cm generator #push-options "--ifuel 0 --fuel 1 --z3rlimit 10" let terminal_case_two_aux #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m=1}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) = SP.foldm_snoc_singleton cm (SP.foldm_snoc cm (SB.init n (generator 0))); assert (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i)))) `eq.eq` SP.foldm_snoc cm (SB.init n (generator 0))); let line = SB.init n (generator 0) in let slice = SB.slice (matrix_seq generator) 0 n in let aux (ij: under n) : Lemma (SB.index slice ij == SB.index line ij) = Math.Lemmas.small_div ij n; Math.Lemmas.small_mod ij n in Classical.forall_intro aux; SB.lemma_eq_elim line slice; eq.symmetry (SP.foldm_snoc cm (SB.init m (fun (i:under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (SP.foldm_snoc cm line) #pop-options let liat_equals_init #c (m:pos) (gen: under m -> c) : Lemma (fst (SProp.un_snoc (SB.init m gen)) == SB.init (m-1) gen) = SB.lemma_eq_elim (fst (SProp.un_snoc (SB.init m gen))) (SB.init (m-1) gen) let math_aux (m n: pos) (j: under n) : Lemma (j+((m-1)*n) < m*n) = () let math_aux_2 (m n: pos) (j: under n) : Lemma (get_j m n (j+(m-1)*n) == j) = Math.Lemmas.modulo_addition_lemma j n (m-1); Math.Lemmas.small_mod j n let math_aux_3 (m n: pos) (j: under n) : Lemma (get_i m n (j+(m-1)*n) == (m-1)) = Math.Lemmas.division_addition_lemma j n (m-1); Math.Lemmas.small_div j n let math_aux_4 (m n: pos) (j: under n) : Lemma ((j+((m-1)*n)) - ((m-1)*n) == j) = () let seq_eq_from_member_eq #c (n: pos) (p q: (z:SB.seq c{SB.length z=n})) (proof: (i: under n) -> Lemma (SB.index p i == SB.index q i)) : Lemma (p == q) = Classical.forall_intro proof; SB.lemma_eq_elim p q let math_wut_lemma (x: pos) : Lemma (requires x>1) (ensures x-1 > 0) = () (* This proof used to be very unstable, so I rewrote it with as much precision and control over lambdas as possible. I also left intact some trivial auxiliaries and the quake option in order to catch regressions the moment they happen instead of several releases later -- Alex *) #push-options "--ifuel 0 --fuel 0 --z3rlimit 15" #restart-solver let rec matrix_fold_equals_double_fold #c #eq (#p:pos) #n (cm:CE.cm c eq) (generator: matrix_generator c p n) (m: pos{m<=p}) : Lemma (ensures SP.foldm_snoc cm (SB.slice (seq_of_matrix (init generator)) 0 (m*n)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))) (decreases m) = if p=1 then terminal_case_aux cm generator m else if m=1 then terminal_case_two_aux cm generator m else let lhs_seq = (SB.slice (matrix_seq generator) 0 (m*n)) in let rhs_seq_gen = fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq_subgen = fun (i: under (m-1)) -> SP.foldm_snoc cm (SB.init n (generator i)) in let rhs_seq = SB.init m rhs_seq_gen in let lhs = SP.foldm_snoc cm lhs_seq in let rhs = SP.foldm_snoc cm rhs_seq in let matrix = lhs_seq in let submatrix = SB.slice (matrix_seq generator) 0 ((m-1)*n) in let last_row = SB.slice (matrix_seq generator) ((m-1)*n) (m*n) in SB.lemma_len_slice (matrix_seq generator) ((m-1)*n) (m*n); assert (SB.length last_row = n); SB.lemma_eq_elim matrix (SB.append submatrix last_row); SP.foldm_snoc_append cm submatrix last_row; matrix_fold_equals_double_fold #c #eq #p #n cm generator (m-1); SB.lemma_eq_elim (SB.init (m-1) rhs_seq_gen) (SB.init (m-1) rhs_seq_subgen); let aux (j: under n) : Lemma (SB.index last_row j == generator (m-1) j) = SB.lemma_index_app2 submatrix last_row (j+((m-1)*n)); math_aux_2 m n j; math_aux_3 m n j; math_aux_4 m n j; () in Classical.forall_intro aux; let rhs_liat, rhs_last = SProp.un_snoc rhs_seq in let rhs_last_seq = SB.init n (generator (m-1)) in liat_equals_init m rhs_seq_gen; SP.foldm_snoc_decomposition cm rhs_seq; let aux_2 (j: under n) : Lemma (SB.index last_row j == SB.index rhs_last_seq j) = () in seq_eq_from_member_eq n last_row rhs_last_seq aux_2; SB.lemma_eq_elim rhs_liat (SB.init (m-1) rhs_seq_gen); cm.commutativity (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row); eq.transitivity lhs (SP.foldm_snoc cm submatrix `cm.mult` SP.foldm_snoc cm last_row) (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix); eq.reflexivity (SP.foldm_snoc cm last_row); cm.congruence (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm submatrix) (SP.foldm_snoc cm last_row) (SP.foldm_snoc cm (SB.init (m-1) rhs_seq_subgen)); eq.transitivity lhs (SP.foldm_snoc cm last_row `cm.mult` SP.foldm_snoc cm submatrix) rhs #pop-options let matrix_fold_equals_fold_of_seq_folds #c #eq #m #n cm generator : Lemma (ensures foldm cm (init generator) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) /\ SP.foldm_snoc cm (seq_of_matrix (init generator)) `eq.eq` SP.foldm_snoc cm (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i))))) = matrix_fold_equals_double_fold cm generator m; assert ((SB.slice (seq_of_matrix (init generator)) 0 (m*n)) == seq_of_matrix (init generator)); SB.lemma_eq_elim (SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i)))); assert ((SB.init m (fun i -> SP.foldm_snoc cm (SB.init n (generator i)))) == (SB.init m (fun (i: under m) -> SP.foldm_snoc cm (SB.init n (generator i))))); () (* This auxiliary lemma shows that the fold of the last line of a matrix is equal to the corresponding fold of the generator function *) let matrix_last_line_equals_gen_fold #c #eq (#m #n: pos) (cm: CE.cm c eq) (generator: matrix_generator c m n) : Lemma (SP.foldm_snoc cm (SB.slice (matrix_seq generator) ((m-1)*n) (m*n)) `eq.eq` CF.fold cm 0 (n-1) (generator (m-1))) = let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in assert (matrix_seq generator == seq_of_matrix (init generator)); let init = SB.init #c in let lemma_eq_elim = SB.lemma_eq_elim #c in lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init n (generator (m-1))); let g : ifrom_ito 0 (n-1) -> c = generator (m-1) in CF.fold_equals_seq_foldm cm 0 (n-1) g; let gen = CF.init_func_from_expr g 0 (n-1) in eq.reflexivity (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); lemma_eq_elim (slice (matrix_seq generator) ((m-1)*n) (m*n)) (init (closed_interval_size 0 (n-1)) gen); eq.symmetry (CF.fold cm 0 (n-1) (generator (m-1))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)); eq.transitivity (foldm_snoc cm (slice (matrix_seq generator) ((m-1)*n) (m*n))) (foldm_snoc cm (init (closed_interval_size 0 (n-1)) gen)) (CF.fold cm 0 (n-1) (generator (m-1))) (* This lemma proves that a matrix fold is the same thing as double-fold of its generator function against full indices ranges *) #push-options "--ifuel 0 --fuel 0" let rec matrix_fold_aux #c #eq // lemma needed for precise generator domain control (#gen_m #gen_n: pos) // full generator domain (cm: CE.cm c eq) (m: ifrom_ito 1 gen_m) (n: ifrom_ito 1 gen_n) //subdomain (generator: matrix_generator c gen_m gen_n) : Lemma (ensures SP.foldm_snoc cm (matrix_seq #c #m #n generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i))) (decreases m) = Classical.forall_intro_2 (ijth_lemma (init generator)); let slice = SB.slice #c in let foldm_snoc = SP.foldm_snoc #c #eq in let lemma_eq_elim = SB.lemma_eq_elim #c in if m = 1 then begin matrix_fold_equals_fold_of_seq cm (init generator); matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; CF.fold_singleton_lemma cm 0 (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i)); assert (CF.fold cm 0 (m-1) (fun (i: under m) -> CF.fold cm 0 (n-1) (generator i)) == CF.fold cm 0 (n-1) (generator 0)) end else begin Classical.forall_intro_3 (Classical.move_requires_3 eq.transitivity); matrix_fold_aux cm (m-1) n generator; let outer_func (i: under m) = CF.fold cm 0 (n-1) (generator i) in let outer_func_on_subdomain (i: under (m-1)) = CF.fold cm 0 (n-1) (generator i) in CF.fold_equality cm 0 (m-2) outer_func_on_subdomain outer_func; CF.fold_snoc_decomposition cm 0 (m-1) outer_func; matrix_fold_snoc_lemma #c #eq #m #n cm generator; matrix_last_line_equals_gen_fold #c #eq #m #n cm generator; cm.congruence (foldm_snoc cm (matrix_seq #c #(m-1) #n generator)) (foldm_snoc cm (slice (matrix_seq #c #m #n generator) ((m-1)*n) (m*n))) (CF.fold cm 0 (m-2) outer_func) (CF.fold cm 0 (n-1) (generator (m-1))) end #pop-options (* This lemma establishes that the fold of a matrix is equal to nested Algebra.CommMonoid.Fold.fold over the matrix generator *) let matrix_fold_equals_func_double_fold #c #eq #m #n cm generator : Lemma (foldm cm (init generator) `eq.eq` CF.fold cm 0 (m-1) (fun (i:under m) -> CF.fold cm 0 (n-1) (generator i))) = matrix_fold_aux cm m n generator (* This function provides the transposed matrix generator, with indices swapped Notice how the forall property of the result function is happily proved automatically by z3 :) *) let transposed_matrix_gen #c #m #n (generator: matrix_generator c m n) : (f: matrix_generator c n m { forall i j. f j i == generator i j }) = fun j i -> generator i j (* This lemma shows that the transposed matrix is a permutation of the original one *) let matrix_transpose_is_permutation #c #m #n generator : Lemma (SP.is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n)) = let matrix_transposed_eq_lemma #c (#m #n: pos) (gen: matrix_generator c m n) (ij: under (m*n)) : Lemma (SB.index (seq_of_matrix (init gen)) ij == SB.index (seq_of_matrix (init (transposed_matrix_gen gen))) (transpose_ji m n ij)) = ijth_lemma (init gen) (get_i m n ij) (get_j m n ij); ijth_lemma (init (transposed_matrix_gen gen)) (get_i n m (transpose_ji m n ij)) (get_j n m (transpose_ji m n ij)); () in let transpose_inequality_lemma (m n: pos) (ij: under (m*n)) (kl: under (n*m)) : Lemma (requires kl <> ij) (ensures transpose_ji m n ij <> transpose_ji m n kl) = dual_indices m n ij; dual_indices m n kl in Classical.forall_intro (matrix_transposed_eq_lemma generator); Classical.forall_intro_2 (Classical.move_requires_2 (transpose_inequality_lemma m n)); SP.reveal_is_permutation (seq_of_matrix (init generator)) (seq_of_matrix (init (transposed_matrix_gen generator))) (transpose_ji m n) (* Fold over matrix equals fold over transposed matrix *) let matrix_fold_equals_fold_of_transpose #c #eq #m #n (cm: CE.cm c eq) (gen: matrix_generator c m n) : Lemma (foldm cm (init gen) `eq.eq` foldm cm (init (transposed_matrix_gen gen))) = let matrix_seq #c #m #n (g: matrix_generator c m n) = (seq_of_matrix (init g)) in let matrix_mn = matrix_seq gen in let matrix_nm = matrix_seq (transposed_matrix_gen gen) in matrix_transpose_is_permutation gen; SP.foldm_snoc_perm cm (matrix_seq gen) (matrix_seq (transposed_matrix_gen gen)) (transpose_ji m n); matrix_fold_equals_fold_of_seq cm (init gen); matrix_fold_equals_fold_of_seq cm (init (transposed_matrix_gen gen)); eq.symmetry (foldm cm (init (transposed_matrix_gen gen))) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))); eq.transitivity (foldm cm (init gen)) (SP.foldm_snoc cm (matrix_seq (transposed_matrix_gen gen))) (foldm cm (init (transposed_matrix_gen gen))) let matrix_eq_fun #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) = eq_of_seq eq (seq_of_matrix ma) (seq_of_matrix mb) (* Matrix equivalence, defined as element-wise equivalence of its underlying flattened sequence, is constructed trivially from the element equivalence and the lemmas defined above. *) let matrix_equiv #c (eq: CE.equiv c) (m n: pos) : CE.equiv (matrix c m n) = CE.EQ (matrix_eq_fun eq) (fun m -> eq_of_seq_reflexivity eq (seq_of_matrix m)) (fun ma mb -> eq_of_seq_symmetry eq (seq_of_matrix ma) (seq_of_matrix mb)) (fun ma mb mc -> eq_of_seq_transitivity eq (seq_of_matrix ma) (seq_of_matrix mb) (seq_of_matrix mc)) (* Equivalence of matrices means equivalence of all corresponding elements *) let matrix_equiv_ijth #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) (i: under m) (j: under n) : Lemma (requires (matrix_equiv eq m n).eq ma mb) (ensures ijth ma i j `eq.eq` ijth mb i j) = eq_of_seq_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* Equivalence of all corresponding elements means equivalence of matrices *) let matrix_equiv_from_element_eq #c (#m #n: pos) (eq: CE.equiv c) (ma mb: matrix c m n) : Lemma (requires (forall (i: under m) (j: under n). ijth ma i j `eq.eq` ijth mb i j)) (ensures matrix_eq_fun eq ma mb) = assert (SB.length (seq_of_matrix ma) = SB.length (seq_of_matrix mb)); let s1 = seq_of_matrix ma in let s2 = seq_of_matrix mb in assert (forall (ij: under (m*n)). SB.index s1 ij == ijth ma (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s2 ij == ijth mb (get_i m n ij) (get_j m n ij)); assert (forall (ij: under (m*n)). SB.index s1 ij `eq.eq` SB.index s2 ij); eq_of_seq_from_element_equality eq (seq_of_matrix ma) (seq_of_matrix mb) (* We construct addition CommMonoid from the following definitions *) let matrix_add_is_associative #c #eq #m #n (add: CE.cm c eq) (ma mb mc: matrix c m n) : Lemma (matrix_add add (matrix_add add ma mb) mc `(matrix_equiv eq m n).eq` matrix_add add ma (matrix_add add mb mc)) = matrix_equiv_from_proof eq (matrix_add add (matrix_add add ma mb) mc) (matrix_add add ma (matrix_add add mb mc)) (fun i j -> add.associativity (ijth ma i j) (ijth mb i j) (ijth mc i j)) let matrix_add_is_commutative #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb: matrix c m n) : Lemma (matrix_add add ma mb `(matrix_equiv eq m n).eq` matrix_add add mb ma) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mb ma) (fun i j -> add.commutativity (ijth ma i j) (ijth mb i j)) let matrix_add_congruence #c #eq (#m #n: pos) (add: CE.cm c eq) (ma mb mc md: matrix c m n) : Lemma (requires matrix_eq_fun eq ma mc /\ matrix_eq_fun eq mb md) (ensures matrix_add add ma mb `matrix_eq_fun eq` matrix_add add mc md) = matrix_equiv_from_proof eq (matrix_add add ma mb) (matrix_add add mc md) (fun i j -> matrix_equiv_ijth eq ma mc i j; matrix_equiv_ijth eq mb md i j; add.congruence (ijth ma i j) (ijth mb i j) (ijth mc i j) (ijth md i j)) let matrix_add_zero #c #eq (add: CE.cm c eq) (m n: pos) : (z: matrix c m n { forall (i: under m) (j: under n). ijth z i j == add.unit }) = matrix_of_seq m n (SB.create (m*n) add.unit) let matrix_add_identity #c #eq (add: CE.cm c eq) (#m #n: pos) (mx: matrix c m n) : Lemma (matrix_add add (matrix_add_zero add m n) mx `matrix_eq_fun eq` mx) = matrix_equiv_from_proof eq (matrix_add add (matrix_add_zero add m n) mx) mx (fun i j -> add.identity (ijth mx i j)) let matrix_add_comm_monoid #c #eq (add: CE.cm c eq) (m n: pos) : CE.cm (matrix c m n) (matrix_equiv eq m n) = CE.CM (matrix_add_zero add m n) (matrix_add add) (matrix_add_identity add) (matrix_add_is_associative add) (matrix_add_is_commutative add) (matrix_add_congruence add) (* equivalence of addressing styles *) let matrix_row_col_lemma #c #m #n (mx: matrix c m n) (i: under m) (j: under n) : Lemma (ijth mx i j == SB.index (row mx i) j /\ ijth mx i j == SB.index (col mx j) i) = () (* See how lemma_eq_elim is defined, note the SMTPat there. Invoking this is often more efficient in big proofs than invoking lemma_eq_elim directly. *) let seq_of_products_lemma #c #eq (mul: CE.cm c eq) (s: SB.seq c) (t: SB.seq c {SB.length t == SB.length s}) (r: SB.seq c{SB.equal r (SB.init (SB.length s) (fun (i: under (SB.length s)) -> SB.index s i `mul.mult` SB.index t i))}) : Lemma (seq_of_products mul s t == r) = () let dot_lemma #c #eq add mul s t : Lemma (dot add mul s t == SP.foldm_snoc add (seq_of_products mul s t)) = () let matrix_mul_gen #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) (i: under m) (k: under p) = dot add mul (row mx i) (col my k) let matrix_mul #c #eq #m #n #p (add mul: CE.cm c eq) (mx: matrix c m n) (my: matrix c n p) = init (matrix_mul_gen add mul mx my) (* the following lemmas improve verification performance. *) (* Sometimes this fact gets lost and needs an explicit proof *) let seq_last_index #c (s: SB.seq c{SB.length s > 0}) : Lemma (SProp.last s == SB.index s (SB.length s - 1)) = () (* It often takes assert_norm to obtain the fact that, (fold s == last s `op` fold (slice s 0 (length s - 1))). Invoking this lemma instead offers a more stable option. *) let seq_fold_decomposition #c #eq (cm: CE.cm c eq) (s: SB.seq c{SB.length s > 0}) : Lemma (SP.foldm_snoc cm s == cm.mult (SProp.last s) (SP.foldm_snoc cm (fst (SProp.un_snoc s)))) = () (* Using common notation for algebraic operations instead of `mul` / `add` infix simplifies the code and makes it more compact. *) let rec foldm_snoc_distributivity_left #c #eq (mul add: CE.cm c eq) (a: c) (s: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult a (SP.foldm_snoc add s) `eq.eq` SP.foldm_snoc add (const_op_seq mul a s)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (const_op_seq mul a s) in foldm_snoc_distributivity_left mul add a liat; SB.lemma_eq_elim rhs_liat (const_op_seq mul a liat); eq.reflexivity rhs_last; add.congruence rhs_last (a*sum liat) rhs_last (sum rhs_liat); eq.transitivity (a*sum s) (rhs_last + a*sum liat) (rhs_last + sum rhs_liat) let rec foldm_snoc_distributivity_right #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add (seq_op_const mul s a)) (decreases SB.length s) = if SB.length s > 0 then let ((+), ( * ), (=)) = add.mult, mul.mult, eq.eq in let sum s = SP.foldm_snoc add s in let liat, last = SProp.un_snoc s in let rhs_liat, rhs_last = SProp.un_snoc (seq_op_const mul s a) in foldm_snoc_distributivity_right mul add liat a; SB.lemma_eq_elim rhs_liat (seq_op_const mul liat a); eq.reflexivity rhs_last; add.congruence rhs_last (sum liat*a) rhs_last (sum rhs_liat); eq.transitivity (sum s*a) (rhs_last + sum liat*a) (rhs_last + sum rhs_liat) let foldm_snoc_distributivity_right_eq #c #eq (mul add: CE.cm c eq) (s: SB.seq c) (a: c) (r: SB.seq c) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul /\ SB.equal r (seq_op_const mul s a)) (ensures mul.mult (SP.foldm_snoc add s) a `eq.eq` SP.foldm_snoc add r) = foldm_snoc_distributivity_right mul add s a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Seq.Properties.fsti.checked", "FStar.Seq.Permutation.fsti.checked", "FStar.Seq.Equiv.fsti.checked", "FStar.Seq.Base.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.IntegerIntervals.fst.checked", "FStar.Classical.fsti.checked", "FStar.Algebra.CommMonoid.Fold.fsti.checked", "FStar.Algebra.CommMonoid.Equiv.fst.checked" ], "interface_file": true, "source_file": "FStar.Matrix.fst" }
[ { "abbrev": false, "full_module": "FStar.Seq.Equiv", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Properties", "short_module": "SProp" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.IntegerIntervals", "short_module": null }, { "abbrev": true, "full_module": "FStar.Math.Lemmas", "short_module": "ML" }, { "abbrev": true, "full_module": "FStar.Seq.Base", "short_module": "SB" }, { "abbrev": true, "full_module": "FStar.Seq.Permutation", "short_module": "SP" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Fold", "short_module": "CF" }, { "abbrev": true, "full_module": "FStar.Algebra.CommMonoid.Equiv", "short_module": "CE" }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
mul: FStar.Algebra.CommMonoid.Equiv.cm c eq -> add: FStar.Algebra.CommMonoid.Equiv.cm c eq -> a: c -> s: FStar.Seq.Base.seq c -> r: FStar.Seq.Base.seq c {FStar.Seq.Base.equal r (FStar.Matrix.const_op_seq mul a s)} -> FStar.Pervasives.Lemma (requires FStar.Matrix.is_fully_distributive mul add /\ FStar.Matrix.is_absorber (CM?.unit add) mul) (ensures EQ?.eq eq (CM?.mult mul a (FStar.Seq.Permutation.foldm_snoc add s)) (FStar.Seq.Permutation.foldm_snoc add r))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.CommMonoid.Equiv.equiv", "FStar.Algebra.CommMonoid.Equiv.cm", "FStar.Seq.Base.seq", "FStar.Seq.Base.equal", "FStar.Matrix.const_op_seq", "FStar.Matrix.foldm_snoc_distributivity_left", "Prims.unit", "Prims.l_and", "FStar.Matrix.is_fully_distributive", "FStar.Matrix.is_absorber", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit", "Prims.squash", "FStar.Algebra.CommMonoid.Equiv.__proj__EQ__item__eq", "FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__mult", "FStar.Seq.Permutation.foldm_snoc", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let foldm_snoc_distributivity_left_eq #c #eq (mul: CE.cm c eq) (add: CE.cm c eq) (a: c) (s: SB.seq c) (r: SB.seq c {SB.equal r (const_op_seq mul a s)}) : Lemma (requires is_fully_distributive mul add /\ is_absorber add.unit mul) (ensures (mul.mult a (SP.foldm_snoc add s)) `eq.eq` (SP.foldm_snoc add r)) =
foldm_snoc_distributivity_left mul add a s
false