file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BinaryTrees.fst | BinaryTrees.find_some | val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t))) | val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t))) | let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 53,
"start_col": 0,
"start_line": 50
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.int -> Prims.bool) -> t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures None? (BinaryTrees.find p t) \/ p (Some?.v (BinaryTrees.find p t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"BinaryTrees.tree",
"BinaryTrees.find_some",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec find_some p t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
find_some p t1;
find_some p t2 | false |
BinaryTrees.fst | BinaryTrees.map_option | val map_option : f: (_: _ -> _) -> o: FStar.Pervasives.Native.option _ -> FStar.Pervasives.Native.option _ | let map_option f o = match o with
| Some n -> Some (f n)
| None -> None | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 57,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: _ -> _) -> o: FStar.Pervasives.Native.option _ -> FStar.Pervasives.Native.option _ | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.Native.option",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.None"
] | [] | false | false | false | true | false | let map_option f o =
| match o with
| Some n -> Some (f n)
| None -> None | false |
|
BinaryTrees.fst | BinaryTrees.map_find | val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t)) | val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t)) | let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 52,
"end_line": 66,
"start_col": 0,
"start_line": 63
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.int -> Prims.bool) -> f: (_: Prims.int -> Prims.int) -> t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures
BinaryTrees.find p (BinaryTrees.map f t) =
BinaryTrees.map_option f (BinaryTrees.find (BinaryTrees.compose p f) t)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"Prims.bool",
"BinaryTrees.tree",
"BinaryTrees.map_find",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec map_find p f t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
map_find p f t1;
map_find p f t2 | false |
BinaryTrees.fst | BinaryTrees.fold_map | val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t) | val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t) | let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 85,
"start_col": 0,
"start_line": 82
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
fm: (_: Prims.int -> Prims.int) ->
ff: (_: Prims.int -> _: Prims.int -> _: Prims.int -> Prims.int) ->
a: Prims.int ->
t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures
BinaryTrees.fold ff a (BinaryTrees.map fm t) =
BinaryTrees.fold (BinaryTrees.compose ff fm) a t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"BinaryTrees.fold_map",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec fold_map fm ff a t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
fold_map fm ff a t1;
fold_map fm ff a t2 | false |
BinaryTrees.fst | BinaryTrees.in_tree | val in_tree : int -> tree -> Tot bool | val in_tree : int -> tree -> Tot bool | let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 72,
"start_col": 0,
"start_line": 69
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"Prims.op_BarBar",
"Prims.op_Equality",
"BinaryTrees.in_tree",
"Prims.bool"
] | [
"recursion"
] | false | false | false | true | false | let rec in_tree x t =
| match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2 | false |
BinaryTrees.fst | BinaryTrees.fold | val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a | val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a | let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2) | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 51,
"end_line": 78,
"start_col": 0,
"start_line": 75
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.int -> _: 'a -> _: 'a -> 'a) -> a: 'a -> t: BinaryTrees.tree -> 'a | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"BinaryTrees.fold"
] | [
"recursion"
] | false | false | false | true | false | let rec fold f a t =
| match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2) | false |
BinaryTrees.fst | BinaryTrees.find | val find : p:(int -> Tot bool) -> tree -> Tot (option int) | val find : p:(int -> Tot bool) -> tree -> Tot (option int) | let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 46,
"start_col": 0,
"start_line": 41
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.int -> Prims.bool) -> t: BinaryTrees.tree -> FStar.Pervasives.Native.option Prims.int | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.bool",
"BinaryTrees.tree",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.uu___is_Some",
"BinaryTrees.find",
"FStar.Pervasives.Native.option"
] | [
"recursion"
] | false | false | false | true | false | let rec find p t =
| match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else if Some? (find p t1) then find p t1 else find p t2 | false |
BinaryTrees.fst | BinaryTrees.in_tree_fold | val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t) | val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t) | let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 56,
"end_line": 99,
"start_col": 0,
"start_line": 96
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures BinaryTrees.in_tree x t = BinaryTrees.fold (fun n b1 b2 -> x = n || b1 || b2) false t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"BinaryTrees.in_tree_fold",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec in_tree_fold x t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
in_tree_fold x t1;
in_tree_fold x t2 | false |
BinaryTrees.fst | BinaryTrees.size_fold | val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t) | val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t) | let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 46,
"end_line": 92,
"start_col": 0,
"start_line": 89
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures BinaryTrees.size t = BinaryTrees.fold (fun _ s1 s2 -> 1 + s1 + s2) 0 t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"BinaryTrees.tree",
"Prims.int",
"BinaryTrees.size_fold",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec size_fold t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
size_fold t1;
size_fold t2 | false |
BinaryTrees.fst | BinaryTrees.find_fold | val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x})) | val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x})) | let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 73,
"end_line": 104,
"start_col": 0,
"start_line": 102
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.int -> Prims.bool) -> _: BinaryTrees.tree
-> FStar.Pervasives.Native.option (x: Prims.int{f x}) | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.bool",
"BinaryTrees.fold",
"FStar.Pervasives.Native.option",
"Prims.b2t",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.uu___is_Some",
"FStar.Pervasives.Native.None",
"BinaryTrees.tree"
] | [] | false | false | false | false | false | let find_fold f =
| fold #(option (x: int{f x}))
(fun n o1 o2 -> if f n then Some n else if Some? o1 then o1 else o2)
None | false |
GMST.fst | GMST.gmst_post | val gmst_post : s: Type -> a: Type -> s0: s -> Type | let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0 | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 93,
"end_line": 29,
"start_col": 0,
"start_line": 29
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> s0: s -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.Preorder.relation"
] | [] | false | false | false | true | true | let gmst_post (s a: Type) (s0: s) =
| rel: relation s -> a -> s1: s{rel s0 s1} -> GTot Type0 | false |
|
BinaryTrees.fst | BinaryTrees.revert_fold | val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t) | val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t) | let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 133,
"start_col": 0,
"start_line": 130
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree
-> FStar.Pervasives.Lemma
(ensures
BinaryTrees.revert t =
BinaryTrees.fold (fun n t1 t2 -> BinaryTrees.Node n t2 t1) BinaryTrees.Leaf t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"BinaryTrees.tree",
"Prims.int",
"BinaryTrees.revert_fold",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec revert_fold t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
revert_fold t1;
revert_fold t2 | false |
GMST.fst | GMST.gmst_wp | val gmst_wp : s: Type -> a: Type -> Type | let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0 | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 79,
"end_line": 30,
"start_col": 0,
"start_line": 30
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_post"
] | [] | false | false | false | true | true | let gmst_wp (s a: Type) =
| s0: s -> gmst_post s a s0 -> GTot Type0 | false |
|
GMST.fst | GMST.gmst_return | val gmst_return : s: Type -> a: Type -> x: a -> s0: s -> p: GMST.gmst_post s a s0 -> Prims.logical | let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0 | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 37,
"start_col": 0,
"start_line": 36
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> x: a -> s0: s -> p: GMST.gmst_post s a s0 -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_post",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.eq2",
"Prims.logical"
] | [] | false | false | false | false | true | let gmst_return (s a: Type) (x: a) (s0: s) (p: gmst_post s a s0) =
| forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0 | false |
|
GMST.fst | GMST.gmst_if_then_else | val gmst_if_then_else : s: Type ->
a: Type ->
p: Type0 ->
wp_then: GMST.gmst_wp s a ->
wp_else: GMST.gmst_wp s a ->
s0: s ->
post: GMST.gmst_post s a s0
-> Prims.logical | let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 48,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1))) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Type ->
a: Type ->
p: Type0 ->
wp_then: GMST.gmst_wp s a ->
wp_else: GMST.gmst_wp s a ->
s0: s ->
post: GMST.gmst_post s a s0
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"GMST.gmst_post",
"Prims.l_ITE",
"Prims.logical"
] | [] | false | false | false | false | true | let gmst_if_then_else (s a p: Type) (wp_then wp_else: gmst_wp s a) (s0: s) (post: gmst_post s a s0) =
| l_ITE p (wp_then s0 post) (wp_else s0 post) | false |
|
GMST.fst | GMST.gmst_ite | val gmst_ite : s: Type -> a: Type -> wp: GMST.gmst_wp s a -> s0: s -> post: GMST.gmst_post s a s0 -> Type0 | let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 52,
"start_col": 0,
"start_line": 51
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> wp: GMST.gmst_wp s a -> s0: s -> post: GMST.gmst_post s a s0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"GMST.gmst_post"
] | [] | false | false | false | false | true | let gmst_ite (s a: Type) (wp: gmst_wp s a) (s0: s) (post: gmst_post s a s0) =
| wp s0 post | false |
|
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fadd_zero | val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1} | val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1} | let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 44,
"start_col": 0,
"start_line": 37
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (9, 10, 9, 9, 9) /\
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Hacl.Spec.Curve25519.Field51.Definition.feval f1 } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_add_zero",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.u64",
"Prims.l_and",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval"
] | [] | false | false | false | false | false | let fadd_zero (f10, f11, f12, f13, f14) =
| let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4) | false |
GMST.fst | GMST.gmst_stronger | val gmst_stronger : s: Type -> a: Type -> wp1: GMST.gmst_wp s a -> wp2: GMST.gmst_wp s a -> Prims.logical | let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 56,
"start_col": 0,
"start_line": 55
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> wp1: GMST.gmst_wp s a -> wp2: GMST.gmst_wp s a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"Prims.l_Forall",
"GMST.gmst_post",
"Prims.l_imp",
"Prims.logical"
] | [] | false | false | false | true | true | let gmst_stronger (s a: Type) (wp1 wp2: gmst_wp s a) =
| forall s0 p. wp1 s0 p ==> wp2 s0 p | false |
|
BinaryTrees.fst | BinaryTrees.revert_involutive | val revert_involutive : t:tree -> Lemma (revert (revert t) = t) | val revert_involutive : t:tree -> Lemma (revert (revert t) = t) | let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 117,
"start_col": 0,
"start_line": 114
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree
-> FStar.Pervasives.Lemma (ensures BinaryTrees.revert (BinaryTrees.revert t) = t) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"BinaryTrees.tree",
"Prims.int",
"BinaryTrees.revert_involutive",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec revert_involutive t =
| match t with
| Leaf -> ()
| Node n t1 t2 ->
revert_involutive t1;
revert_involutive t2 | false |
BinaryTrees.fst | BinaryTrees.remove_root | val remove_root : t:tree{Node? t} -> Tot tree | val remove_root : t:tree{Node? t} -> Tot tree | let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 144,
"start_col": 0,
"start_line": 141
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree{Node? t} -> BinaryTrees.tree | Prims.Tot | [
"total"
] | [] | [
"BinaryTrees.tree",
"Prims.b2t",
"BinaryTrees.uu___is_Node",
"Prims.int",
"BinaryTrees.uu___is_Leaf",
"Prims.bool",
"BinaryTrees.Node",
"BinaryTrees.__proj__Node__item__root",
"BinaryTrees.remove_root"
] | [
"recursion"
] | false | false | false | false | false | let rec remove_root t =
| match t with | Node n t1 t2 -> if Leaf? t1 then t2 else Node (Node?.root t1) (remove_root t1) t2 | false |
BinaryTrees.fst | BinaryTrees.remove_add_root | val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t) | val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t) | let rec remove_add_root x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 40,
"end_line": 160,
"start_col": 0,
"start_line": 157
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2
val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t)
let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2
(* remove and add implemented this way round-trip; TODO: does the converse hold? *)
val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree
-> FStar.Pervasives.Lemma (ensures BinaryTrees.remove_root (BinaryTrees.add_root x t) = t)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"BinaryTrees.remove_add_root",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec remove_add_root x t =
| match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1 | false |
BinaryTrees.fst | BinaryTrees.revert_injective | val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2)) | val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2)) | let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 126,
"start_col": 0,
"start_line": 122
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree -> | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t1: BinaryTrees.tree -> t2: BinaryTrees.tree
-> FStar.Pervasives.Lemma (requires BinaryTrees.revert t1 = BinaryTrees.revert t2)
(ensures t1 = t2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"BinaryTrees.tree",
"FStar.Pervasives.Native.Mktuple2",
"Prims.int",
"BinaryTrees.revert_injective",
"Prims.unit"
] | [
"recursion"
] | false | false | true | false | false | let rec revert_injective t1 t2 =
| match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 ->
revert_injective t11 t21;
revert_injective t12 t22 | false |
BinaryTrees.fst | BinaryTrees.revert | val revert : tree -> Tot tree | val revert : tree -> Tot tree | let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1) | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 50,
"end_line": 110,
"start_col": 0,
"start_line": 107
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree -> BinaryTrees.tree | Prims.Tot | [
"total"
] | [] | [
"BinaryTrees.tree",
"BinaryTrees.Leaf",
"Prims.int",
"BinaryTrees.Node",
"BinaryTrees.revert"
] | [
"recursion"
] | false | false | false | true | false | let rec revert t =
| match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1) | false |
GMST.fst | GMST.gmst_close | val gmst_close : s: Type ->
a: Type ->
b: Type ->
wp: (_: b -> Prims.GTot (GMST.gmst_wp s a)) ->
s0: s ->
p: GMST.gmst_post s a s0
-> Prims.logical | let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 21,
"end_line": 61,
"start_col": 0,
"start_line": 59
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Type ->
a: Type ->
b: Type ->
wp: (_: b -> Prims.GTot (GMST.gmst_wp s a)) ->
s0: s ->
p: GMST.gmst_post s a s0
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"GMST.gmst_post",
"Prims.l_Forall",
"Prims.logical"
] | [] | false | false | false | false | true | let gmst_close (s a b: Type) (wp: (b -> GTot (gmst_wp s a))) (s0: s) (p: gmst_post s a s0) =
| forall x. wp x s0 p | false |
|
BinaryTrees.fst | BinaryTrees.remove | val remove (x: int) (t: tree{count x t > 0}) : Tot tree (decreases t) | val remove (x: int) (t: tree{count x t > 0}) : Tot tree (decreases t) | let rec remove (x:int) (t:tree{count x t > 0}) : Tot tree (decreases t) =
match t with
| Node n t1 t2 -> if x = n then remove_root t else
if count x t1 > 0 then Node n (remove x t1) t2
else Node n t1 (remove x t2) | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 66,
"end_line": 171,
"start_col": 0,
"start_line": 167
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2
val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t)
let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2
(* remove and add implemented this way round-trip; TODO: does the converse hold? *)
val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t)
let rec remove_add_root x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1
let rec count (x:int) (t:tree) : Tot nat =
match t with
| Leaf -> 0
| Node n t1 t2 -> (if n = x then 1 else 0) + count x t1 + count x t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree{BinaryTrees.count x t > 0} -> Prims.Tot BinaryTrees.tree | Prims.Tot | [
"total",
""
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"Prims.b2t",
"Prims.op_GreaterThan",
"BinaryTrees.count",
"Prims.op_Equality",
"BinaryTrees.remove_root",
"Prims.bool",
"BinaryTrees.Node",
"BinaryTrees.remove"
] | [
"recursion"
] | false | false | false | false | false | let rec remove (x: int) (t: tree{count x t > 0}) : Tot tree (decreases t) =
| match t with
| Node n t1 t2 ->
if x = n
then remove_root t
else if count x t1 > 0 then Node n (remove x t1) t2 else Node n t1 (remove x t2) | false |
BinaryTrees.fst | BinaryTrees.add_root | val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t) | val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t) | let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 45,
"end_line": 151,
"start_col": 0,
"start_line": 148
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree -> Prims.Tot (t': BinaryTrees.tree{Node? t'}) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"BinaryTrees.Node",
"BinaryTrees.Leaf",
"BinaryTrees.add_root",
"Prims.b2t",
"BinaryTrees.uu___is_Node"
] | [
"recursion"
] | false | false | false | false | false | let rec add_root x t =
| match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2 | false |
GMST.fst | GMST.gmst_trivial | val gmst_trivial : s: Type -> a: Type -> wp: GMST.gmst_wp s a -> Prims.logical | let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 65,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> wp: GMST.gmst_wp s a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"Prims.l_Forall",
"FStar.Preorder.relation",
"Prims.l_True",
"Prims.logical"
] | [] | false | false | false | true | true | let gmst_trivial (s a: Type) (wp: gmst_wp s a) =
| forall s0. wp s0 (fun _ _ _ -> True) | false |
|
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fsqr5 | val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} | val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)} | let fsqr5 (f0, f1, f2, f3, f4) =
let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 416,
"start_col": 0,
"start_line": 414
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f))
let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4)
inline_for_extraction noextract
val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)} | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (9, 10, 9, 9, 9)}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.mul_inv_t out /\
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f)
(Hacl.Spec.Curve25519.Field51.Definition.feval f) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"Hacl.Spec.Curve25519.Field51.carry_wide5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.mul_inv_t",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Spec.Curve25519.fmul",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.fsqr_felem5"
] | [] | false | false | false | false | false | let fsqr5 (f0, f1, f2, f3, f4) =
| let o0, o1, o2, o3, o4 = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4) | false |
BinaryTrees.fst | BinaryTrees.count_remove_root | val count_remove_root (t: tree{Node? t})
: Lemma
(ensures
(let r = Node?.root t in
(count r (remove_root t) = count r t - 1) /\
(forall y. {:pattern (count y (remove_root t))}
y <> r ==> count y (remove_root t) = count y t))) | val count_remove_root (t: tree{Node? t})
: Lemma
(ensures
(let r = Node?.root t in
(count r (remove_root t) = count r t - 1) /\
(forall y. {:pattern (count y (remove_root t))}
y <> r ==> count y (remove_root t) = count y t))) | let rec count_remove_root (t:tree{Node? t}) :
Lemma (ensures (let r = Node?.root t in
(count r (remove_root t) = count r t - 1) /\
(forall y.{:pattern (count y (remove_root t))} y <> r ==> count y (remove_root t) = count y t))) =
let Node n t1 t2 = t in
if Leaf? t1 then ()
else count_remove_root t1 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 27,
"end_line": 184,
"start_col": 0,
"start_line": 178
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2
val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t)
let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2
(* remove and add implemented this way round-trip; TODO: does the converse hold? *)
val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t)
let rec remove_add_root x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1
let rec count (x:int) (t:tree) : Tot nat =
match t with
| Leaf -> 0
| Node n t1 t2 -> (if n = x then 1 else 0) + count x t1 + count x t2
let rec remove (x:int) (t:tree{count x t > 0}) : Tot tree (decreases t) =
match t with
| Node n t1 t2 -> if x = n then remove_root t else
if count x t1 > 0 then Node n (remove x t1) t2
else Node n t1 (remove x t2)
//This proof is flaky with Z3-4.5.0,
//It seems to require too much fuel to go through, although it should only need 2
//Z3-4.5.1 nightly successfully solves it with initial_fuel 2
//NS: 05/08 added a pattern on y to stabilize the proof | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 20,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: BinaryTrees.tree{Node? t}
-> FStar.Pervasives.Lemma
(ensures
(let r = Node?.root t in
BinaryTrees.count r (BinaryTrees.remove_root t) = BinaryTrees.count r t - 1 /\
(forall (y: Prims.int). {:pattern BinaryTrees.count y (BinaryTrees.remove_root t)}
y <> r ==> BinaryTrees.count y (BinaryTrees.remove_root t) = BinaryTrees.count y t))) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"BinaryTrees.tree",
"Prims.b2t",
"BinaryTrees.uu___is_Node",
"Prims.int",
"BinaryTrees.uu___is_Leaf",
"Prims.bool",
"BinaryTrees.count_remove_root",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_and",
"Prims.op_Equality",
"BinaryTrees.count",
"BinaryTrees.remove_root",
"Prims.op_Subtraction",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.op_disEquality",
"Prims.nat",
"BinaryTrees.__proj__Node__item__root",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec count_remove_root (t: tree{Node? t})
: Lemma
(ensures
(let r = Node?.root t in
(count r (remove_root t) = count r t - 1) /\
(forall y. {:pattern (count y (remove_root t))}
y <> r ==> count y (remove_root t) = count y t))) =
| let Node n t1 t2 = t in
if Leaf? t1 then () else count_remove_root t1 | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.montgomery_ladder | val montgomery_ladder : Hacl.Meta.Curve25519.generic_montgomery_ladder_higher_t Prims.l_True | let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 87,
"end_line": 18,
"start_col": 0,
"start_line": 17
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double = | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.generic_montgomery_ladder_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.generic_montgomery_ladder_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Curve25519_51.point_double",
"Hacl.Impl.Curve25519.Field51.cswap2",
"Hacl.Curve25519_51.point_add_and_double"
] | [] | false | false | false | true | false | let montgomery_ladder =
| generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double | false |
|
Pulse.Soundness.Bind.fst | Pulse.Soundness.Bind.bind_fn_typing | val bind_fn_typing
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_BindFn? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | val bind_fn_typing
(#g:stt_env)
(#t:st_term)
(#c:comp)
(d:st_typing g t c{T_BindFn? d})
(soundness:soundness_t d)
: GTot (RT.tot_typing (elab_env g)
(elab_st_typing d)
(elab_comp c)) | let bind_fn_typing #g #t #c d soundness =
let T_BindFn _ e1 e2 c1 c2 b x e1_typing u t1_typing e2_typing c2_typing = d in
let t1 = comp_res c1 in
let g_x = push_binding g x ppname_default t1 in
let re1 = elab_st_typing e1_typing in
let rt1 = elab_term t1 in
let re2 = elab_st_typing e2_typing in
let re1_typing : RT.tot_typing (elab_env g) re1 rt1 =
soundness g e1 c1 e1_typing in
let re2_typing : RT.tot_typing (elab_env g_x) re2 (elab_comp c2) =
soundness g_x (open_st_term_nv e2 (v_as_nv x)) c2 e2_typing in
RT.well_typed_terms_are_ln _ _ _ re2_typing;
calc (==) {
RT.open_term (RT.close_term re2 x) x;
(==) { RT.open_term_spec (RT.close_term re2 x) x }
RT.subst_term (RT.close_term re2 x) (RT.open_with_var x 0);
(==) { RT.close_term_spec re2 x }
RT.subst_term (RT.subst_term re2 [ RT.ND x 0 ]) (RT.open_with_var x 0);
(==) { RT.open_close_inverse' 0 re2 x }
re2;
};
let elab_t = RT.mk_let RT.pp_name_default re1 rt1 (RT.close_term re2 x) in
let res
: RT.tot_typing (elab_env g) elab_t (RT.open_with (RT.close_term (elab_comp c2) x) re1)
= RT.T_Let (elab_env g) x re1 rt1 (RT.close_term re2 x) (elab_comp c2) T.E_Total RT.pp_name_default re1_typing re2_typing in
Pulse.Typing.LN.comp_typing_ln c2_typing;
Pulse.Elaborate.elab_ln_comp c (-1);
assert (RT.ln (elab_comp c2));
open_close_inverse_t (elab_comp c2) x re1;
assert (RT.open_with (RT.close_term (elab_comp c2) x) re1 == elab_comp c2);
res | {
"file_name": "lib/steel/pulse/Pulse.Soundness.Bind.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 5,
"end_line": 231,
"start_col": 0,
"start_line": 197
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Soundness.Bind
module RT = FStar.Reflection.Typing
module R = FStar.Reflection.V2
module L = FStar.List.Tot
module T = FStar.Tactics.V2
module RU = Pulse.RuntimeUtils
open FStar.List.Tot
open Pulse.Syntax
open Pulse.Typing
open Pulse.Elaborate
open Pulse.Soundness.Common
#push-options "--z3rlimit_factor 5"
(*** Soundness of bind elaboration *)
(* x:t1 -> stt t2 pre post ~ x:t1 -> stt t2 ((fun x -> pre) x) post *)
let mequiv_arrow (g:R.env) (t1:R.term) (u2:R.universe) (t2:R.term) (pre:R.term) (post:R.term) //need some ln preconditions
: GTot (RT.equiv g (mk_arrow (t1, R.Q_Explicit)
(mk_stt_comp u2 t2 pre post))
(mk_arrow (t1, R.Q_Explicit)
(mk_stt_comp u2 t2 (R.mk_app (mk_abs t1 R.Q_Explicit pre) [bound_var 0, R.Q_Explicit]) post)))
= admit()
#push-options "--fuel 2 --ifuel 1 --query_stats"
let inst_bind_t1 #u1 #u2 #g #head
(head_typing: RT.tot_typing g head (bind_type u1 u2))
(#t1:_)
(t1_typing: RT.tot_typing g t1 (RT.tm_type u1))
: GTot (RT.tot_typing g (R.mk_app head [(t1, R.Q_Implicit)]) (bind_type_t1 u1 u2 t1))
= let open_with_spec (t v:R.term)
: Lemma (RT.open_with t v == RT.subst_term t [ RT.DT 0 v ])
[SMTPat (RT.open_with t v)]
= RT.open_with_spec t v
in
let d : RT.tot_typing g (R.mk_app head [(t1, R.Q_Implicit)]) _ =
RT.T_App _ _ _ _
(RT.subst_term (bind_type_t1 u1 u2 (mk_name 4)) [ RT.ND 4 0 ])
_ head_typing t1_typing
in
assume (bind_type_t1 u1 u2 t1 ==
RT.open_with (RT.subst_term (bind_type_t1 u1 u2 (mk_name 4))
[ RT.ND 4 0 ])
t1);
d
#pop-options
let inst_bind_t2 #u1 #u2 #g #head #t1
(head_typing: RT.tot_typing g head (bind_type_t1 u1 u2 t1))
(#t2:_)
(t2_typing: RT.tot_typing g t2 (RT.tm_type u2))
: RT.tot_typing g (R.mk_app head [(t2, R.Q_Implicit)]) (bind_type_t1_t2 u1 u2 t1 t2)
= admit()
let inst_bind_pre #u1 #u2 #g #head #t1 #t2
(head_typing: RT.tot_typing g head (bind_type_t1_t2 u1 u2 t1 t2))
(#pre:_)
(pre_typing: RT.tot_typing g pre vprop_tm)
: RT.tot_typing g (R.mk_app head [(pre, R.Q_Implicit)]) (bind_type_t1_t2_pre u1 u2 t1 t2 pre)
= admit()
let inst_bind_post1 #u1 #u2 #g #head #t1 #t2 #pre
(head_typing: RT.tot_typing g head (bind_type_t1_t2_pre u1 u2 t1 t2 pre))
(#post1:_)
(post1_typing: RT.tot_typing g post1 (post1_type_bind t1))
: RT.tot_typing g (R.mk_app head [(post1, R.Q_Implicit)]) (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1)
= admit()
let inst_bind_post2 #u1 #u2 #g #head #t1 #t2 #pre #post1
(head_typing: RT.tot_typing g head (bind_type_t1_t2_pre_post1 u1 u2 t1 t2 pre post1))
(#post2:_)
(post2_typing: RT.tot_typing g post2 (post2_type_bind t2))
: RT.tot_typing g (R.mk_app head [(post2, R.Q_Implicit)]) (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2)
= admit()
let inst_bind_f #u1 #u2 #g #head #t1 #t2 #pre #post1 #post2
(head_typing: RT.tot_typing g head (bind_type_t1_t2_pre_post1_post2 u1 u2 t1 t2 pre post1 post2))
(#f:_)
(f_typing: RT.tot_typing g f (mk_stt_comp u1 t1 pre post1))
: RT.tot_typing g (R.mk_app head [(f, R.Q_Explicit)]) (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2)
= admit()
let inst_bind_g #u1 #u2 #g #head #t1 #t2 #pre #post1 #post2
(head_typing: RT.tot_typing g head (bind_type_t1_t2_pre_post1_post2_f u1 u2 t1 t2 pre post1 post2))
(#gg:_)
(g_typing: RT.tot_typing g gg (g_type_bind u2 t1 t2 post1 post2))
: RT.tot_typing g (R.mk_app head [(gg, R.Q_Explicit)]) (bind_res u2 t2 pre post2)
= let open_with_spec (t v:R.term)
: Lemma (RT.open_with t v == RT.subst_term t [ RT.DT 0 v ])
[SMTPat (RT.open_with t v)]
= RT.open_with_spec t v
in
let d : RT.tot_typing g (R.mk_app head [(gg, R.Q_Explicit)]) _ =
RT.T_App _ _ _ _ (bind_res u2 t2 pre post2) _ head_typing g_typing
in
admit();
d
#pop-options
#push-options "--z3rlimit_factor 8"
let elab_bind_typing (g:stt_env)
(c1 c2 c:ln_comp)
(x:var { ~ (x `Set.mem` freevars_comp c1) })
(r1:R.term)
(r1_typing: RT.tot_typing (elab_env g) r1 (elab_comp c1))
(r2:R.term)
(r2_typing: RT.tot_typing (elab_env g) r2
(elab_term (tm_arrow (null_binder (comp_res c1)) None (close_comp c2 x))))
(bc:bind_comp g x c1 c2 c)
(t2_typing : RT.tot_typing (elab_env g) (elab_term (comp_res c2)) (RT.tm_type (comp_u c2)))
(post2_typing: RT.tot_typing (elab_env g)
(elab_comp_post c2)
(post2_type_bind (elab_term (comp_res c2))))
= assume (C_ST? c1 /\ C_ST? c2);
let rg = elab_env g in
let u1 = comp_u c1 in
let u2 = comp_u c2 in
let bind_lid = mk_pulse_lib_core_lid "bind_stt" in
let bind_fv = R.pack_fv bind_lid in
let head = R.pack_ln (R.Tv_UInst bind_fv [u1;u2]) in
assume (RT.lookup_fvar_uinst rg bind_fv [u1; u2] == Some (bind_type u1 u2));
let head_typing : RT.tot_typing _ _ (bind_type u1 u2) = RT.T_UInst rg bind_fv [u1;u2] in
let (| _, c1_typing |) = RT.type_correctness _ _ _ r1_typing in
let t1_typing, pre_typing, post_typing = inversion_of_stt_typing _ _ c1_typing in
let t1 = (elab_term (comp_res c1)) in
let t2 = (elab_term (comp_res c2)) in
let t1_typing : RT.tot_typing rg t1 (RT.tm_type u1) = t1_typing in
let post1 = elab_comp_post c1 in
let c2_x = close_comp c2 x in
assume (comp_res c2_x == comp_res c2);
assume (comp_post c2_x == comp_post c2);
assert (open_term (comp_post c1) x == comp_pre c2);
assert (~ (x `Set.mem` freevars (comp_post c1)));
close_open_inverse (comp_post c1) x;
assert (comp_post c1 == close_term (comp_pre c2) x);
assert (post1 == mk_abs t1 R.Q_Explicit (elab_term (comp_post c1)));
assert (elab_term (comp_post c1) == elab_term (comp_pre (close_comp c2 x)));
//ln (comp_post c1) 0
let g_typing
: RT.tot_typing _ _
(mk_arrow (t1, R.Q_Explicit)
(mk_stt_comp u2 t2 (elab_term (comp_post c1)) (elab_comp_post c2)))
= r2_typing in
let g_typing
: RT.tot_typing _ _
(mk_arrow (t1, R.Q_Explicit)
(mk_stt_comp u2 t2
(R.mk_app (mk_abs t1 R.Q_Explicit (elab_term (comp_post c1)))
[bound_var 0, R.Q_Explicit])
(elab_comp_post c2)))
= RT.T_Sub _ _ _ _ r2_typing
(RT.Relc_typ _ _ _ _ _
(RT.Rel_equiv _ _ _ _ (mequiv_arrow _ _ _ _ _ _)))
in
let d : RT.tot_typing _ (elab_bind bc r1 r2) _ =
inst_bind_g
(inst_bind_f
(inst_bind_post2
(inst_bind_post1
(inst_bind_pre
(inst_bind_t2
(inst_bind_t1 head_typing t1_typing)
t2_typing)
pre_typing)
post_typing)
post2_typing)
r1_typing)
g_typing
in
d
#pop-options
#push-options "--query_stats --z3rlimit_factor 4 --split_queries no"
assume
val open_close_inverse_t (e:R.term { RT.ln e }) (x:var) (t:R.term)
: Lemma (RT.open_with (RT.close_term e x) t == e) | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.LN.fsti.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Set.fsti.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Soundness.Bind.fst"
} | [
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness.Common",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Reflection.Util",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.List.Tot",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 4,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | d: Pulse.Typing.st_typing g t c {T_BindFn? d} -> soundness: Pulse.Soundness.Common.soundness_t d
-> Prims.GTot
(FStar.Reflection.Typing.tot_typing (Pulse.Typing.elab_env g)
(Pulse.Elaborate.Core.elab_st_typing d)
(Pulse.Elaborate.Pure.elab_comp c)) | Prims.GTot | [
"sometrivial"
] | [] | [
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Typing.st_typing",
"Prims.b2t",
"Pulse.Typing.uu___is_T_BindFn",
"Pulse.Soundness.Common.soundness_t",
"Pulse.Typing.Env.env",
"Pulse.Syntax.Base.uu___is_C_Tot",
"Pulse.Syntax.Base.comp_st",
"Pulse.Syntax.Base.binder",
"Prims.eq2",
"Pulse.Syntax.Base.term",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ty",
"Pulse.Syntax.Base.comp_res",
"Pulse.Syntax.Base.var",
"Prims.l_and",
"FStar.Pervasives.Native.uu___is_None",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.Env.lookup",
"Prims.l_not",
"FStar.Set.mem",
"Pulse.Syntax.Naming.freevars_st",
"FStar.Ghost.erased",
"Pulse.Syntax.Base.universe",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Pure.tm_type",
"FStar.Ghost.reveal",
"Pulse.Typing.Env.push_binding",
"Pulse.Syntax.Base.ppname_default",
"Pulse.Syntax.Naming.open_st_term_nv",
"FStar.Pervasives.Native.Mktuple2",
"Pulse.Syntax.Base.ppname",
"Pulse.Syntax.Base.__proj__Mkbinder__item__binder_ppname",
"Pulse.Typing.comp_typing_u",
"Prims.unit",
"Prims._assert",
"FStar.Stubs.Reflection.Types.term",
"FStar.Reflection.Typing.open_with",
"FStar.Reflection.Typing.close_term",
"Pulse.Elaborate.Pure.elab_comp",
"Pulse.Soundness.Bind.open_close_inverse_t",
"FStar.Reflection.Typing.ln",
"Pulse.Elaborate.elab_ln_comp",
"Prims.op_Minus",
"Pulse.Typing.LN.comp_typing_ln",
"Pulse.Syntax.Base.universe_of_comp",
"FStar.Reflection.Typing.tot_typing",
"Pulse.Typing.elab_env",
"FStar.Reflection.Typing.T_Let",
"FStar.Stubs.TypeChecker.Core.E_Total",
"FStar.Reflection.Typing.pp_name_default",
"FStar.Reflection.Typing.mk_let",
"FStar.Calc.calc_finish",
"FStar.Reflection.Typing.open_term",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"FStar.Calc.calc_step",
"FStar.Reflection.Typing.subst_term",
"FStar.Reflection.Typing.subst_elt",
"FStar.Reflection.Typing.ND",
"FStar.Reflection.Typing.open_with_var",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Reflection.Typing.open_term_spec",
"Prims.squash",
"FStar.Reflection.Typing.close_term_spec",
"FStar.Reflection.Typing.open_close_inverse'",
"FStar.Reflection.Typing.well_typed_terms_are_ln",
"FStar.Stubs.TypeChecker.Core.tot_or_ghost",
"FStar.Stubs.Reflection.Types.typ",
"Pulse.Syntax.Base.v_as_nv",
"Pulse.Elaborate.Core.elab_st_typing",
"Pulse.Elaborate.Pure.elab_term",
"FStar.Reflection.Typing.fstar_top_env",
"Pulse.Typing.Env.fstar_env"
] | [] | false | false | false | false | false | let bind_fn_typing #g #t #c d soundness =
| let T_BindFn _ e1 e2 c1 c2 b x e1_typing u t1_typing e2_typing c2_typing = d in
let t1 = comp_res c1 in
let g_x = push_binding g x ppname_default t1 in
let re1 = elab_st_typing e1_typing in
let rt1 = elab_term t1 in
let re2 = elab_st_typing e2_typing in
let re1_typing:RT.tot_typing (elab_env g) re1 rt1 = soundness g e1 c1 e1_typing in
let re2_typing:RT.tot_typing (elab_env g_x) re2 (elab_comp c2) =
soundness g_x (open_st_term_nv e2 (v_as_nv x)) c2 e2_typing
in
RT.well_typed_terms_are_ln _ _ _ re2_typing;
calc ( == ) {
RT.open_term (RT.close_term re2 x) x;
( == ) { RT.open_term_spec (RT.close_term re2 x) x }
RT.subst_term (RT.close_term re2 x) (RT.open_with_var x 0);
( == ) { RT.close_term_spec re2 x }
RT.subst_term (RT.subst_term re2 [RT.ND x 0]) (RT.open_with_var x 0);
( == ) { RT.open_close_inverse' 0 re2 x }
re2;
};
let elab_t = RT.mk_let RT.pp_name_default re1 rt1 (RT.close_term re2 x) in
let res:RT.tot_typing (elab_env g) elab_t (RT.open_with (RT.close_term (elab_comp c2) x) re1) =
RT.T_Let (elab_env g)
x
re1
rt1
(RT.close_term re2 x)
(elab_comp c2)
T.E_Total
RT.pp_name_default
re1_typing
re2_typing
in
Pulse.Typing.LN.comp_typing_ln c2_typing;
Pulse.Elaborate.elab_ln_comp c (- 1);
assert (RT.ln (elab_comp c2));
open_close_inverse_t (elab_comp c2) x re1;
assert (RT.open_with (RT.close_term (elab_comp c2) x) re1 == elab_comp c2);
res | false |
GMST.fst | GMST.lift_div_gmst | val lift_div_gmst : a: Type -> wp: Prims.pure_wp a -> s0: GMST.state -> p: GMST.gmst_post GMST.state a s0
-> Prims.pure_pre | let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 124,
"end_line": 95,
"start_col": 0,
"start_line": 95
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> wp: Prims.pure_wp a -> s0: GMST.state -> p: GMST.gmst_post GMST.state a s0
-> Prims.pure_pre | Prims.Tot | [
"total"
] | [] | [
"Prims.pure_wp",
"GMST.state",
"GMST.gmst_post",
"Prims.l_True",
"Prims.eq2",
"Prims.pure_pre"
] | [] | false | false | false | false | false | let lift_div_gmst (a: Type) (wp: pure_wp a) (s0: state) (p: gmst_post state a s0) =
| wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0) | false |
|
GMST.fst | GMST.state | val state : Prims.eqtype | let state = int | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 15,
"end_line": 91,
"start_col": 0,
"start_line": 91
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.eqtype | Prims.Tot | [
"total"
] | [] | [
"Prims.int"
] | [] | false | false | false | true | false | let state =
| int | false |
|
GMST.fst | GMST.gmst_bind | val gmst_bind : s: Type ->
a: Type ->
b: Type ->
wp1: GMST.gmst_wp s a ->
wp2: (_: a -> Prims.GTot (GMST.gmst_wp s b)) ->
s0: s ->
p: GMST.gmst_post s b s0
-> Type0 | let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1))) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 68,
"end_line": 43,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: Type ->
a: Type ->
b: Type ->
wp1: GMST.gmst_wp s a ->
wp2: (_: a -> Prims.GTot (GMST.gmst_wp s b)) ->
s0: s ->
p: GMST.gmst_post s b s0
-> Type0 | Prims.Tot | [
"total"
] | [] | [
"GMST.gmst_wp",
"GMST.gmst_post",
"FStar.Preorder.relation",
"GMST.op_At"
] | [] | false | false | false | false | true | let gmst_bind
(s a b: Type)
(wp1: gmst_wp s a)
(wp2: (a -> GTot (gmst_wp s b)))
(s0: s)
(p: gmst_post s b s0)
=
| wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1))) | false |
|
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.secret_to_public | val secret_to_public: secret_to_public_st M51 True | val secret_to_public: secret_to_public_st M51 True | let secret_to_public = generic_secret_to_public_higher #M51 True scalarmult g25519 | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double
let fsquare_times = finv_fsquare_times_higher #M51 True C.fsqr
let finv = finv_finv_higher #M51 True C.fmul fsquare_times
let encode_point = generic_encode_point_higher #M51 True C.store_felem C.fmul finv | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Generic.secret_to_public_st Hacl.Impl.Curve25519.Fields.Core.M51 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.generic_secret_to_public_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Curve25519_51.scalarmult",
"Hacl.Curve25519_51.g25519"
] | [] | false | false | false | true | false | let secret_to_public =
| generic_secret_to_public_higher #M51 True scalarmult g25519 | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.point_double | val point_double : Hacl.Meta.Curve25519.addanddouble_point_double_higher_t Prims.l_True | let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 16,
"start_col": 0,
"start_line": 15
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double = | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.addanddouble_point_double_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.addanddouble_point_double_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Impl.Curve25519.Field51.fmul2",
"Hacl.Impl.Curve25519.Field51.fmul1",
"Hacl.Impl.Curve25519.Field51.fsqr2",
"Hacl.Impl.Curve25519.Field51.fsub",
"Hacl.Impl.Curve25519.Field51.fadd"
] | [] | false | false | false | true | false | let point_double =
| addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd | false |
|
BinaryTrees.fst | BinaryTrees.count_remove | val count_remove (x: int) (t: tree{count x t > 0})
: Lemma (requires True) (ensures (count x (remove x t) = count x t - 1)) (decreases t) | val count_remove (x: int) (t: tree{count x t > 0})
: Lemma (requires True) (ensures (count x (remove x t) = count x t - 1)) (decreases t) | let rec count_remove (x:int) (t:tree{count x t > 0}) :
Lemma (requires True)
(ensures (count x (remove x t) = count x t - 1)) (decreases t) =
match t with
| Node n t1 t2 -> if x = n then count_remove_root t else
if count x t1 > 0 then count_remove x t1
else count_remove x t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 60,
"end_line": 193,
"start_col": 0,
"start_line": 187
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2
val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t)
let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2
(* remove and add implemented this way round-trip; TODO: does the converse hold? *)
val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t)
let rec remove_add_root x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1
let rec count (x:int) (t:tree) : Tot nat =
match t with
| Leaf -> 0
| Node n t1 t2 -> (if n = x then 1 else 0) + count x t1 + count x t2
let rec remove (x:int) (t:tree{count x t > 0}) : Tot tree (decreases t) =
match t with
| Node n t1 t2 -> if x = n then remove_root t else
if count x t1 > 0 then Node n (remove x t1) t2
else Node n t1 (remove x t2)
//This proof is flaky with Z3-4.5.0,
//It seems to require too much fuel to go through, although it should only need 2
//Z3-4.5.1 nightly successfully solves it with initial_fuel 2
//NS: 05/08 added a pattern on y to stabilize the proof
#reset-options "--z3rlimit 20 --initial_fuel 2 --initial_ifuel 2"
let rec count_remove_root (t:tree{Node? t}) :
Lemma (ensures (let r = Node?.root t in
(count r (remove_root t) = count r t - 1) /\
(forall y.{:pattern (count y (remove_root t))} y <> r ==> count y (remove_root t) = count y t))) =
let Node n t1 t2 = t in
if Leaf? t1 then ()
else count_remove_root t1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree{BinaryTrees.count x t > 0}
-> FStar.Pervasives.Lemma
(ensures BinaryTrees.count x (BinaryTrees.remove x t) = BinaryTrees.count x t - 1)
(decreases t) | FStar.Pervasives.Lemma | [
"lemma",
""
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"Prims.b2t",
"Prims.op_GreaterThan",
"BinaryTrees.count",
"Prims.op_Equality",
"BinaryTrees.count_remove_root",
"Prims.bool",
"BinaryTrees.count_remove",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"BinaryTrees.remove",
"Prims.op_Subtraction",
"Prims.Nil",
"FStar.Pervasives.pattern"
] | [
"recursion"
] | false | false | true | false | false | let rec count_remove (x: int) (t: tree{count x t > 0})
: Lemma (requires True) (ensures (count x (remove x t) = count x t - 1)) (decreases t) =
| match t with
| Node n t1 t2 ->
if x = n
then count_remove_root t
else if count x t1 > 0 then count_remove x t1 else count_remove x t2 | false |
GMST.fst | GMST.mst_wp | val mst_wp : s: Type -> a: Type -> rel: FStar.Preorder.relation s -> Type | let mst_wp (s:Type) (a:Type) (rel:relation s) = s0:s -> (a -> s1:s{rel s0 s1} -> Type0) -> Type0 | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 99,
"end_line": 101,
"start_col": 0,
"start_line": 101
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state
let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0)
sub_effect DIV ~> GMST = lift_div_gmst
(* Syntactic sugar packaging a relation index and MST WP *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Type -> a: Type -> rel: FStar.Preorder.relation s -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.Preorder.relation"
] | [] | false | false | false | true | true | let mst_wp (s a: Type) (rel: relation s) =
| s0: s -> (a -> s1: s{rel s0 s1} -> Type0) -> Type0 | false |
|
GMST.fst | GMST.stable | val stable : p: FStar.Preorder.predicate a -> rel: FStar.Preorder.preorder a -> Prims.logical | let stable (#a:Type) (p:predicate a) (rel:preorder a)
= forall x y . p x /\ rel x y ==> p y | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 39,
"end_line": 116,
"start_col": 0,
"start_line": 115
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state
let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0)
sub_effect DIV ~> GMST = lift_div_gmst
(* Syntactic sugar packaging a relation index and MST WP *)
let mst_wp (s:Type) (a:Type) (rel:relation s) = s0:s -> (a -> s1:s{rel s0 s1} -> Type0) -> Type0
unfold
let (><) (#a:Type) (rel:relation state) (wp:mst_wp state a rel) : gmst_wp state a
= fun s0 post -> wp s0 (post rel)
(* Actions with specs defined in terms of (><) *)
assume val gst_get: unit -> GMST state ((fun s0 s1 -> s0 == s1) >< (fun s0 post -> post s0 s0))
assume val gst_put: #rel:relation state -> s1:state -> GMST unit (rel >< (fun s0 post -> rel s0 s1 /\ post () s1))
assume val witnessed: predicate state -> Type0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: FStar.Preorder.predicate a -> rel: FStar.Preorder.preorder a -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Preorder.predicate",
"FStar.Preorder.preorder",
"Prims.l_Forall",
"Prims.l_imp",
"Prims.l_and",
"Prims.logical"
] | [] | false | false | false | true | true | let stable (#a: Type) (p: predicate a) (rel: preorder a) =
| forall x y. p x /\ rel x y ==> p y | false |
|
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.fsquare_times | val fsquare_times : Hacl.Meta.Curve25519.finv_fsquare_times_higher_t Prims.l_True | let fsquare_times = finv_fsquare_times_higher #M51 True C.fsqr | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 19,
"start_col": 0,
"start_line": 19
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder = | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.finv_fsquare_times_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.finv_fsquare_times_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Impl.Curve25519.Field51.fsqr"
] | [] | false | false | false | true | false | let fsquare_times =
| finv_fsquare_times_higher #M51 True C.fsqr | false |
|
BinaryTrees.fst | BinaryTrees.count | val count (x: int) (t: tree) : Tot nat | val count (x: int) (t: tree) : Tot nat | let rec count (x:int) (t:tree) : Tot nat =
match t with
| Leaf -> 0
| Node n t1 t2 -> (if n = x then 1 else 0) + count x t1 + count x t2 | {
"file_name": "examples/data_structures/BinaryTrees.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 165,
"start_col": 0,
"start_line": 162
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module BinaryTrees
type tree =
| Leaf : tree
| Node : root:int -> left:tree -> right:tree -> tree
val size : tree -> Tot nat
let rec size t =
match t with
| Leaf -> 0
| Node n t1 t2 -> 1 + size t1 + size t2
val map : f:(int -> Tot int) -> tree -> Tot tree
let rec map f t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node (f n) (map f t1) (map f t2)
val map_size : f:(int -> Tot int) -> t:tree -> Lemma (size (map f t) = size t)
let rec map_size f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_size f t1; map_size f t2
val find : p:(int -> Tot bool) -> tree -> Tot (option int)
let rec find p t =
match t with
| Leaf -> None
| Node n t1 t2 -> if p n then Some n else
if Some? (find p t1) then find p t1
else find p t2
val find_some : p:(int -> Tot bool) -> t:tree ->
Lemma (None? (find p t) \/ p (Some?.v (find p t)))
let rec find_some p t =
match t with
| Leaf -> ()
| Node n t1 t2 -> find_some p t1; find_some p t2
let map_option f o = match o with
| Some n -> Some (f n)
| None -> None
let compose f1 f2 x = f1 (f2 x)
val map_find : p:(int -> Tot bool) -> f:(int -> Tot int) -> t:tree ->
Lemma (find p (map f t) = map_option f (find (compose p f) t))
let rec map_find p f t =
match t with
| Leaf -> ()
| Node n t1 t2 -> map_find p f t1; map_find p f t2
val in_tree : int -> tree -> Tot bool
let rec in_tree x t =
match t with
| Leaf -> false
| Node n t1 t2 -> x = n || in_tree x t1 || in_tree x t2
val fold : (int -> 'a -> 'a -> 'a) -> 'a -> tree -> 'a
let rec fold f a t =
match t with
| Leaf -> a
| Node n t1 t2 -> f n (fold f a t1) (fold f a t2)
val fold_map : fm:(int -> int) -> ff:(int -> int -> int -> int) -> a:int -> t:tree ->
Lemma (fold ff a (map fm t) = fold (compose ff fm) a t)
let rec fold_map fm ff a t =
match t with
| Leaf -> ()
| Node n t1 t2 -> fold_map fm ff a t1; fold_map fm ff a t2
val size_fold : t:tree ->
Lemma (size t = fold #nat (fun _ s1 s2 -> 1 + s1 + s2) 0 t)
let rec size_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> size_fold t1; size_fold t2
val in_tree_fold : x:int -> t:tree ->
Lemma (in_tree x t = fold (fun n b1 b2 -> x = n || b1 || b2) false t)
let rec in_tree_fold x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> in_tree_fold x t1; in_tree_fold x t2
val find_fold : f:(int -> Tot bool) -> tree -> Tot (option (x:int{f x}))
let find_fold f = fold #(option (x:int{f x}))
(fun n o1 o2 -> if f n then Some n else
if Some? o1 then o1 else o2) None
val revert : tree -> Tot tree
let rec revert t =
match t with
| Leaf -> Leaf
| Node n t1 t2 -> Node n (revert t2) (revert t1)
(* simpler than for lists because revert is symmetric, while List.rev is not *)
val revert_involutive : t:tree -> Lemma (revert (revert t) = t)
let rec revert_involutive t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_involutive t1; revert_involutive t2
(* again, much simpler than for lists *)
val revert_injective : t1:tree -> t2:tree ->
Lemma (requires (revert t1 = revert t2)) (ensures (t1 = t2))
let rec revert_injective t1 t2 =
match t1, t2 with
| Leaf, Leaf -> ()
| Node n1 t11 t12, Node n2 t21 t22 -> revert_injective t11 t21;
revert_injective t12 t22
val revert_fold : t:tree ->
Lemma (revert t = fold (fun n t1 t2 -> Node n t2 t1) Leaf t)
let rec revert_fold t =
match t with
| Leaf -> ()
| Node n t1 t2 -> revert_fold t1; revert_fold t2
(* open FStar.List *)
(* val list_of : tree -> Tot (list int) *)
(* let list_of = fold (fun n t1 t2 -> t1 @ [n] @ t2) [] *)
val remove_root : t:tree{Node? t} -> Tot tree
let rec remove_root t =
match t with
| Node n t1 t2 -> if Leaf? t1 then t2
else Node (Node?.root t1) (remove_root t1) t2
val add_root : x:int -> t:tree -> Tot (t':tree{Node? t'}) (decreases t)
let rec add_root x t =
match t with
| Leaf -> Node x Leaf Leaf
| Node n t1 t2 -> Node x (add_root n t1) t2
(* remove and add implemented this way round-trip; TODO: does the converse hold? *)
val remove_add_root : x:int -> t:tree ->
Lemma (requires True) (ensures (remove_root (add_root x t) = t))
(decreases t)
let rec remove_add_root x t =
match t with
| Leaf -> ()
| Node n t1 t2 -> remove_add_root x t1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "BinaryTrees.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> t: BinaryTrees.tree -> Prims.nat | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"BinaryTrees.tree",
"Prims.op_Addition",
"Prims.op_Equality",
"Prims.bool",
"BinaryTrees.count",
"Prims.nat"
] | [
"recursion"
] | false | false | false | true | false | let rec count (x: int) (t: tree) : Tot nat =
| match t with
| Leaf -> 0
| Node n t1 t2 -> (if n = x then 1 else 0) + count x t1 + count x t2 | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fsub5 | val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)} | val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)} | let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 65,
"start_col": 0,
"start_line": 52
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (9, 10, 9, 9, 9) /\
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Spec.Curve25519.fsub (Hacl.Spec.Curve25519.Field51.Definition.feval f1)
(Hacl.Spec.Curve25519.Field51.Definition.feval f2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_mod_sub_distr",
"Prims.op_Modulus",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"Spec.Curve25519.prime",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"Prims.op_Minus",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Subtraction_Bang",
"Prims.l_and",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Spec.Curve25519.fsub",
"Hacl.Spec.Curve25519.Field51.fadd_zero"
] | [] | false | false | false | false | false | let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
| let t0, t1, t2, t3, t4 = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (t0, t1, t2, t3, t4))
(- as_nat5 (f20, f21, f22, f23, f24))
prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime)
(as_nat5 (f20, f21, f22, f23, f24))
prime;
out | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fadd5 | val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)} | val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)} | let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 30,
"start_col": 0,
"start_line": 19
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (1, 2, 1, 1, 1)} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (2, 4, 2, 2, 2) /\
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Spec.Curve25519.fadd (Hacl.Spec.Curve25519.Field51.Definition.feval f1)
(Hacl.Spec.Curve25519.Field51.Definition.feval f2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Prims.unit",
"FStar.Math.Lemmas.lemma_mod_plus_distr_r",
"Prims.op_Modulus",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"Spec.Curve25519.prime",
"FStar.Math.Lemmas.lemma_mod_plus_distr_l",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Prims.l_and",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Spec.Curve25519.fadd"
] | [] | false | false | false | false | false | let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
| let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l (as_nat5 (f10, f11, f12, f13, f14))
(as_nat5 (f20, f21, f22, f23, f24))
prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r ((as_nat5 (f10, f11, f12, f13, f14)) % prime)
(as_nat5 (f20, f21, f22, f23, f24))
prime;
out | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fmul5 | val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)} | val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)} | let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 295,
"start_col": 0,
"start_line": 291
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.mul_inv_t out /\
Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f1)
(Hacl.Spec.Curve25519.Field51.Definition.feval f2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"Hacl.Spec.Curve25519.Field51.carry_wide5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.mul_inv_t",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Spec.Curve25519.fmul",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.feval_wide",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.mul_felem5",
"Hacl.Spec.Curve25519.Field51.precomp_r19"
] | [] | false | false | false | false | false | let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
| let tmp0, tmp1, tmp2, tmp3, tmp4 = precomp_r19 (f20, f21, f22, f23, f24) in
let tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4 =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4)
in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.point_add_and_double | val point_add_and_double : Hacl.Meta.Curve25519.addanddouble_point_add_and_double_higher_t Prims.l_True | let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 97,
"end_line": 14,
"start_col": 0,
"start_line": 13
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.addanddouble_point_add_and_double_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.addanddouble_point_add_and_double_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Impl.Curve25519.Field51.fmul",
"Hacl.Impl.Curve25519.Field51.fsqr2",
"Hacl.Impl.Curve25519.Field51.fmul1",
"Hacl.Impl.Curve25519.Field51.fmul2",
"Hacl.Impl.Curve25519.Field51.fsub",
"Hacl.Impl.Curve25519.Field51.fadd"
] | [] | false | false | false | true | false | let point_add_and_double =
| addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd | false |
|
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.smul_felem5 | val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2} | val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2} | let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 126,
"start_col": 0,
"start_line": 111
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
u1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 u1 m1} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 m2 /\
m1 *^ m2 <=* Hacl.Spec.Curve25519.Field51.Definition.s128x5 67108864 }
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 out (m1 *^ m2) /\
Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5 out ==
Lib.IntTypes.uint_v u1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f2 } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Hacl.Spec.Curve25519.Field51.Definition.scale64_5",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.op_Less_Equals_Star",
"Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat",
"Hacl.Spec.Curve25519.Field51.Definition.s128x5",
"Prims.nat",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_smul_felem5",
"FStar.Pervasives.Native.Mktuple5",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Lib.IntTypes.uint128",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Prims.op_Multiply",
"Lib.IntTypes.U64",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1",
"Hacl.Spec.Curve25519.Field51.mul_wide64",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5",
"FStar.Mul.op_Star",
"Lib.IntTypes.uint_v",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5"
] | [] | false | false | false | false | false | let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
| let m20, m21, m22, m23, m24 = m2 in
[@@ inline_let ]let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@@ inline_let ]let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@@ inline_let ]let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@@ inline_let ]let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@@ inline_let ]let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@@ inline_let ]let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.scalarmult | val scalarmult: scalarmult_st M51 True | val scalarmult: scalarmult_st M51 True | let scalarmult = generic_scalarmult_higher #M51 True encode_point montgomery_ladder decode_point | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 96,
"end_line": 22,
"start_col": 0,
"start_line": 22
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double
let fsquare_times = finv_fsquare_times_higher #M51 True C.fsqr
let finv = finv_finv_higher #M51 True C.fmul fsquare_times | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Generic.scalarmult_st Hacl.Impl.Curve25519.Fields.Core.M51 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.generic_scalarmult_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Curve25519_51.encode_point",
"Hacl.Curve25519_51.montgomery_ladder",
"Hacl.Impl.Curve25519.Generic.decode_point"
] | [] | false | false | false | true | false | let scalarmult =
| generic_scalarmult_higher #M51 True encode_point montgomery_ladder decode_point | false |
GMST.fst | GMST.preorder_app' | val preorder_app'
(#a #b: Type)
(#rel: preorder state)
(#wp1: mst_wp state a rel)
(#wp2: (a -> mst_wp state b rel))
(f: (unit -> GMST a (rel >< wp1)))
(g: (x: a -> GMST b (rel >< wp2 x)))
: GMST b (rel @ rel >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) | val preorder_app'
(#a #b: Type)
(#rel: preorder state)
(#wp1: mst_wp state a rel)
(#wp2: (a -> mst_wp state b rel))
(f: (unit -> GMST a (rel >< wp1)))
(g: (x: a -> GMST b (rel >< wp2 x)))
: GMST b (rel @ rel >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) | let preorder_app' (#a:Type) (#b:Type)
(#rel:preorder state)
(#wp1:mst_wp state a rel)
(#wp2:a -> mst_wp state b rel)
(f:unit -> GMST a (rel >< wp1))
(g:(x:a -> GMST b (rel >< wp2 x)))
: GMST b (rel @ rel >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p)))
= g (f ()) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 170,
"start_col": 0,
"start_line": 163
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state
let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0)
sub_effect DIV ~> GMST = lift_div_gmst
(* Syntactic sugar packaging a relation index and MST WP *)
let mst_wp (s:Type) (a:Type) (rel:relation s) = s0:s -> (a -> s1:s{rel s0 s1} -> Type0) -> Type0
unfold
let (><) (#a:Type) (rel:relation state) (wp:mst_wp state a rel) : gmst_wp state a
= fun s0 post -> wp s0 (post rel)
(* Actions with specs defined in terms of (><) *)
assume val gst_get: unit -> GMST state ((fun s0 s1 -> s0 == s1) >< (fun s0 post -> post s0 s0))
assume val gst_put: #rel:relation state -> s1:state -> GMST unit (rel >< (fun s0 post -> rel s0 s1 /\ post () s1))
assume val witnessed: predicate state -> Type0
let stable (#a:Type) (p:predicate a) (rel:preorder a)
= forall x y . p x /\ rel x y ==> p y
assume val gst_witness: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ p s0 /\ (witnessed p ==> post () s0)))
assume val gst_recall: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ witnessed p /\ (p s0 ==> post () s0)))
(* Sequential composition results in composition of relations *)
let app (#a:Type) (#b:Type)
(#rel1:relation state)
(#rel2:relation state)
(#wp1:mst_wp state a rel1)
(#wp2:a -> mst_wp state b rel2)
(f:unit -> GMST a (rel1 >< wp1))
(g:(x:a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p)))
= g (f ())
(*
In case the relations are the same, and moreover preorders, we ought to get the usual MST typing for app
However, currently we don't get this result because of the lack of proper prop (one that would also soundly
support propositional extensionality).
*)
(*
Temporarily assuming propositional extensionality for rel's.
As preorder is defined using Type0 not the (upcoming) prop,
then this can actually lead to an inconsistency, e.g., see
examples/paradoxes/PropositionalExtensionalityInconsistent.fst
*)
let lemma_preorder_comp_equiv (a:Type) (rel:preorder a)
: Lemma (forall x y . (rel @ rel) x y <==> rel x y)
= ()
let lemma_preorder_comp_equal (a:Type) (rel:preorder a)
: Lemma (rel @ rel == rel)
[SMTPat (rel @ rel)]
= admit ()
(* The inferred type of app *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> GMST.GMST a) -> g: (x: a -> GMST.GMST b) -> GMST.GMST b | GMST.GMST | [] | [] | [
"FStar.Preorder.preorder",
"GMST.state",
"GMST.mst_wp",
"Prims.unit",
"GMST.op_Greater_Less",
"GMST.op_At"
] | [] | false | true | false | false | false | let preorder_app'
(#a #b: Type)
(#rel: preorder state)
(#wp1: mst_wp state a rel)
(#wp2: (a -> mst_wp state b rel))
(f: (unit -> GMST a (rel >< wp1)))
(g: (x: a -> GMST b (rel >< wp2 x)))
: GMST b (rel @ rel >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) =
| g (f ()) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.mul_wide64 | val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} | val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} | let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 100,
"start_col": 0,
"start_line": 89
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)} | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 x m1} ->
y:
Lib.IntTypes.uint64
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:
Lib.IntTypes.uint128
{ Lib.IntTypes.uint_v z == Lib.IntTypes.uint_v x * Lib.IntTypes.uint_v y /\
Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 z (m1 * m2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"FStar.Mul.op_Star",
"Lib.IntTypes.mul64_wide",
"Prims.unit",
"Prims._assert",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.Definition.max51",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.swap_mul",
"FStar.Math.Lemmas.lemma_mult_le_right",
"FStar.Math.Lemmas.lemma_mult_le_left",
"Lib.IntTypes.uint128",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U128",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1"
] | [] | false | false | false | false | false | let mul_wide64 #m1 #m2 x y =
| let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51);
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51);
paren_mul_right (m1 * max51) m2 max51;
paren_mul_right m1 max51 m2;
swap_mul max51 m2;
paren_mul_right m1 m2 max51;
paren_mul_right (m1 * m2) max51 max51;
assert (v x * v y <= ((m1 * max51) * m2) * max51);
assert (v x * v y <= ((m1 * m2) * max51) * max51);
mul64_wide x y | false |
GMST.fst | GMST.transport_gmst_rel | val transport_gmst_rel
(#a: Type)
(#rel1: relation state)
(#rel2: relation state {rel1 == rel2})
(#wp: mst_wp state a rel1)
(f: (unit -> GMST a (rel1 >< wp)))
: GMST a (rel2 >< wp) | val transport_gmst_rel
(#a: Type)
(#rel1: relation state)
(#rel2: relation state {rel1 == rel2})
(#wp: mst_wp state a rel1)
(f: (unit -> GMST a (rel1 >< wp)))
: GMST a (rel2 >< wp) | let transport_gmst_rel (#a:Type) (#rel1:relation state) (#rel2:relation state{rel1 == rel2})
(#wp:mst_wp state a rel1)
(f:unit -> GMST a (rel1 >< wp)) : GMST a (rel2 >< wp)
= f () | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 8,
"end_line": 178,
"start_col": 0,
"start_line": 175
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state
let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0)
sub_effect DIV ~> GMST = lift_div_gmst
(* Syntactic sugar packaging a relation index and MST WP *)
let mst_wp (s:Type) (a:Type) (rel:relation s) = s0:s -> (a -> s1:s{rel s0 s1} -> Type0) -> Type0
unfold
let (><) (#a:Type) (rel:relation state) (wp:mst_wp state a rel) : gmst_wp state a
= fun s0 post -> wp s0 (post rel)
(* Actions with specs defined in terms of (><) *)
assume val gst_get: unit -> GMST state ((fun s0 s1 -> s0 == s1) >< (fun s0 post -> post s0 s0))
assume val gst_put: #rel:relation state -> s1:state -> GMST unit (rel >< (fun s0 post -> rel s0 s1 /\ post () s1))
assume val witnessed: predicate state -> Type0
let stable (#a:Type) (p:predicate a) (rel:preorder a)
= forall x y . p x /\ rel x y ==> p y
assume val gst_witness: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ p s0 /\ (witnessed p ==> post () s0)))
assume val gst_recall: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ witnessed p /\ (p s0 ==> post () s0)))
(* Sequential composition results in composition of relations *)
let app (#a:Type) (#b:Type)
(#rel1:relation state)
(#rel2:relation state)
(#wp1:mst_wp state a rel1)
(#wp2:a -> mst_wp state b rel2)
(f:unit -> GMST a (rel1 >< wp1))
(g:(x:a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p)))
= g (f ())
(*
In case the relations are the same, and moreover preorders, we ought to get the usual MST typing for app
However, currently we don't get this result because of the lack of proper prop (one that would also soundly
support propositional extensionality).
*)
(*
Temporarily assuming propositional extensionality for rel's.
As preorder is defined using Type0 not the (upcoming) prop,
then this can actually lead to an inconsistency, e.g., see
examples/paradoxes/PropositionalExtensionalityInconsistent.fst
*)
let lemma_preorder_comp_equiv (a:Type) (rel:preorder a)
: Lemma (forall x y . (rel @ rel) x y <==> rel x y)
= ()
let lemma_preorder_comp_equal (a:Type) (rel:preorder a)
: Lemma (rel @ rel == rel)
[SMTPat (rel @ rel)]
= admit ()
(* The inferred type of app *)
let preorder_app' (#a:Type) (#b:Type)
(#rel:preorder state)
(#wp1:mst_wp state a rel)
(#wp2:a -> mst_wp state b rel)
(f:unit -> GMST a (rel >< wp1))
(g:(x:a -> GMST b (rel >< wp2 x)))
: GMST b (rel @ rel >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p)))
= g (f ())
(* Deriving the usual typing of MST for preorders *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> GMST.GMST a) -> GMST.GMST a | GMST.GMST | [] | [] | [
"FStar.Preorder.relation",
"GMST.state",
"Prims.eq2",
"GMST.mst_wp",
"Prims.unit",
"GMST.op_Greater_Less"
] | [] | false | true | false | false | false | let transport_gmst_rel
(#a: Type)
(#rel1: relation state)
(#rel2: relation state {rel1 == rel2})
(#wp: mst_wp state a rel1)
(f: (unit -> GMST a (rel1 >< wp)))
: GMST a (rel2 >< wp) =
| f () | false |
GMST.fst | GMST.app | val app
(#a #b: Type)
(#rel1 #rel2: relation state)
(#wp1: mst_wp state a rel1)
(#wp2: (a -> mst_wp state b rel2))
(f: (unit -> GMST a (rel1 >< wp1)))
(g: (x: a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) | val app
(#a #b: Type)
(#rel1 #rel2: relation state)
(#wp1: mst_wp state a rel1)
(#wp2: (a -> mst_wp state b rel2))
(f: (unit -> GMST a (rel1 >< wp1)))
(g: (x: a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) | let app (#a:Type) (#b:Type)
(#rel1:relation state)
(#rel2:relation state)
(#wp1:mst_wp state a rel1)
(#wp2:a -> mst_wp state b rel2)
(f:unit -> GMST a (rel1 >< wp1))
(g:(x:a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p)))
= g (f ()) | {
"file_name": "examples/indexed_effects/GMST.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 12,
"end_line": 132,
"start_col": 0,
"start_line": 124
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module GMST
(*
A proof-of-concept example of a Graded Dijkstra Monad---the MST monad graded by the relation/preorder on states
In other words, this is a demonstration how using writer monad like structure in the underlying representation of
effects allows one to use the resulting WPs to encode indexed effects in F* (as long as the indexes form a magma)
*)
open FStar.Preorder
(* The graded MST effect *)
let gmst_post (s:Type) (a:Type) (s0:s) = rel:relation s -> a -> s1:s{rel s0 s1} -> GTot Type0
let gmst_wp (s:Type) (a:Type) = s0:s -> gmst_post s a s0 -> GTot Type0
let (@) (#a:Type) (rel1:relation a) (rel0:relation a) : relation a
= fun x z -> exists y . rel0 x y /\ rel1 y z
unfold
let gmst_return (s:Type) (a:Type) (x:a) (s0:s) (p:gmst_post s a s0)
= forall v. v == x ==> p (fun s0 s1 -> s0 == s1) v s0
unfold
let gmst_bind (s:Type) (a:Type) (b:Type)
(wp1:gmst_wp s a) (wp2: (a -> GTot (gmst_wp s b)))
(s0:s) (p:gmst_post s b s0)
= wp1 s0 (fun rel1 x s1 -> wp2 x s1 (fun rel2 -> p (rel2 @ rel1)))
unfold
let gmst_if_then_else (s:Type) (a:Type) (p:Type)
(wp_then:gmst_wp s a) (wp_else:gmst_wp s a) (s0:s) (post:gmst_post s a s0)
= l_ITE p (wp_then s0 post) (wp_else s0 post)
unfold
let gmst_ite (s:Type) (a:Type) (wp:gmst_wp s a) (s0:s) (post:gmst_post s a s0) =
wp s0 post
unfold
let gmst_stronger (s:Type) (a:Type) (wp1:gmst_wp s a) (wp2:gmst_wp s a) =
forall s0 p. wp1 s0 p ==> wp2 s0 p
unfold
let gmst_close (s:Type) (a:Type) (b:Type)
(wp:(b -> GTot (gmst_wp s a))) (s0:s) (p:gmst_post s a s0) =
forall x. wp x s0 p
unfold
let gmst_trivial (s:Type) (a:Type) (wp:gmst_wp s a) =
forall s0. wp s0 (fun _ _ _ -> True)
new_effect {
GMST_h (s:Type) : result:Type -> wp:gmst_wp s result -> Effect
with
//repr = s0:s -> M (rel:relation a & a * s1:s{rel s0 s1})
return_wp = gmst_return s
; bind_wp = gmst_bind s
; if_then_else = gmst_if_then_else s
; ite_wp = gmst_ite s
; stronger = gmst_stronger s
; close_wp = gmst_close s
; trivial = gmst_trivial s
}
(*
DA: For some reason, DM4F didn't accept the representation
s -> M ((s -> s -> Type0) * a * s)
thus the explicit effect definition for time being
*)
(* Instatiating the graded MST with int as a proof-of-concept *)
let state = int
new_effect GMST = GMST_h state
let lift_div_gmst (a:Type) (wp:pure_wp a) (s0:state) (p:gmst_post state a s0) = wp (fun x -> p (fun s0 s1 -> s0 == s1) x s0)
sub_effect DIV ~> GMST = lift_div_gmst
(* Syntactic sugar packaging a relation index and MST WP *)
let mst_wp (s:Type) (a:Type) (rel:relation s) = s0:s -> (a -> s1:s{rel s0 s1} -> Type0) -> Type0
unfold
let (><) (#a:Type) (rel:relation state) (wp:mst_wp state a rel) : gmst_wp state a
= fun s0 post -> wp s0 (post rel)
(* Actions with specs defined in terms of (><) *)
assume val gst_get: unit -> GMST state ((fun s0 s1 -> s0 == s1) >< (fun s0 post -> post s0 s0))
assume val gst_put: #rel:relation state -> s1:state -> GMST unit (rel >< (fun s0 post -> rel s0 s1 /\ post () s1))
assume val witnessed: predicate state -> Type0
let stable (#a:Type) (p:predicate a) (rel:preorder a)
= forall x y . p x /\ rel x y ==> p y
assume val gst_witness: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ p s0 /\ (witnessed p ==> post () s0)))
assume val gst_recall: #rel:preorder state -> p:predicate state -> GMST unit (rel >< (fun s0 post -> stable p rel /\ witnessed p /\ (p s0 ==> post () s0)))
(* Sequential composition results in composition of relations *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "GMST.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: Prims.unit -> GMST.GMST a) -> g: (x: a -> GMST.GMST b) -> GMST.GMST b | GMST.GMST | [] | [] | [
"FStar.Preorder.relation",
"GMST.state",
"GMST.mst_wp",
"Prims.unit",
"GMST.op_Greater_Less",
"GMST.op_At"
] | [] | false | true | false | false | false | let app
(#a #b: Type)
(#rel1 #rel2: relation state)
(#wp1: mst_wp state a rel1)
(#wp2: (a -> mst_wp state b rel2))
(f: (unit -> GMST a (rel1 >< wp1)))
(g: (x: a -> GMST b (rel2 >< wp2 x)))
: GMST b ((rel2 @ rel1) >< (fun s0 p -> wp1 s0 (fun x s1 -> wp2 x s1 p))) =
| g (f ()) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.carry51 | val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13) | val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13) | let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 220,
"start_col": 0,
"start_line": 217
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: Lib.IntTypes.uint64 -> cin: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64) | Prims.Pure | [] | [] | [
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.Definition.mask51",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let carry51 l cin =
| let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul) | false |
FStar.BigOps.fsti | FStar.BigOps.normal | val normal (#a: Type) (x: a) : a | val normal (#a: Type) (x: a) : a | let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 57,
"start_col": 0,
"start_line": 48
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__] | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> a | Prims.Tot | [
"total"
] | [] | [
"FStar.Pervasives.norm",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.iota",
"FStar.Pervasives.zeta",
"FStar.Pervasives.delta_only",
"Prims.string",
"Prims.Nil",
"FStar.Pervasives.delta_attr",
"FStar.Pervasives.primops",
"FStar.Pervasives.simplify"
] | [] | false | false | false | true | false | let normal (#a: Type) (x: a) : a =
| FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.ecdh | val ecdh: ecdh_st M51 True | val ecdh: ecdh_st M51 True | let ecdh = generic_ecdh_higher #M51 True scalarmult | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double
let fsquare_times = finv_fsquare_times_higher #M51 True C.fsqr
let finv = finv_finv_higher #M51 True C.fmul fsquare_times
let encode_point = generic_encode_point_higher #M51 True C.store_felem C.fmul finv
let scalarmult = generic_scalarmult_higher #M51 True encode_point montgomery_ladder decode_point | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Generic.ecdh_st Hacl.Impl.Curve25519.Fields.Core.M51 Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.generic_ecdh_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Curve25519_51.scalarmult"
] | [] | false | false | false | true | false | let ecdh =
| generic_ecdh_higher #M51 True scalarmult | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.mul_add_wide128 | val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} | val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)} | let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 29,
"end_line": 138,
"start_col": 0,
"start_line": 137
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864} | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 x m1} ->
y: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 y m2} ->
z:
Lib.IntTypes.uint128
{Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:
Lib.IntTypes.uint128
{ Lib.IntTypes.uint_v r ==
Lib.IntTypes.uint_v z + Lib.IntTypes.uint_v x * Lib.IntTypes.uint_v y /\
Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 r (m3 + m1 * m2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Hacl.Spec.Curve25519.Field51.Definition.scale128",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Lib.IntTypes.uint128",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.mul_wide64",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.uint_v",
"Lib.IntTypes.U64"
] | [] | false | false | false | false | false | let mul_add_wide128 #m1 #m2 #m3 x y z =
| z +! mul_wide64 #m1 #m2 x y | false |
FStar.BigOps.fsti | FStar.BigOps.map_op' | val map_op' (#a #b #c: _) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c | val map_op' (#a #b #c: _) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c | let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 59,
"end_line": 68,
"start_col": 0,
"start_line": 67
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__]
unfold
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x
(** A useful lemma to relate terms to their implicilty reducing variants *)
val normal_eq (#a: Type) (f: a) : Lemma (f == normal f)
(**** Map and fold *)
(** A utility that combines map and fold: [map_op' op f l z] maps each
element of [l] by [f] and then combines them using [op] *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | op: (_: b -> _: c -> Prims.GTot c) -> f: (_: a -> Prims.GTot b) -> l: Prims.list a -> z: c
-> Prims.GTot c | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.list",
"FStar.List.Tot.Base.fold_right_gtot"
] | [] | false | false | false | false | false | let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
| L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fsqr25 | val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\
feval out2 == fmul (feval f2) (feval f2)) | val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\
feval out2 == fmul (feval f2) (feval f2)) | let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in
let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in
let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in
let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24)) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 56,
"end_line": 434,
"start_col": 0,
"start_line": 429
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f))
let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4)
inline_for_extraction noextract
val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
let fsqr5 (f0, f1, f2, f3, f4) =
let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Prims.Pure
(Hacl.Spec.Curve25519.Field51.Definition.felem5 * Hacl.Spec.Curve25519.Field51.Definition.felem5
) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.carry_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.fsqr_felem5"
] | [] | false | false | false | false | false | let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
| let o10, o11, o12, o13, o14 = fsqr_felem5 (f10, f11, f12, f13, f14) in
let o20, o21, o22, o23, o24 = fsqr_felem5 (f20, f21, f22, f23, f24) in
let o10, o11, o12, o13, o14 = carry_wide5 (o10, o11, o12, o13, o14) in
let o20, o21, o22, o23, o24 = carry_wide5 (o20, o21, o22, o23, o24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24)) | false |
FStar.BigOps.fsti | FStar.BigOps.symmetric | val symmetric : f: (_: a -> _: a -> Type0) -> Prims.logical | let symmetric (#a: Type) (f: (a -> a -> Type)) = forall x y. f x y <==> f y x | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 77,
"end_line": 183,
"start_col": 0,
"start_line": 183
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__]
unfold
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x
(** A useful lemma to relate terms to their implicilty reducing variants *)
val normal_eq (#a: Type) (f: a) : Lemma (f == normal f)
(**** Map and fold *)
(** A utility that combines map and fold: [map_op' op f l z] maps each
element of [l] by [f] and then combines them using [op] *)
[@@ __reduce__]
let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z
(** Equations for [map_op'] showing how it folds over the empty list *)
val map_op'_nil (#a #b #c: Type) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (z: c)
: Lemma (map_op' op f [] z == z)
(** Equations for [map_op'] showing how it folds over a cons cell *)
val map_op'_cons
(#a #b #c: Type)
(op: (b -> c -> GTot c))
(f: (a -> GTot b))
(hd: a)
(tl: list a)
(z: c)
: Lemma (map_op' op f (hd :: tl) z == (f hd) `op` (map_op' op f tl z))
(**** Conjunction *)
(** [big_and' f l] = [/\_{x in l} f x] *)
[@@ __reduce__]
let big_and' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_and f l True
(** Equations for [big_and'] showing it to be trivial over the empty list *)
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
(** Equations for [big_and'] showing it to be a fold over a list with [/\] *)
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
(** [big_and' f l] is a [prop], i.e., it is proof irrelevant.
Note: defining `big_and'` to intrinsically be in `prop`
is also possible, but it's much more tedious in proofs.
This is in part because the [/\] is not defined in prop,
though one can prove that [a /\ b] is a prop.
The discrepancy means that I preferred to prove these
operators in [prop] extrinsically.
*)
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
(** Interpreting the finite conjunction [big_and f l]
as an infinite conjunction [forall] *)
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
(** [big_and f l] is an implicitly reducing variant of [big_and']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_and #a (f: (a -> Type)) (l: list a) : prop =
big_and'_prop f l;
normal (big_and' f l)
(**** Disjunction *)
(** [big_or f l] = [\/_{x in l} f x] *)
[@@ __reduce__]
let big_or' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_or f l False
(** Equations for [big_or] showing it to be [False] on the empty list *)
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
(** Equations for [big_or] showing it to fold over a list *)
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
(** [big_or f l] is a `prop`
See the remark above on the style of proof for prop *)
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
(** Interpreting the finite disjunction [big_or f l]
as an infinite disjunction [exists] *)
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
(** [big_or f l] is an implicitly reducing variant of [big_or']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_or #a (f: (a -> Type)) (l: list a) : prop =
big_or'_prop f l;
normal (big_or' f l)
(**** Pairwise operators *)
/// We provide functions to apply a reflexive, symmetric binary
/// operator to elements in a list [l] pairwise, in a triangle of
/// elements in the square matrix of [l X l]. To illustrate, for a
/// list of [n] elements, we fold the operator over the pairwise
/// elements of the list in top-down, left-to-right order of the
/// diagram below
///
///
/// {[
/// 0 1 2 3 ... n
/// 0
/// 1 x
/// 2 x x
/// 3 x x x
/// . x x x x
/// n x x x x ]}
(** Mapping pairs of elements of [l] using [f] and combining them with
[op]. *)
[@@ __reduce__]
let rec pairwise_op' #a #b (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b =
match l with
| [] -> z
| hd :: tl -> (map_op' op (f hd) tl z) `op` (pairwise_op' op f tl z) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> _: a -> Type0) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.l_iff",
"Prims.logical"
] | [] | false | false | false | true | true | let symmetric (#a: Type) (f: (a -> a -> Type)) =
| forall x y. f x y <==> f y x | false |
|
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.finv | val finv : Hacl.Meta.Curve25519.finv_finv_higher_t Prims.l_True | let finv = finv_finv_higher #M51 True C.fmul fsquare_times | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 20,
"start_col": 0,
"start_line": 20
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.finv_finv_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.finv_finv_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Impl.Curve25519.Field51.fmul",
"Hacl.Curve25519_51.fsquare_times"
] | [] | false | false | false | true | false | let finv =
| finv_finv_higher #M51 True C.fmul fsquare_times | false |
|
FStar.BigOps.fsti | FStar.BigOps.anti_reflexive | val anti_reflexive : f: (_: a -> _: a -> Type0) -> Prims.logical | let anti_reflexive (#a: Type) (f: (a -> a -> Type)) = forall x. ~(f x x) | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 72,
"end_line": 189,
"start_col": 0,
"start_line": 189
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__]
unfold
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x
(** A useful lemma to relate terms to their implicilty reducing variants *)
val normal_eq (#a: Type) (f: a) : Lemma (f == normal f)
(**** Map and fold *)
(** A utility that combines map and fold: [map_op' op f l z] maps each
element of [l] by [f] and then combines them using [op] *)
[@@ __reduce__]
let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z
(** Equations for [map_op'] showing how it folds over the empty list *)
val map_op'_nil (#a #b #c: Type) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (z: c)
: Lemma (map_op' op f [] z == z)
(** Equations for [map_op'] showing how it folds over a cons cell *)
val map_op'_cons
(#a #b #c: Type)
(op: (b -> c -> GTot c))
(f: (a -> GTot b))
(hd: a)
(tl: list a)
(z: c)
: Lemma (map_op' op f (hd :: tl) z == (f hd) `op` (map_op' op f tl z))
(**** Conjunction *)
(** [big_and' f l] = [/\_{x in l} f x] *)
[@@ __reduce__]
let big_and' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_and f l True
(** Equations for [big_and'] showing it to be trivial over the empty list *)
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
(** Equations for [big_and'] showing it to be a fold over a list with [/\] *)
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
(** [big_and' f l] is a [prop], i.e., it is proof irrelevant.
Note: defining `big_and'` to intrinsically be in `prop`
is also possible, but it's much more tedious in proofs.
This is in part because the [/\] is not defined in prop,
though one can prove that [a /\ b] is a prop.
The discrepancy means that I preferred to prove these
operators in [prop] extrinsically.
*)
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
(** Interpreting the finite conjunction [big_and f l]
as an infinite conjunction [forall] *)
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
(** [big_and f l] is an implicitly reducing variant of [big_and']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_and #a (f: (a -> Type)) (l: list a) : prop =
big_and'_prop f l;
normal (big_and' f l)
(**** Disjunction *)
(** [big_or f l] = [\/_{x in l} f x] *)
[@@ __reduce__]
let big_or' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_or f l False
(** Equations for [big_or] showing it to be [False] on the empty list *)
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
(** Equations for [big_or] showing it to fold over a list *)
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
(** [big_or f l] is a `prop`
See the remark above on the style of proof for prop *)
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
(** Interpreting the finite disjunction [big_or f l]
as an infinite disjunction [exists] *)
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
(** [big_or f l] is an implicitly reducing variant of [big_or']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_or #a (f: (a -> Type)) (l: list a) : prop =
big_or'_prop f l;
normal (big_or' f l)
(**** Pairwise operators *)
/// We provide functions to apply a reflexive, symmetric binary
/// operator to elements in a list [l] pairwise, in a triangle of
/// elements in the square matrix of [l X l]. To illustrate, for a
/// list of [n] elements, we fold the operator over the pairwise
/// elements of the list in top-down, left-to-right order of the
/// diagram below
///
///
/// {[
/// 0 1 2 3 ... n
/// 0
/// 1 x
/// 2 x x
/// 3 x x x
/// . x x x x
/// n x x x x ]}
(** Mapping pairs of elements of [l] using [f] and combining them with
[op]. *)
[@@ __reduce__]
let rec pairwise_op' #a #b (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b =
match l with
| [] -> z
| hd :: tl -> (map_op' op (f hd) tl z) `op` (pairwise_op' op f tl z)
(** [f] is a symmetric relation *)
let symmetric (#a: Type) (f: (a -> a -> Type)) = forall x y. f x y <==> f y x
(** [f] is a reflexive relation *)
let reflexive (#a: Type) (f: (a -> a -> Type)) = forall x. f x x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> _: a -> Type0) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.l_not",
"Prims.logical"
] | [] | false | false | false | true | true | let anti_reflexive (#a: Type) (f: (a -> a -> Type)) =
| forall x. ~(f x x) | false |
|
FStar.BigOps.fsti | FStar.BigOps.reflexive | val reflexive : f: (_: a -> _: a -> Type0) -> Prims.logical | let reflexive (#a: Type) (f: (a -> a -> Type)) = forall x. f x x | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 64,
"end_line": 186,
"start_col": 0,
"start_line": 186
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__]
unfold
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x
(** A useful lemma to relate terms to their implicilty reducing variants *)
val normal_eq (#a: Type) (f: a) : Lemma (f == normal f)
(**** Map and fold *)
(** A utility that combines map and fold: [map_op' op f l z] maps each
element of [l] by [f] and then combines them using [op] *)
[@@ __reduce__]
let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z
(** Equations for [map_op'] showing how it folds over the empty list *)
val map_op'_nil (#a #b #c: Type) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (z: c)
: Lemma (map_op' op f [] z == z)
(** Equations for [map_op'] showing how it folds over a cons cell *)
val map_op'_cons
(#a #b #c: Type)
(op: (b -> c -> GTot c))
(f: (a -> GTot b))
(hd: a)
(tl: list a)
(z: c)
: Lemma (map_op' op f (hd :: tl) z == (f hd) `op` (map_op' op f tl z))
(**** Conjunction *)
(** [big_and' f l] = [/\_{x in l} f x] *)
[@@ __reduce__]
let big_and' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_and f l True
(** Equations for [big_and'] showing it to be trivial over the empty list *)
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
(** Equations for [big_and'] showing it to be a fold over a list with [/\] *)
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
(** [big_and' f l] is a [prop], i.e., it is proof irrelevant.
Note: defining `big_and'` to intrinsically be in `prop`
is also possible, but it's much more tedious in proofs.
This is in part because the [/\] is not defined in prop,
though one can prove that [a /\ b] is a prop.
The discrepancy means that I preferred to prove these
operators in [prop] extrinsically.
*)
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
(** Interpreting the finite conjunction [big_and f l]
as an infinite conjunction [forall] *)
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
(** [big_and f l] is an implicitly reducing variant of [big_and']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_and #a (f: (a -> Type)) (l: list a) : prop =
big_and'_prop f l;
normal (big_and' f l)
(**** Disjunction *)
(** [big_or f l] = [\/_{x in l} f x] *)
[@@ __reduce__]
let big_or' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_or f l False
(** Equations for [big_or] showing it to be [False] on the empty list *)
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
(** Equations for [big_or] showing it to fold over a list *)
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
(** [big_or f l] is a `prop`
See the remark above on the style of proof for prop *)
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
(** Interpreting the finite disjunction [big_or f l]
as an infinite disjunction [exists] *)
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
(** [big_or f l] is an implicitly reducing variant of [big_or']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_or #a (f: (a -> Type)) (l: list a) : prop =
big_or'_prop f l;
normal (big_or' f l)
(**** Pairwise operators *)
/// We provide functions to apply a reflexive, symmetric binary
/// operator to elements in a list [l] pairwise, in a triangle of
/// elements in the square matrix of [l X l]. To illustrate, for a
/// list of [n] elements, we fold the operator over the pairwise
/// elements of the list in top-down, left-to-right order of the
/// diagram below
///
///
/// {[
/// 0 1 2 3 ... n
/// 0
/// 1 x
/// 2 x x
/// 3 x x x
/// . x x x x
/// n x x x x ]}
(** Mapping pairs of elements of [l] using [f] and combining them with
[op]. *)
[@@ __reduce__]
let rec pairwise_op' #a #b (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b =
match l with
| [] -> z
| hd :: tl -> (map_op' op (f hd) tl z) `op` (pairwise_op' op f tl z)
(** [f] is a symmetric relation *)
let symmetric (#a: Type) (f: (a -> a -> Type)) = forall x y. f x y <==> f y x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: (_: a -> _: a -> Type0) -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Prims.l_Forall",
"Prims.logical"
] | [] | false | false | false | true | true | let reflexive (#a: Type) (f: (a -> a -> Type)) =
| forall x. f x x | false |
|
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fmul15 | val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) | val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime) | let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 342,
"start_col": 0,
"start_line": 328
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out -> | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} ->
f2: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 f2 1}
-> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem5 | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Lib.IntTypes.uint128",
"Prims.unit",
"Prims._assert",
"Prims.eq2",
"Prims.int",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Spec.Curve25519.prime",
"FStar.Math.Lemmas.swap_mul",
"Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval_wide",
"FStar.Math.Lemmas.lemma_mod_mul_distr_l",
"Lib.IntTypes.uint_v",
"Hacl.Spec.Curve25519.Field51.carry_wide5",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat",
"Prims.op_Multiply",
"Hacl.Spec.Curve25519.Field51.smul_felem5"
] | [] | false | false | false | false | false | let fmul15 (f10, f11, f12, f13, f14) f2 =
| let tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4 =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14)
in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@@ inline_let ]let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.mul_inv_t | val mul_inv_t : f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> Prims.logical | let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 36,
"end_line": 241,
"start_col": 0,
"start_line": 237
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.Curve25519.Field51.Definition.felem5 -> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Lib.IntTypes.uint64",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.op_Modulus",
"Prims.bool",
"Prims.logical"
] | [] | false | false | false | true | true | let mul_inv_t (f: felem5) =
| let o0, o1, o2, o3, o4 = f in
if v o1 >= pow2 51
then felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1) | false |
|
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.precomp_r19 | val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} | val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)} | let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 32,
"end_line": 186,
"start_col": 0,
"start_line": 175
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)} | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r19 (171, 190, 171, 171, 171)} | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.u64"
] | [] | false | false | false | false | false | let precomp_r19 (f20, f21, f22, f23, f24) =
| [@@ inline_let ]let r190 = f20 *! u64 19 in
[@@ inline_let ]let r191 = f21 *! u64 19 in
[@@ inline_let ]let r192 = f22 *! u64 19 in
[@@ inline_let ]let r193 = f23 *! u64 19 in
[@@ inline_let ]let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fmul25 | val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4)) | val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4)) | let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24)) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 318,
"start_col": 0,
"start_line": 309
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 (9, 10, 9, 9, 9)} ->
f3:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f3 (9, 10, 9, 9, 9)} ->
f4:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Prims.Pure
(Hacl.Spec.Curve25519.Field51.Definition.felem5 * Hacl.Spec.Curve25519.Field51.Definition.felem5
) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"FStar.Pervasives.Native.Mktuple4",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.carry_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval_wide",
"Spec.Curve25519.fmul",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.mul_felem5",
"Hacl.Spec.Curve25519.Field51.precomp_r19"
] | [] | false | false | false | false | false | let fmul25
(f10, f11, f12, f13, f14)
(f20, f21, f22, f23, f24)
(f30, f31, f32, f33, f34)
(f40, f41, f42, f43, f44)
=
| let tmp10, tmp11, tmp12, tmp13, tmp14 = precomp_r19 (f20, f21, f22, f23, f24) in
let tmp20, tmp21, tmp22, tmp23, tmp24 = precomp_r19 (f40, f41, f42, f43, f44) in
let tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14 =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14)
in
let tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24 =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24)
in
let o10, o11, o12, o13, o14 = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let o20, o21, o22, o23, o24 = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24)) | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.gf128_mul_rev | val gf128_mul_rev (a b: poly) : poly | val gf128_mul_rev (a b: poly) : poly | let gf128_mul_rev (a b:poly) : poly =
reverse (gf128_mul (reverse a 127) (reverse b 127)) 127 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 57,
"end_line": 164,
"start_col": 0,
"start_line": 163
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2)
let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb')
val lemma_shift_left_1 (a:poly) : Lemma
(requires degree a < 128)
(ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
val lemma_shift_2_left_1 (lo hi:poly) : Lemma
(requires degree hi < 127 /\ degree lo < 128)
(ensures (
let n = monomial 128 in
let a = hi *. n +. lo in
let a' = shift a 1 in
let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in
lo' == to_quad32 (a' %. n) /\
hi' == to_quad32 (a' /. n)
))
// TODO: move this to Poly library
val lemma_reverse_reverse (a:poly) (n:nat) : Lemma
(requires degree a <= n)
(ensures reverse (reverse a n) n == a)
[SMTPat (reverse (reverse a n) n)]
val lemma_gf128_degree (_:unit) : Lemma
(ensures
degree gf128_modulus_low_terms == 7 /\
degree (monomial 128) == 128 /\
degree gf128_modulus == 128
)
val lemma_gf128_constant_rev (q:quad32) : Lemma
(ensures
to_quad32 (reverse gf128_modulus_low_terms 127) == Mkfour 0 0 0 0xe1000000 /\
quad32_xor q q == Mkfour 0 0 0 0
)
val lemma_quad32_double_hi_rev (a:poly) : Lemma
(requires degree a <= 127 /\ degree (reverse a 127) <= 63)
(ensures of_double32 (quad32_double_hi (to_quad32 a)) == reverse (reverse a 127) 63)
// Compute 128-bit multiply in terms of 64-bit multiplies
val lemma_gf128_mul (a b c d:poly) (n:nat) : Lemma
(ensures (
let m = monomial n in
let ab = a *. m +. b in
let cd = c *. m +. d in
let ac = a *. c in
let ad = a *. d in
let bc = b *. c in
let bd = b *. d in
ab *. cd ==
shift (ac +. bc /. m +. ad /. m) (n + n) +.
((bc %. m) *. m +. (ad %. m) *. m +. bd)
))
// Compute (a * b) % g, where g = n + h and %. n is easy to compute (e.g. n = x^128)
val lemma_gf128_reduce (a b g n h:poly) : Lemma
(requires
degree h >= 0 /\
degree n > 2 * degree h /\
degree g == degree n /\
degree a <= degree n /\
degree b <= degree n /\
g == n +. h
)
(ensures (
let d = (a *. b) /. n in
let dh = d *. h in
degree ((dh /. n) *. h) <= 2 * degree h /\
(a *. b) %. g == (dh /. n) *. h +. dh %. n +. (a *. b) %. n
))
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma
(requires
degree h >= 0 /\
n > 2 * degree h /\
degree (monomial n +. h) == n /\
degree a < n /\
degree b < n
)
(ensures (
let m = monomial n in
let g = m +. h in
let r x = reverse x (n - 1) in
let rr x = reverse x (2 * n - 1) in
let rab = rr (a *. b) in
let rd = rab %. m in
let rdh = rr (r rd *. h) in
let rdhL = rdh %. m in
let rdhLh = r (r rdhL *. h) in
degree (r rdhL) <= 2 * degree h /\
degree (r rdhLh) <= 2 * degree h /\
r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m
))
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma
(requires
n == 64 /\ // verification times out unless n is known
degree a0 < n + n /\
degree a1 < n + n /\
degree a2 < n + n /\
degree (monomial (n + n) +. h) == n + n /\
degree h < n /\
h.[0]
)
(ensures (
let nn = n + n in
let mm = monomial nn in
let m = monomial n in
let g = mm +. h in
let c = reverse (shift h (-1)) (n - 1) in
let y_10 = a0 +. shift (mask a1 64) 64 in
let y_0 = mask y_10 64 in
let y_10c = swap y_10 64 +. y_0 *. c in
let a = a0 +. shift a1 64 +. shift a2 128 in
let x = reverse a (nn + nn - 1) in
reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c
))
// of_fun 8 (fun (i:nat) -> i = 0 || i = 1 || i = 6)
let gf128_low_shift : poly = shift gf128_modulus_low_terms (-1)
// of_fun 8 (fun (i:nat) -> i = 127 || i = 126 || i = 121)
let gf128_rev_shift : poly = reverse gf128_low_shift 127
val lemma_gf128_low_shift (_:unit) : Lemma
(shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63)
val lemma_gf128_high_bit (_:unit) : Lemma
(of_quad32 (Mkfour 0 0 0 0x80000000) == monomial 127)
val lemma_gf128_low_shift_1 (_:unit) : Lemma
(of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2_s.reverse",
"Vale.AES.GF128_s.gf128_mul"
] | [] | false | false | false | true | false | let gf128_mul_rev (a b: poly) : poly =
| reverse (gf128_mul (reverse a 127) (reverse b 127)) 127 | false |
FStar.BigOps.fsti | FStar.BigOps.pairwise_op' | val pairwise_op' (#a #b: _) (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b | val pairwise_op' (#a #b: _) (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b | let rec pairwise_op' #a #b (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b =
match l with
| [] -> z
| hd :: tl -> (map_op' op (f hd) tl z) `op` (pairwise_op' op f tl z) | {
"file_name": "ulib/FStar.BigOps.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 70,
"end_line": 180,
"start_col": 0,
"start_line": 177
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.BigOps
/// This library provides propositional connectives over finite sets
/// expressed as lists, aka "big operators", in analogy with LaTeX
/// usage for \bigand, \bigor, etc.
///
/// The library is designed with a dual usage in mind:
///
/// 1. Normalization: When applied to a list literal, we want
/// {[big_and f [a;b;c]]} to implicilty reduce to [f a /\ f b /\ f c]
///
/// 2. Symbolic manipulation: We provide lemmas of the form
///
/// [big_and f l <==> forall x. L.memP x l ==> f x]
///
/// In this latter form, partially computing [big_and] as a fold over
/// a list is cumbersome for proof. So, we provide variants [big_and']
/// etc., that do not reduce implicitly.
module L = FStar.List.Tot
(** We control reduction using the [delta_attr] feature of the
normalizer. See FStar.Pervasives for how that works. Every term
that is to be reduced is with the [__reduce__] attribute *)
let __reduce__ = ()
(** We wrap [norm] with a module-specific custom usage, triggering
specific reduction steps *)
[@@ __reduce__]
unfold
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [
iota;
zeta;
delta_only [`%L.fold_right_gtot; `%L.map_gtot];
delta_attr [`%__reduce__];
primops;
simplify
]
x
(** A useful lemma to relate terms to their implicilty reducing variants *)
val normal_eq (#a: Type) (f: a) : Lemma (f == normal f)
(**** Map and fold *)
(** A utility that combines map and fold: [map_op' op f l z] maps each
element of [l] by [f] and then combines them using [op] *)
[@@ __reduce__]
let map_op' #a #b #c (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (l: list a) (z: c) : GTot c =
L.fold_right_gtot #a #c l (fun x acc -> (f x) `op` acc) z
(** Equations for [map_op'] showing how it folds over the empty list *)
val map_op'_nil (#a #b #c: Type) (op: (b -> c -> GTot c)) (f: (a -> GTot b)) (z: c)
: Lemma (map_op' op f [] z == z)
(** Equations for [map_op'] showing how it folds over a cons cell *)
val map_op'_cons
(#a #b #c: Type)
(op: (b -> c -> GTot c))
(f: (a -> GTot b))
(hd: a)
(tl: list a)
(z: c)
: Lemma (map_op' op f (hd :: tl) z == (f hd) `op` (map_op' op f tl z))
(**** Conjunction *)
(** [big_and' f l] = [/\_{x in l} f x] *)
[@@ __reduce__]
let big_and' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_and f l True
(** Equations for [big_and'] showing it to be trivial over the empty list *)
val big_and'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_and' f [] == True)
(** Equations for [big_and'] showing it to be a fold over a list with [/\] *)
val big_and'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_and' f (hd :: tl) == (f hd /\ big_and' f tl))
(** [big_and' f l] is a [prop], i.e., it is proof irrelevant.
Note: defining `big_and'` to intrinsically be in `prop`
is also possible, but it's much more tedious in proofs.
This is in part because the [/\] is not defined in prop,
though one can prove that [a /\ b] is a prop.
The discrepancy means that I preferred to prove these
operators in [prop] extrinsically.
*)
val big_and'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_and' f l) `subtype_of` unit)
(** Interpreting the finite conjunction [big_and f l]
as an infinite conjunction [forall] *)
val big_and'_forall (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_and' f l <==> (forall x. L.memP x l ==> f x))
(** [big_and f l] is an implicitly reducing variant of [big_and']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_and #a (f: (a -> Type)) (l: list a) : prop =
big_and'_prop f l;
normal (big_and' f l)
(**** Disjunction *)
(** [big_or f l] = [\/_{x in l} f x] *)
[@@ __reduce__]
let big_or' #a (f: (a -> Type)) (l: list a) : Type = map_op' l_or f l False
(** Equations for [big_or] showing it to be [False] on the empty list *)
val big_or'_nil (#a: Type) (f: (a -> Type)) : Lemma (big_or' f [] == False)
(** Equations for [big_or] showing it to fold over a list *)
val big_or'_cons (#a: Type) (f: (a -> Type)) (hd: a) (tl: list a)
: Lemma (big_or' f (hd :: tl) == (f hd \/ big_or' f tl))
(** [big_or f l] is a `prop`
See the remark above on the style of proof for prop *)
val big_or'_prop (#a: Type) (f: (a -> Type)) (l: list a) : Lemma ((big_or' f l) `subtype_of` unit)
(** Interpreting the finite disjunction [big_or f l]
as an infinite disjunction [exists] *)
val big_or'_exists (#a: Type) (f: (a -> Type)) (l: list a)
: Lemma (big_or' f l <==> (exists x. L.memP x l /\ f x))
(** [big_or f l] is an implicitly reducing variant of [big_or']
It is defined in [prop] *)
[@@ __reduce__]
unfold
let big_or #a (f: (a -> Type)) (l: list a) : prop =
big_or'_prop f l;
normal (big_or' f l)
(**** Pairwise operators *)
/// We provide functions to apply a reflexive, symmetric binary
/// operator to elements in a list [l] pairwise, in a triangle of
/// elements in the square matrix of [l X l]. To illustrate, for a
/// list of [n] elements, we fold the operator over the pairwise
/// elements of the list in top-down, left-to-right order of the
/// diagram below
///
///
/// {[
/// 0 1 2 3 ... n
/// 0
/// 1 x
/// 2 x x
/// 3 x x x
/// . x x x x
/// n x x x x ]}
(** Mapping pairs of elements of [l] using [f] and combining them with
[op]. *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "FStar.BigOps.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | op: (_: b -> _: b -> Prims.GTot b) -> f: (_: a -> _: a -> b) -> l: Prims.list a -> z: b
-> Prims.GTot b | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.list",
"FStar.BigOps.map_op'",
"FStar.BigOps.pairwise_op'"
] | [
"recursion"
] | false | false | false | false | false | let rec pairwise_op' #a #b (op: (b -> b -> GTot b)) (f: (a -> a -> b)) (l: list a) (z: b) : GTot b =
| match l with
| [] -> z
| hd :: tl -> (map_op' op (f hd) tl z) `op` (pairwise_op' op f tl z) | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.quad32_shift_2_left_1 | val quad32_shift_2_left_1 (qa qb: quad32) : quad32 & quad32 | val quad32_shift_2_left_1 (qa qb: quad32) : quad32 & quad32 | let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb') | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 12,
"end_line": 29,
"start_col": 0,
"start_line": 20
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | qa: Vale.Def.Types_s.quad32 -> qb: Vale.Def.Types_s.quad32
-> Vale.Def.Types_s.quad32 * Vale.Def.Types_s.quad32 | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"FStar.Pervasives.Native.Mktuple2",
"Vale.Def.Types_s.quad32_xor",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"FStar.Pervasives.Native.tuple2",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Four_s.four_map",
"Vale.Def.Types_s.ishr",
"Vale.Def.Types_s.ishl"
] | [] | false | false | false | true | false | let quad32_shift_2_left_1 (qa qb: quad32) : quad32 & quad32 =
| let la = four_map (fun (i: nat32) -> ishl i 1) qa in
let lb = four_map (fun (i: nat32) -> ishl i 1) qb in
let ra = four_map (fun (i: nat32) -> ishr i 31) qa in
let rb = four_map (fun (i: nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb') | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.quad32_shift_left_1 | val quad32_shift_left_1 (q: quad32) : quad32 | val quad32_shift_left_1 (q: quad32) : quad32 | let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 18,
"start_col": 0,
"start_line": 14
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | q: Vale.Def.Types_s.quad32 -> Vale.Def.Types_s.quad32 | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.Types_s.quad32",
"Vale.Def.Words_s.natN",
"Vale.Def.Words_s.pow2_32",
"Vale.Def.Types_s.quad32_xor",
"Vale.Def.Words_s.Mkfour",
"Vale.Def.Types_s.nat32",
"Vale.Def.Words_s.four",
"Vale.Def.Words.Four_s.four_map",
"Vale.Def.Types_s.ishr",
"Vale.Def.Types_s.ishl"
] | [] | false | false | false | true | false | let quad32_shift_left_1 (q: quad32) : quad32 =
| let l = four_map (fun (i: nat32) -> ishl i 1) q in
let r = four_map (fun (i: nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2) | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.gf128_low_shift | val gf128_low_shift:poly | val gf128_low_shift:poly | let gf128_low_shift : poly = shift gf128_modulus_low_terms (-1) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 149,
"start_col": 0,
"start_line": 149
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2)
let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb')
val lemma_shift_left_1 (a:poly) : Lemma
(requires degree a < 128)
(ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
val lemma_shift_2_left_1 (lo hi:poly) : Lemma
(requires degree hi < 127 /\ degree lo < 128)
(ensures (
let n = monomial 128 in
let a = hi *. n +. lo in
let a' = shift a 1 in
let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in
lo' == to_quad32 (a' %. n) /\
hi' == to_quad32 (a' /. n)
))
// TODO: move this to Poly library
val lemma_reverse_reverse (a:poly) (n:nat) : Lemma
(requires degree a <= n)
(ensures reverse (reverse a n) n == a)
[SMTPat (reverse (reverse a n) n)]
val lemma_gf128_degree (_:unit) : Lemma
(ensures
degree gf128_modulus_low_terms == 7 /\
degree (monomial 128) == 128 /\
degree gf128_modulus == 128
)
val lemma_gf128_constant_rev (q:quad32) : Lemma
(ensures
to_quad32 (reverse gf128_modulus_low_terms 127) == Mkfour 0 0 0 0xe1000000 /\
quad32_xor q q == Mkfour 0 0 0 0
)
val lemma_quad32_double_hi_rev (a:poly) : Lemma
(requires degree a <= 127 /\ degree (reverse a 127) <= 63)
(ensures of_double32 (quad32_double_hi (to_quad32 a)) == reverse (reverse a 127) 63)
// Compute 128-bit multiply in terms of 64-bit multiplies
val lemma_gf128_mul (a b c d:poly) (n:nat) : Lemma
(ensures (
let m = monomial n in
let ab = a *. m +. b in
let cd = c *. m +. d in
let ac = a *. c in
let ad = a *. d in
let bc = b *. c in
let bd = b *. d in
ab *. cd ==
shift (ac +. bc /. m +. ad /. m) (n + n) +.
((bc %. m) *. m +. (ad %. m) *. m +. bd)
))
// Compute (a * b) % g, where g = n + h and %. n is easy to compute (e.g. n = x^128)
val lemma_gf128_reduce (a b g n h:poly) : Lemma
(requires
degree h >= 0 /\
degree n > 2 * degree h /\
degree g == degree n /\
degree a <= degree n /\
degree b <= degree n /\
g == n +. h
)
(ensures (
let d = (a *. b) /. n in
let dh = d *. h in
degree ((dh /. n) *. h) <= 2 * degree h /\
(a *. b) %. g == (dh /. n) *. h +. dh %. n +. (a *. b) %. n
))
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma
(requires
degree h >= 0 /\
n > 2 * degree h /\
degree (monomial n +. h) == n /\
degree a < n /\
degree b < n
)
(ensures (
let m = monomial n in
let g = m +. h in
let r x = reverse x (n - 1) in
let rr x = reverse x (2 * n - 1) in
let rab = rr (a *. b) in
let rd = rab %. m in
let rdh = rr (r rd *. h) in
let rdhL = rdh %. m in
let rdhLh = r (r rdhL *. h) in
degree (r rdhL) <= 2 * degree h /\
degree (r rdhLh) <= 2 * degree h /\
r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m
))
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma
(requires
n == 64 /\ // verification times out unless n is known
degree a0 < n + n /\
degree a1 < n + n /\
degree a2 < n + n /\
degree (monomial (n + n) +. h) == n + n /\
degree h < n /\
h.[0]
)
(ensures (
let nn = n + n in
let mm = monomial nn in
let m = monomial n in
let g = mm +. h in
let c = reverse (shift h (-1)) (n - 1) in
let y_10 = a0 +. shift (mask a1 64) 64 in
let y_0 = mask y_10 64 in
let y_10c = swap y_10 64 +. y_0 *. c in
let a = a0 +. shift a1 64 +. shift a2 128 in
let x = reverse a (nn + nn - 1) in
reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c
)) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.shift",
"Vale.AES.GF128_s.gf128_modulus_low_terms",
"Prims.op_Minus"
] | [] | false | false | false | true | false | let gf128_low_shift:poly =
| shift gf128_modulus_low_terms (- 1) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.mul64_wide_add3 | val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) | val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) | let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 380,
"start_col": 0,
"start_line": 377
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 a0 m0} ->
a1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 a1 m1} ->
b0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 b0 m2} ->
b1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 b1 m3} ->
c0: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 c0 m4} ->
c1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 c1 m5}
-> Prims.Pure Lib.IntTypes.uint128 | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul64_wide",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.mul64_wide_add3_lemma",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Lib.IntTypes.uint128"
] | [] | false | false | false | false | false | let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
| assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1 | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.gf128_rev_shift | val gf128_rev_shift:poly | val gf128_rev_shift:poly | let gf128_rev_shift : poly = reverse gf128_low_shift 127 | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 56,
"end_line": 152,
"start_col": 0,
"start_line": 152
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2)
let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb')
val lemma_shift_left_1 (a:poly) : Lemma
(requires degree a < 128)
(ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
val lemma_shift_2_left_1 (lo hi:poly) : Lemma
(requires degree hi < 127 /\ degree lo < 128)
(ensures (
let n = monomial 128 in
let a = hi *. n +. lo in
let a' = shift a 1 in
let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in
lo' == to_quad32 (a' %. n) /\
hi' == to_quad32 (a' /. n)
))
// TODO: move this to Poly library
val lemma_reverse_reverse (a:poly) (n:nat) : Lemma
(requires degree a <= n)
(ensures reverse (reverse a n) n == a)
[SMTPat (reverse (reverse a n) n)]
val lemma_gf128_degree (_:unit) : Lemma
(ensures
degree gf128_modulus_low_terms == 7 /\
degree (monomial 128) == 128 /\
degree gf128_modulus == 128
)
val lemma_gf128_constant_rev (q:quad32) : Lemma
(ensures
to_quad32 (reverse gf128_modulus_low_terms 127) == Mkfour 0 0 0 0xe1000000 /\
quad32_xor q q == Mkfour 0 0 0 0
)
val lemma_quad32_double_hi_rev (a:poly) : Lemma
(requires degree a <= 127 /\ degree (reverse a 127) <= 63)
(ensures of_double32 (quad32_double_hi (to_quad32 a)) == reverse (reverse a 127) 63)
// Compute 128-bit multiply in terms of 64-bit multiplies
val lemma_gf128_mul (a b c d:poly) (n:nat) : Lemma
(ensures (
let m = monomial n in
let ab = a *. m +. b in
let cd = c *. m +. d in
let ac = a *. c in
let ad = a *. d in
let bc = b *. c in
let bd = b *. d in
ab *. cd ==
shift (ac +. bc /. m +. ad /. m) (n + n) +.
((bc %. m) *. m +. (ad %. m) *. m +. bd)
))
// Compute (a * b) % g, where g = n + h and %. n is easy to compute (e.g. n = x^128)
val lemma_gf128_reduce (a b g n h:poly) : Lemma
(requires
degree h >= 0 /\
degree n > 2 * degree h /\
degree g == degree n /\
degree a <= degree n /\
degree b <= degree n /\
g == n +. h
)
(ensures (
let d = (a *. b) /. n in
let dh = d *. h in
degree ((dh /. n) *. h) <= 2 * degree h /\
(a *. b) %. g == (dh /. n) *. h +. dh %. n +. (a *. b) %. n
))
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma
(requires
degree h >= 0 /\
n > 2 * degree h /\
degree (monomial n +. h) == n /\
degree a < n /\
degree b < n
)
(ensures (
let m = monomial n in
let g = m +. h in
let r x = reverse x (n - 1) in
let rr x = reverse x (2 * n - 1) in
let rab = rr (a *. b) in
let rd = rab %. m in
let rdh = rr (r rd *. h) in
let rdhL = rdh %. m in
let rdhLh = r (r rdhL *. h) in
degree (r rdhL) <= 2 * degree h /\
degree (r rdhLh) <= 2 * degree h /\
r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m
))
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma
(requires
n == 64 /\ // verification times out unless n is known
degree a0 < n + n /\
degree a1 < n + n /\
degree a2 < n + n /\
degree (monomial (n + n) +. h) == n + n /\
degree h < n /\
h.[0]
)
(ensures (
let nn = n + n in
let mm = monomial nn in
let m = monomial n in
let g = mm +. h in
let c = reverse (shift h (-1)) (n - 1) in
let y_10 = a0 +. shift (mask a1 64) 64 in
let y_0 = mask y_10 64 in
let y_10c = swap y_10 64 +. y_0 *. c in
let a = a0 +. shift a1 64 +. shift a2 128 in
let x = reverse a (nn + nn - 1) in
reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c
))
// of_fun 8 (fun (i:nat) -> i = 0 || i = 1 || i = 6)
let gf128_low_shift : poly = shift gf128_modulus_low_terms (-1) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.reverse",
"Vale.AES.GF128.gf128_low_shift"
] | [] | false | false | false | true | false | let gf128_rev_shift:poly =
| reverse gf128_low_shift 127 | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.mul_felem5 | val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)} | val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)} | let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 206,
"start_col": 0,
"start_line": 195
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f1:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f1 (9, 10, 9, 9, 9)} ->
r:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r (9, 10, 9, 9, 9)} ->
r19:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 r19 (171, 190, 171, 171, 171) /\
r19 == Hacl.Spec.Curve25519.Field51.precomp_r19 r }
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
Hacl.Spec.Curve25519.Field51.Definition.feval_wide out ==
Spec.Curve25519.fmul (Hacl.Spec.Curve25519.Field51.Definition.feval f1)
(Hacl.Spec.Curve25519.Field51.Definition.feval r) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Prims.l_and",
"Prims.eq2",
"Hacl.Spec.Curve25519.Field51.precomp_r19",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval_wide",
"Spec.Curve25519.fmul",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Prims.int",
"Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5",
"Prims.op_Addition",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.op_Multiply",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5",
"Hacl.Spec.Curve25519.Field51.Definition.op_Plus_Star",
"Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat",
"Hacl.Spec.Curve25519.Field51.smul_add_felem5",
"Hacl.Spec.Curve25519.Field51.smul_felem5"
] | [] | false | false | false | false | false | let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
| let o0, o1, o2, o3, o4 = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let o0, o1, o2, o3, o4 =
smul_add_felem5 #10
#(171, 9, 10, 9, 9)
#(81, 90, 81, 81, 81)
f11
(r194, r0, r1, r2, r3)
(o0, o1, o2, o3, o4)
in
let o0, o1, o2, o3, o4 =
smul_add_felem5 #9
#(171, 171, 9, 10, 9)
#(1791, 180, 181, 171, 171)
f12
(r193, r194, r0, r1, r2)
(o0, o1, o2, o3, o4)
in
let o0, o1, o2, o3, o4 =
smul_add_felem5 #9
#(171, 171, 171, 9, 10)
#(3330, 1719, 262, 261, 252)
f13
(r192, r193, r194, r0, r1)
(o0, o1, o2, o3, o4)
in
let o0, o1, o2, o3, o4 =
smul_add_felem5 #9
#(190, 171, 171, 171, 9)
#(4869, 3258, 1801, 342, 342)
f14
(r191, r192, r193, r194, r0)
(o0, o1, o2, o3, o4)
in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.subtract_p5 | val subtract_p5:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> Pure felem5
(requires True)
(ensures fun out ->
as_nat5 out == feval f /\
felem_fits5 out (1, 1, 1, 1, 1) /\
as_nat5 out < prime) | val subtract_p5:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> Pure felem5
(requires True)
(ensures fun out ->
as_nat5 out == feval f /\
felem_fits5 out (1, 1, 1, 1, 1) /\
as_nat5 out < prime) | let subtract_p5 (f0, f1, f2, f3, f4) =
let m0 = gte_mask f0 (u64 0x7ffffffffffed) in
let m1 = eq_mask f1 (u64 0x7ffffffffffff) in
let m2 = eq_mask f2 (u64 0x7ffffffffffff) in
let m3 = eq_mask f3 (u64 0x7ffffffffffff) in
let m4 = eq_mask f4 (u64 0x7ffffffffffff) in
let mask = m0 &. m1 &. m2 &. m3 &. m4 in
let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in
let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in
let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in
let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in
let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in
logand_lemma mask (u64 0x7ffffffffffed);
logand_lemma mask (u64 0x7ffffffffffff);
lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4');
(f0', f1', f2', f3', f4') | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 481,
"start_col": 0,
"start_line": 466
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f))
let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4)
inline_for_extraction noextract
val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
let fsqr5 (f0, f1, f2, f3, f4) =
let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\
feval out2 == fmul (feval f2) (feval f2))
let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in
let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in
let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in
let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
#set-options "--z3rlimit 100 --max_fuel 2"
inline_for_extraction noextract
val carry_felem5_full:
inp:felem5{mul_inv_t inp}
-> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)}
let carry_felem5_full (f0, f1, f2, f3, f4) =
assert_norm (pow51 = pow2 51);
let tmp0, c0 = carry51 f0 (u64 0) in
let tmp1, c1 = carry51 f1 c0 in
assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192);
let tmp2, c2 = carry51 f2 c1 in
let tmp3, c3 = carry51 f3 c2 in
let tmp4, c4 = carry51 f4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
[@inline_let]
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
(tmp0', tmp1', tmp2, tmp3, tmp4)
inline_for_extraction noextract
val subtract_p5:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> Pure felem5
(requires True)
(ensures fun out ->
as_nat5 out == feval f /\
felem_fits5 out (1, 1, 1, 1, 1) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)}
-> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem5 | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_subtract_p",
"Lib.IntTypes.logand_lemma",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.u64",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Subtraction_Dot",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.eq_mask",
"Lib.IntTypes.gte_mask"
] | [] | false | false | false | false | false | let subtract_p5 (f0, f1, f2, f3, f4) =
| let m0 = gte_mask f0 (u64 0x7ffffffffffed) in
let m1 = eq_mask f1 (u64 0x7ffffffffffff) in
let m2 = eq_mask f2 (u64 0x7ffffffffffff) in
let m3 = eq_mask f3 (u64 0x7ffffffffffff) in
let m4 = eq_mask f4 (u64 0x7ffffffffffff) in
let mask = m0 &. m1 &. m2 &. m3 &. m4 in
let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in
let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in
let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in
let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in
let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in
logand_lemma mask (u64 0x7ffffffffffed);
logand_lemma mask (u64 0x7ffffffffffff);
lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4');
(f0', f1', f2', f3', f4') | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.smul_add_felem5 | val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} | val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)} | let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 168,
"start_col": 0,
"start_line": 152
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
u1: Lib.IntTypes.uint64{Hacl.Spec.Curve25519.Field51.Definition.felem_fits1 u1 m1} ->
f2:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f2 m2} ->
acc1:
Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{ Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 acc1 m3 /\
m3 +* m1 *^ m2 <=* Hacl.Spec.Curve25519.Field51.Definition.s128x5 67108864 }
-> acc2:
Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{ Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5 acc2 ==
Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5 acc1 +
Lib.IntTypes.uint_v u1 * Hacl.Spec.Curve25519.Field51.Definition.as_nat5 f2 /\
Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 acc2 (m3 +* m1 *^ m2) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Hacl.Spec.Curve25519.Field51.Definition.scale64_5",
"Hacl.Spec.Curve25519.Field51.Definition.scale128_5",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits1",
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Prims.l_and",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"Hacl.Spec.Curve25519.Field51.Definition.op_Less_Equals_Star",
"Hacl.Spec.Curve25519.Field51.Definition.op_Plus_Star",
"Hacl.Spec.Curve25519.Field51.Definition.op_Star_Hat",
"Hacl.Spec.Curve25519.Field51.Definition.s128x5",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.tuple5",
"Lib.IntTypes.uint128",
"Prims.nat",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_smul_add_felem5",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Prims.eq2",
"Prims.int",
"Lib.IntTypes.v",
"Prims.op_Addition",
"Prims.op_Multiply",
"Lib.IntTypes.U64",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1",
"Hacl.Spec.Curve25519.Field51.mul_add_wide128",
"Hacl.Spec.Curve25519.Field51.Definition.wide_as_nat5",
"FStar.Mul.op_Star",
"Lib.IntTypes.uint_v",
"Hacl.Spec.Curve25519.Field51.Definition.as_nat5"
] | [] | false | false | false | false | false | let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
| let m20, m21, m22, m23, m24 = m2 in
let m30, m31, m32, m33, m34 = m3 in
[@@ inline_let ]let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@@ inline_let ]let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@@ inline_let ]let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@@ inline_let ]let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@@ inline_let ]let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@@ inline_let ]let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.carry_wide5 | val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp) | val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp) | let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 282,
"start_col": 0,
"start_line": 268
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out -> | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
inp:
Hacl.Spec.Curve25519.Field51.Definition.felem_wide5
{Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem5 | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint128",
"Lib.IntTypes.uint64",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.lemma_mul_inv",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.carry51",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.u64",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry5_simplify",
"Hacl.Spec.Curve25519.Field51.carry51_wide",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Hacl.Spec.Curve25519.Field51.Definition.max51"
] | [] | false | false | false | false | false | let carry_wide5 (i0, i1, i2, i3, i4) =
| assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@@ inline_let ]let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.lemma_mul_inv | val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1)) | val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1)) | let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 257,
"start_col": 0,
"start_line": 256
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (1, 1, 1, 1, 1)} ->
cin: Lib.IntTypes.uint64{Lib.IntTypes.v cin < Prims.pow2 51}
-> FStar.Pervasives.Lemma
(ensures
(let _ = f in
(let FStar.Pervasives.Native.Mktuple5 #_ #_ #_ #_ #_ i0 i1 i2 i3 i4 = _ in
FStar.Pervasives.assert_norm (Hacl.Spec.Curve25519.Field51.Definition.pow51 =
Prims.pow2 51);
let i1' = i1 +! cin in
let out = i0, i1', i2, i3, i4 in
(match (Lib.IntTypes.v i1 + Lib.IntTypes.v cin) / Prims.pow2 51 > 0 with
| true ->
Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (1, 2, 1, 1, 1) /\
(Lib.IntTypes.v i1 + Lib.IntTypes.v cin) % Prims.pow2 51 < Lib.IntTypes.v cin
| _ -> Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (1, 1, 1, 1, 1))
<:
Type0)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.pos",
"Hacl.Spec.Curve25519.Field51.Definition.pow51",
"Prims.unit"
] | [] | true | false | true | false | false | let lemma_mul_inv f cin =
| assert_norm (pow51 = pow2 51) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.carry51_wide | val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) | val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1)) | let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 47,
"end_line": 235,
"start_col": 0,
"start_line": 232
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
l: Lib.IntTypes.uint128{Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1 l m} ->
cin: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Lib.IntTypes.uint64) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.scale64",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.IntTypes.uint128",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide_fits1",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.op_Amp_Dot",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U128",
"Hacl.Spec.Curve25519.Field51.Definition.mask51",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry51_wide",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.to_u128",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | false | false | let carry51_wide #m l cin =
| let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul)) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.carry_felem5_full | val carry_felem5_full:
inp:felem5{mul_inv_t inp}
-> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)} | val carry_felem5_full:
inp:felem5{mul_inv_t inp}
-> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)} | let carry_felem5_full (f0, f1, f2, f3, f4) =
assert_norm (pow51 = pow2 51);
let tmp0, c0 = carry51 f0 (u64 0) in
let tmp1, c1 = carry51 f1 c0 in
assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192);
let tmp2, c2 = carry51 f2 c1 in
let tmp3, c3 = carry51 f3 c2 in
let tmp4, c4 = carry51 f4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
[@inline_let]
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
(tmp0', tmp1', tmp2, tmp3, tmp4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 455,
"start_col": 0,
"start_line": 442
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f))
let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4)
inline_for_extraction noextract
val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
let fsqr5 (f0, f1, f2, f3, f4) =
let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\
feval out2 == fmul (feval f2) (feval f2))
let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in
let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in
let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in
let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
#set-options "--z3rlimit 100 --max_fuel 2"
inline_for_extraction noextract
val carry_felem5_full:
inp:felem5{mul_inv_t inp} | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | inp: Hacl.Spec.Curve25519.Field51.Definition.felem5{Hacl.Spec.Curve25519.Field51.mul_inv_t inp}
-> out:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{ Hacl.Spec.Curve25519.Field51.Definition.feval out ==
Hacl.Spec.Curve25519.Field51.Definition.feval inp /\
Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 out (1, 1, 1, 1, 1) } | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.mul_inv_t",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Bang",
"Prims.l_and",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"Prims.nat",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Curve25519.Field51.carry51",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.u64",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_carry5_simplify",
"Prims._assert",
"Prims.op_LessThan",
"Lib.IntTypes.v",
"Prims.pow2",
"Prims.b2t",
"Prims.bool",
"FStar.Pervasives.assert_norm",
"Prims.op_Equality",
"Prims.pos",
"Hacl.Spec.Curve25519.Field51.Definition.pow51"
] | [] | false | false | false | false | false | let carry_felem5_full (f0, f1, f2, f3, f4) =
| assert_norm (pow51 = pow2 51);
let tmp0, c0 = carry51 f0 (u64 0) in
let tmp1, c1 = carry51 f1 c0 in
assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192);
let tmp2, c2 = carry51 f2 c1 in
let tmp3, c3 = carry51 f3 c2 in
let tmp4, c4 = carry51 f4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
[@@ inline_let ]let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@@ inline_let ]let tmp1' = tmp1 +! c5 in
(tmp0', tmp1', tmp2, tmp3, tmp4) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.fsqr_felem5 | val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f)) | val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f)) | let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 22,
"end_line": 407,
"start_col": 0,
"start_line": 391
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\ | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
f:
Hacl.Spec.Curve25519.Field51.Definition.felem5
{Hacl.Spec.Curve25519.Field51.Definition.felem_fits5 f (9, 10, 9, 9, 9)}
-> Prims.Pure Hacl.Spec.Curve25519.Field51.Definition.felem_wide5 | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"FStar.Pervasives.Native.Mktuple5",
"Prims.nat",
"Lib.IntTypes.uint64",
"Lib.IntTypes.uint128",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_fmul_fsqr5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Hacl.Spec.Curve25519.Field51.mul64_wide_add3",
"Lib.IntTypes.U64",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.u64",
"FStar.Pervasives.assert_norm",
"Prims.b2t",
"Prims.op_Equality",
"Prims.int",
"Prims.pow2",
"Hacl.Spec.Curve25519.Field51.Definition.felem_wide5"
] | [] | false | false | false | false | false | let fsqr_felem5 (f0, f1, f2, f3, f4) =
| assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4) | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.mod_rev | val mod_rev (n: pos) (a b: poly) : poly | val mod_rev (n: pos) (a b: poly) : poly | let mod_rev (n:pos) (a b:poly) : poly =
reverse (reverse a (n + n - 1) %. b) (n - 1) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 46,
"end_line": 181,
"start_col": 0,
"start_line": 180
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2)
let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb')
val lemma_shift_left_1 (a:poly) : Lemma
(requires degree a < 128)
(ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
val lemma_shift_2_left_1 (lo hi:poly) : Lemma
(requires degree hi < 127 /\ degree lo < 128)
(ensures (
let n = monomial 128 in
let a = hi *. n +. lo in
let a' = shift a 1 in
let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in
lo' == to_quad32 (a' %. n) /\
hi' == to_quad32 (a' /. n)
))
// TODO: move this to Poly library
val lemma_reverse_reverse (a:poly) (n:nat) : Lemma
(requires degree a <= n)
(ensures reverse (reverse a n) n == a)
[SMTPat (reverse (reverse a n) n)]
val lemma_gf128_degree (_:unit) : Lemma
(ensures
degree gf128_modulus_low_terms == 7 /\
degree (monomial 128) == 128 /\
degree gf128_modulus == 128
)
val lemma_gf128_constant_rev (q:quad32) : Lemma
(ensures
to_quad32 (reverse gf128_modulus_low_terms 127) == Mkfour 0 0 0 0xe1000000 /\
quad32_xor q q == Mkfour 0 0 0 0
)
val lemma_quad32_double_hi_rev (a:poly) : Lemma
(requires degree a <= 127 /\ degree (reverse a 127) <= 63)
(ensures of_double32 (quad32_double_hi (to_quad32 a)) == reverse (reverse a 127) 63)
// Compute 128-bit multiply in terms of 64-bit multiplies
val lemma_gf128_mul (a b c d:poly) (n:nat) : Lemma
(ensures (
let m = monomial n in
let ab = a *. m +. b in
let cd = c *. m +. d in
let ac = a *. c in
let ad = a *. d in
let bc = b *. c in
let bd = b *. d in
ab *. cd ==
shift (ac +. bc /. m +. ad /. m) (n + n) +.
((bc %. m) *. m +. (ad %. m) *. m +. bd)
))
// Compute (a * b) % g, where g = n + h and %. n is easy to compute (e.g. n = x^128)
val lemma_gf128_reduce (a b g n h:poly) : Lemma
(requires
degree h >= 0 /\
degree n > 2 * degree h /\
degree g == degree n /\
degree a <= degree n /\
degree b <= degree n /\
g == n +. h
)
(ensures (
let d = (a *. b) /. n in
let dh = d *. h in
degree ((dh /. n) *. h) <= 2 * degree h /\
(a *. b) %. g == (dh /. n) *. h +. dh %. n +. (a *. b) %. n
))
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma
(requires
degree h >= 0 /\
n > 2 * degree h /\
degree (monomial n +. h) == n /\
degree a < n /\
degree b < n
)
(ensures (
let m = monomial n in
let g = m +. h in
let r x = reverse x (n - 1) in
let rr x = reverse x (2 * n - 1) in
let rab = rr (a *. b) in
let rd = rab %. m in
let rdh = rr (r rd *. h) in
let rdhL = rdh %. m in
let rdhLh = r (r rdhL *. h) in
degree (r rdhL) <= 2 * degree h /\
degree (r rdhLh) <= 2 * degree h /\
r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m
))
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma
(requires
n == 64 /\ // verification times out unless n is known
degree a0 < n + n /\
degree a1 < n + n /\
degree a2 < n + n /\
degree (monomial (n + n) +. h) == n + n /\
degree h < n /\
h.[0]
)
(ensures (
let nn = n + n in
let mm = monomial nn in
let m = monomial n in
let g = mm +. h in
let c = reverse (shift h (-1)) (n - 1) in
let y_10 = a0 +. shift (mask a1 64) 64 in
let y_0 = mask y_10 64 in
let y_10c = swap y_10 64 +. y_0 *. c in
let a = a0 +. shift a1 64 +. shift a2 128 in
let x = reverse a (nn + nn - 1) in
reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c
))
// of_fun 8 (fun (i:nat) -> i = 0 || i = 1 || i = 6)
let gf128_low_shift : poly = shift gf128_modulus_low_terms (-1)
// of_fun 8 (fun (i:nat) -> i = 127 || i = 126 || i = 121)
let gf128_rev_shift : poly = reverse gf128_low_shift 127
val lemma_gf128_low_shift (_:unit) : Lemma
(shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63)
val lemma_gf128_high_bit (_:unit) : Lemma
(of_quad32 (Mkfour 0 0 0 0x80000000) == monomial 127)
val lemma_gf128_low_shift_1 (_:unit) : Lemma
(of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127)
let gf128_mul_rev (a b:poly) : poly =
reverse (gf128_mul (reverse a 127) (reverse b 127)) 127
let ( *~ ) = gf128_mul_rev
val lemma_gf128_mul_rev_commute (a b:poly) : Lemma (a *~ b == b *~ a)
val lemma_gf128_mul_rev_associate (a b c:poly) : Lemma
(a *~ (b *~ c) == (a *~ b) *~ c)
val lemma_gf128_mul_rev_distribute_left (a b c:poly) : Lemma
((a +. b) *~ c == a *~ c +. b *~ c)
val lemma_gf128_mul_rev_distribute_right (a b c:poly) : Lemma
(a *~ (b +. c) == a *~ b +. a *~ c) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> a: Vale.Math.Poly2_s.poly -> b: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2_s.reverse",
"Vale.Math.Poly2.op_Percent_Dot",
"Prims.op_Subtraction",
"Prims.op_Addition"
] | [] | false | false | false | true | false | let mod_rev (n: pos) (a b: poly) : poly =
| reverse (reverse a (n + n - 1) %. b) (n - 1) | false |
Hacl.Spec.Curve25519.Field51.fst | Hacl.Spec.Curve25519.Field51.store_felem5 | val store_felem5:
f:felem5{mul_inv_t f}
-> Pure (uint64 & uint64 & uint64 & uint64)
(requires True)
(ensures fun (o0, o1, o2, o3) ->
feval f == v o0 + v o1 * pow2 64 +
v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) | val store_felem5:
f:felem5{mul_inv_t f}
-> Pure (uint64 & uint64 & uint64 & uint64)
(requires True)
(ensures fun (o0, o1, o2, o3) ->
feval f == v o0 + v o1 * pow2 64 +
v o2 * pow2 64 * pow2 64 + v o3 * pow2 64 * pow2 64 * pow2 64) | let store_felem5 (f0, f1, f2, f3, f4) =
let (f0, f1, f2, f3, f4) = carry_felem5_full (f0, f1, f2, f3, f4) in
let (f0, f1, f2, f3, f4) = subtract_p5 (f0, f1, f2, f3, f4) in
let o0 = f0 |. (f1 <<. 51ul) in
let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in
let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in
let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in
lemma_store_felem (f0, f1, f2, f3, f4);
(o0, o1, o2, o3) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 500,
"start_col": 0,
"start_line": 491
} | module Hacl.Spec.Curve25519.Field51
open Lib.Sequence
open Lib.IntTypes
open FStar.Mul
open Spec.Curve25519
open Hacl.Spec.Curve25519.Field51.Definition
open Hacl.Spec.Curve25519.Field51.Lemmas
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --using_facts_from '* -FStar.Seq'"
inline_for_extraction noextract
val fadd5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (2, 4, 2, 2, 2) /\
feval out == fadd (feval f1) (feval f2)}
let fadd5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let o0 = f10 +! f20 in
let o1 = f11 +! f21 in
let o2 = f12 +! f22 in
let o3 = f13 +! f23 in
let o4 = f14 +! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (f10, f11, f12, f13, f14)) (as_nat5 (f20, f21, f22, f23, f24)) prime;
FStar.Math.Lemmas.lemma_mod_plus_distr_r
((as_nat5 (f10, f11, f12, f13, f14)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
inline_for_extraction noextract
val fadd_zero:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == feval f1}
let fadd_zero (f10, f11, f12, f13, f14) =
let o0 = f10 +! u64 0x3fffffffffff68 in
let o1 = f11 +! u64 0x3ffffffffffff8 in
let o2 = f12 +! u64 0x3ffffffffffff8 in
let o3 = f13 +! u64 0x3ffffffffffff8 in
let o4 = f14 +! u64 0x3ffffffffffff8 in
lemma_add_zero (f10, f11, f12, f13, f14);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsub5:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> out:felem5{felem_fits5 out (9, 10, 9, 9, 9) /\
feval out == fsub (feval f1) (feval f2)}
let fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
//assert_norm (0x3fffffffffff68 == pow2 54 - 152);
//assert_norm (0x3ffffffffffff8 == pow2 54 - 8);
let (t0, t1, t2, t3, t4) = fadd_zero (f10, f11, f12, f13, f14) in
let o0 = t0 -! f20 in
let o1 = t1 -! f21 in
let o2 = t2 -! f22 in
let o3 = t3 -! f23 in
let o4 = t4 -! f24 in
let out = (o0, o1, o2, o3, o4) in
FStar.Math.Lemmas.lemma_mod_plus_distr_l
(as_nat5 (t0, t1, t2, t3, t4)) (- as_nat5 (f20, f21, f22, f23, f24)) prime;
lemma_mod_sub_distr ((as_nat5 (t0, t1, t2, t3, t4)) % prime) (as_nat5 (f20, f21, f22, f23, f24)) prime;
out
val lemma_fsub:
f1:felem5{felem_fits5 f1 (1, 2, 1, 1, 1)}
-> f2:felem5{felem_fits5 f2 (1, 2, 1, 1, 1)}
-> Lemma (let (f10, f11, f12, f13, f14) = f1 in
let (f20, f21, f22, f23, f24) = f2 in
let o0 = f10 +! u64 0x3fffffffffff68 -! f20 in
let o1 = f11 +! u64 0x3ffffffffffff8 -! f21 in
let o2 = f12 +! u64 0x3ffffffffffff8 -! f22 in
let o3 = f13 +! u64 0x3ffffffffffff8 -! f23 in
let o4 = f14 +! u64 0x3ffffffffffff8 -! f24 in
let out = (o0, o1, o2, o3, o4) in
out == fsub5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24))
let lemma_fsub f1 f2 = ()
inline_for_extraction noextract
val mul_wide64:
#m1:scale64
-> #m2:scale64
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2 /\ m1 * m2 <= 67108864}
-> z:uint128{uint_v z == uint_v x * uint_v y /\ felem_wide_fits1 z (m1 * m2)}
#push-options "--z3rlimit 5"
let mul_wide64 #m1 #m2 x y =
let open FStar.Math.Lemmas in
lemma_mult_le_left (v x) (v y) (m2 * max51); //v x * v y <= v x * (m2 * max51)
lemma_mult_le_right (m2 * max51) (v x) (m1 * max51); // v x * (m2 * max51) <= (m1 * max51) * (m2 * max51)
paren_mul_right (m1 * max51) m2 max51; //(m1 * max51) * (m2 * max51) = ((m1 * max51) * m2) * max51
paren_mul_right m1 max51 m2; //(m1 * max51) * m2 = m1 * (max51 * m2)
swap_mul max51 m2; //max51 * m2 = m2 * max51
paren_mul_right m1 m2 max51; //m1 * (m2 * max51) = (m1 * m2) * max51
paren_mul_right (m1 * m2) max51 max51; //((m1 * m2) * max51) * max51 = (m1 * m2) * (max51 * max51)
assert (v x * v y <= m1 * max51 * m2 * max51);
assert (v x * v y <= m1 * m2 * max51 * max51);
mul64_wide x y
#pop-options
inline_for_extraction noextract
val smul_felem5:
#m1:scale64
-> #m2:scale64_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2 /\ m1 *^ m2 <=* s128x5 67108864}
-> out:felem_wide5{felem_wide_fits5 out (m1 *^ m2) /\
wide_as_nat5 out == uint_v u1 * as_nat5 f2}
let smul_felem5 #m1 #m2 u1 (f20, f21, f22, f23, f24) =
let (m20, m21, m22, m23, m24) = m2 in
[@inline_let]
let o0 = mul_wide64 #m1 #m20 u1 f20 in
[@inline_let]
let o1 = mul_wide64 #m1 #m21 u1 f21 in
[@inline_let]
let o2 = mul_wide64 #m1 #m22 u1 f22 in
[@inline_let]
let o3 = mul_wide64 #m1 #m23 u1 f23 in
[@inline_let]
let o4 = mul_wide64 #m1 #m24 u1 f24 in
[@inline_let]
let out = (o0, o1, o2, o3, o4) in
lemma_smul_felem5 u1 (f20, f21, f22, f23, f24);
out
inline_for_extraction noextract
val mul_add_wide128:
#m1:scale64
-> #m2:scale64
-> #m3:scale128
-> x:uint64{felem_fits1 x m1}
-> y:uint64{felem_fits1 y m2}
-> z:uint128{felem_wide_fits1 z m3 /\ m3 + m1 * m2 <= 67108864}
-> r:uint128{uint_v r == uint_v z + uint_v x * uint_v y /\ felem_wide_fits1 r (m3 + m1 * m2)}
let mul_add_wide128 #m1 #m2 #m3 x y z =
z +! mul_wide64 #m1 #m2 x y
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val smul_add_felem5:
#m1:scale64
-> #m2:scale64_5
-> #m3:scale128_5
-> u1:uint64{felem_fits1 u1 m1}
-> f2:felem5{felem_fits5 f2 m2}
-> acc1:felem_wide5{felem_wide_fits5 acc1 m3 /\ m3 +* m1 *^ m2 <=* s128x5 67108864}
-> acc2:felem_wide5{
wide_as_nat5 acc2 == wide_as_nat5 acc1 + uint_v u1 * as_nat5 f2 /\
felem_wide_fits5 acc2 (m3 +* m1 *^ m2)}
let smul_add_felem5 #m1 #m2 #m3 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4) =
let (m20, m21, m22, m23, m24) = m2 in
let (m30, m31, m32, m33, m34) = m3 in
[@inline_let]
let o0' = mul_add_wide128 #m1 #m20 #m30 u1 f20 o0 in
[@inline_let]
let o1' = mul_add_wide128 #m1 #m21 #m31 u1 f21 o1 in
[@inline_let]
let o2' = mul_add_wide128 #m1 #m22 #m32 u1 f22 o2 in
[@inline_let]
let o3' = mul_add_wide128 #m1 #m23 #m33 u1 f23 o3 in
[@inline_let]
let o4' = mul_add_wide128 #m1 #m24 #m34 u1 f24 o4 in
[@inline_let]
let out = (o0', o1', o2', o3', o4') in
lemma_smul_add_felem5 u1 (f20, f21, f22, f23, f24) (o0, o1, o2, o3, o4);
out
#pop-options
inline_for_extraction noextract
val precomp_r19:
f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171)}
let precomp_r19 (f20, f21, f22, f23, f24) =
[@inline_let]
let r190 = f20 *! u64 19 in
[@inline_let]
let r191 = f21 *! u64 19 in
[@inline_let]
let r192 = f22 *! u64 19 in
[@inline_let]
let r193 = f23 *! u64 19 in
[@inline_let]
let r194 = f24 *! u64 19 in
(r190, r191, r192, r193, r194)
inline_for_extraction noextract
val mul_felem5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> r:felem5{felem_fits5 r (9, 10, 9, 9, 9)}
-> r19:felem5{felem_fits5 r19 (171, 190, 171, 171, 171) /\ r19 == precomp_r19 r}
-> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f1) (feval r)}
let mul_felem5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4) (r190, r191, r192, r193, r194) =
let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 10, 9, 9, 9) f10 (r0, r1, r2, r3, r4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(171, 9, 10, 9, 9) #(81, 90, 81, 81, 81)
f11 (r194, r0, r1, r2, r3) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 9, 10, 9) #(1791, 180, 181, 171, 171)
f12 (r193, r194, r0, r1, r2) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(171, 171, 171, 9, 10) #(3330, 1719, 262, 261, 252)
f13 (r192, r193, r194, r0, r1) (o0, o1, o2, o3, o4) in
let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(190, 171, 171, 171, 9) #(4869, 3258, 1801, 342, 342)
f14 (r191, r192, r193, r194, r0) (o0, o1, o2, o3, o4) in
lemma_fmul5 (f10, f11, f12, f13, f14) (r0, r1, r2, r3, r4);
(o0, o1, o2, o3, o4)
inline_for_extraction noextract
val carry51:
l:uint64
-> cin:uint64
-> Pure (uint64 & uint64)
(requires felem_fits1 l 2 /\ felem_fits1 cin 8190)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ uint_v l1 < pow2 13)
let carry51 l cin =
let l' = l +! cin in
lemma_carry51 l cin;
(l' &. mask51, l' >>. 51ul)
inline_for_extraction noextract
val carry51_wide:
#m:scale64{m < 8192}
-> l:uint128{felem_wide_fits1 l m}
-> cin:uint64
-> Pure (uint64 & uint64)
(requires True)
(ensures fun (l0, l1) ->
v l + v cin == v l1 * pow2 51 + v l0 /\
felem_fits1 l0 1 /\ felem_fits1 l1 (m + 1))
let carry51_wide #m l cin =
let l' = l +! to_u128 cin in
lemma_carry51_wide #m l cin;
((to_u64 l') &. mask51, to_u64 (l' >>. 51ul))
let mul_inv_t (f:felem5) =
let (o0, o1, o2, o3, o4) = f in
if v o1 >= pow2 51 then
felem_fits5 f (1, 2, 1, 1, 1) /\ v o1 % pow2 51 < 8192
else felem_fits5 f (1, 1, 1, 1, 1)
#push-options "--ifuel 1"
val lemma_mul_inv:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> cin:uint64{v cin < pow2 51}
-> Lemma
(let (i0, i1, i2, i3, i4) = f in
assert_norm (pow51 = pow2 51);
let i1' = i1 +! cin in
let out = (i0, i1', i2, i3, i4) in
if (v i1 + v cin) / pow2 51 > 0 then
felem_fits5 out (1, 2, 1, 1, 1) /\
(v i1 + v cin) % pow2 51 < v cin
else felem_fits5 out (1, 1, 1, 1, 1))
let lemma_mul_inv f cin =
assert_norm (pow51 = pow2 51)
#pop-options
#push-options "--z3rlimit 100"
inline_for_extraction noextract
val carry_wide5:
inp:felem_wide5{felem_wide_fits5 inp (6579, 4797, 3340, 1881, 423)}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == feval_wide inp)
let carry_wide5 (i0, i1, i2, i3, i4) =
assert_norm (6579 < pow2 13);
assert_norm (pow2 13 < max51);
let tmp0, c0 = carry51_wide #6579 i0 (u64 0) in
let tmp1, c1 = carry51_wide #4797 i1 c0 in
let tmp2, c2 = carry51_wide #3340 i2 c1 in
let tmp3, c3 = carry51_wide #1881 i3 c2 in
let tmp4, c4 = carry51_wide #423 i4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
lemma_mul_inv (tmp0', tmp1, tmp2, tmp3, tmp4) c5;
(tmp0', tmp1', tmp2, tmp3, tmp4)
#pop-options
inline_for_extraction noextract
val fmul5:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\
feval out == fmul (feval f1) (feval f2)}
let fmul5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (tmp0, tmp1, tmp2, tmp3, tmp4) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp0, tmp1, tmp2, tmp3, tmp4) in
carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)
inline_for_extraction noextract
val fmul25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> f3:felem5{felem_fits5 f3 (9, 10, 9, 9, 9)}
-> f4:felem5{felem_fits5 f4 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\ mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f2) /\
feval out2 == fmul (feval f3) (feval f4))
let fmul25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) =
let (tmp10, tmp11, tmp12, tmp13, tmp14) = precomp_r19 (f20, f21, f22, f23, f24) in
let (tmp20, tmp21, tmp22, tmp23, tmp24) = precomp_r19 (f40, f41, f42, f43, f44) in
let (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) =
mul_felem5 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) (tmp10, tmp11, tmp12, tmp13, tmp14) in
let (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) =
mul_felem5 (f30, f31, f32, f33, f34) (f40, f41, f42, f43, f44) (tmp20, tmp21, tmp22, tmp23, tmp24) in
let (o10,o11,o12,o13,o14) = carry_wide5 (tmp_w10, tmp_w11, tmp_w12, tmp_w13, tmp_w14) in
let (o20,o21,o22,o23,o24) = carry_wide5 (tmp_w20, tmp_w21, tmp_w22, tmp_w23, tmp_w24) in
((o10,o11,o12,o13,o14), (o20,o21,o22,o23,o24))
inline_for_extraction noextract
val fmul15:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:uint64{felem_fits1 f2 1}
-> Pure felem5
(requires True)
(ensures fun out ->
mul_inv_t out /\ feval out == (feval f1 * v f2) % prime)
let fmul15 (f10, f11, f12, f13, f14) f2 =
let (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) =
smul_felem5 #1 #(9, 10, 9, 9, 9) f2 (f10, f11, f12, f13, f14) in
let out = (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
[@inline_let]
let res = carry_wide5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4) in
FStar.Math.Lemmas.lemma_mod_mul_distr_l (as_nat5 (f10, f11, f12, f13, f14)) (uint_v f2) prime;
assert (feval res == feval_wide (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4));
assert (feval res == (wide_as_nat5 (tmp_w0, tmp_w1, tmp_w2, tmp_w3, tmp_w4)) % prime);
assert (feval res == (v f2 * as_nat5 (f10, f11, f12, f13, f14)) % prime);
FStar.Math.Lemmas.swap_mul (v f2) (as_nat5 (f10, f11, f12, f13, f14));
assert (feval res == (as_nat5 (f10, f11, f12, f13, f14) * v f2) % prime);
res
// inline_for_extraction noextract
// val fsqr_felem5:
// f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
// -> out:felem_wide5{felem_wide_fits5 out (6579, 4797, 3340, 1881, 423)}
// let fsqr_felem5 (f0, f1, f2, f3, f4) =
// let (o0, o1, o2, o3, o4) = smul_felem5 #9 #(9, 20, 18, 18, 18) f0 (f0, u64 2 *! f1, u64 2 *! f2, u64 2 *! f3, u64 2 *! f4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #10 #(342, 0, 10, 18, 18) #(81, 180, 162, 162, 162)
// f1 (u64 38 *! f4, u64 0, f1, u64 2 *! f2, u64 2 *! f3) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(342, 342, 0, 0, 9) #(3501, 180, 262, 342, 342)
// f2 (u64 38 *! f3, u64 38 *! f4, u64 0, u64 0, f2) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 171, 342, 0, 0) #(6579, 3258, 262, 342, 423)
// f3 (u64 0, u64 19 *. f3, u64 38 *. f4, u64 0, u64 0) (o0, o1, o2, o3, o4) in
// let (o0, o1, o2, o3, o4) = smul_add_felem5 #9 #(0, 0, 0, 171, 0) #(6579, 4797, 3340, 342, 423)
// f4 (u64 0, u64 0, u64 0, u64 19 *. f4, u64 0) (o0, o1, o2, o3, o4) in
// (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val mul64_wide_add3:
#m0:scale64 -> #m1:scale64 -> #m2:scale64
-> #m3:scale64 -> #m4:scale64 -> #m5:scale64
-> a0:uint64{felem_fits1 a0 m0}
-> a1:uint64{felem_fits1 a1 m1}
-> b0:uint64{felem_fits1 b0 m2}
-> b1:uint64{felem_fits1 b1 m3}
-> c0:uint64{felem_fits1 c0 m4}
-> c1:uint64{felem_fits1 c1 m5} ->
Pure uint128
(requires m0 * m1 + m2 * m3 + m4 * m5 < 8192)
(ensures fun res ->
felem_wide_fits1 res (m0 * m1 + m2 * m3 + m4 * m5) /\
v res == v a0 * v a1 + v b0 * v b1 + v c0 * v c1)
let mul64_wide_add3 #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1 =
assert_norm (pow2 13 = 8192);
mul64_wide_add3_lemma #m0 #m1 #m2 #m3 #m4 #m5 a0 a1 b0 b1 c0 c1;
mul64_wide a0 a1 +! mul64_wide b0 b1 +! mul64_wide c0 c1
inline_for_extraction noextract
val fsqr_felem5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> Pure felem_wide5
(requires True)
(ensures fun out ->
felem_wide_fits5 out (6579, 4797, 3340, 1881, 423) /\
feval_wide out == fmul (feval f) (feval f))
let fsqr_felem5 (f0, f1, f2, f3, f4) =
assert_norm (pow2 13 = 8192);
let d0 = u64 2 *! f0 in
let d1 = u64 2 *! f1 in
let d2 = u64 38 *! f2 in
let d3 = u64 19 *! f3 in
let d419 = u64 19 *! f4 in
let d4 = u64 2 *! d419 in
let s0 = mul64_wide_add3 #9 #9 #342 #10 #342 #9 f0 f0 d4 f1 d2 f3 in
let s1 = mul64_wide_add3 #18 #10 #342 #9 #171 #9 d0 f1 d4 f2 d3 f3 in
let s2 = mul64_wide_add3 #18 #9 #10 #10 #342 #9 d0 f2 f1 f1 d4 f3 in
let s3 = mul64_wide_add3 #18 #9 #20 #9 #9 #171 d0 f3 d1 f2 f4 d419 in
let s4 = mul64_wide_add3 #18 #9 #20 #9 #9 #9 d0 f4 d1 f3 f2 f2 in
lemma_fmul_fsqr5 (f0, f1, f2, f3, f4);
(s0, s1, s2, s3, s4)
inline_for_extraction noextract
val fsqr5:
f:felem5{felem_fits5 f (9, 10, 9, 9, 9)}
-> out:felem5{mul_inv_t out /\ feval out == fmul (feval f) (feval f)}
let fsqr5 (f0, f1, f2, f3, f4) =
let (o0, o1, o2, o3, o4) = fsqr_felem5 (f0, f1, f2, f3, f4) in
carry_wide5 (o0, o1, o2, o3, o4)
inline_for_extraction noextract
val fsqr25:
f1:felem5{felem_fits5 f1 (9, 10, 9, 9, 9)}
-> f2:felem5{felem_fits5 f2 (9, 10, 9, 9, 9)}
-> Pure (felem5 & felem5)
(requires True)
(ensures fun (out1, out2) ->
mul_inv_t out1 /\
mul_inv_t out2 /\
feval out1 == fmul (feval f1) (feval f1) /\
feval out2 == fmul (feval f2) (feval f2))
let fsqr25 (f10, f11, f12, f13, f14) (f20, f21, f22, f23, f24) =
let (o10, o11, o12, o13, o14) = fsqr_felem5 (f10, f11, f12, f13, f14) in
let (o20, o21, o22, o23, o24) = fsqr_felem5 (f20, f21, f22, f23, f24) in
let (o10, o11, o12, o13, o14) = carry_wide5 (o10, o11, o12, o13, o14) in
let (o20, o21, o22, o23, o24) = carry_wide5 (o20, o21, o22, o23, o24) in
((o10, o11, o12, o13, o14), (o20, o21, o22, o23, o24))
#set-options "--z3rlimit 100 --max_fuel 2"
inline_for_extraction noextract
val carry_felem5_full:
inp:felem5{mul_inv_t inp}
-> out:felem5{feval out == feval inp /\ felem_fits5 out (1, 1, 1, 1, 1)}
let carry_felem5_full (f0, f1, f2, f3, f4) =
assert_norm (pow51 = pow2 51);
let tmp0, c0 = carry51 f0 (u64 0) in
let tmp1, c1 = carry51 f1 c0 in
assert (if v f1 < pow2 51 then v tmp1 < pow2 51 else v tmp1 < 8192);
let tmp2, c2 = carry51 f2 c1 in
let tmp3, c3 = carry51 f3 c2 in
let tmp4, c4 = carry51 f4 c3 in
lemma_carry5_simplify c0 c1 c2 c3 c4 tmp0 tmp1 tmp2 tmp3 tmp4;
[@inline_let]
let tmp0', c5 = carry51 tmp0 (c4 *! u64 19) in
[@inline_let]
let tmp1' = tmp1 +! c5 in
(tmp0', tmp1', tmp2, tmp3, tmp4)
inline_for_extraction noextract
val subtract_p5:
f:felem5{felem_fits5 f (1, 1, 1, 1, 1)}
-> Pure felem5
(requires True)
(ensures fun out ->
as_nat5 out == feval f /\
felem_fits5 out (1, 1, 1, 1, 1) /\
as_nat5 out < prime)
let subtract_p5 (f0, f1, f2, f3, f4) =
let m0 = gte_mask f0 (u64 0x7ffffffffffed) in
let m1 = eq_mask f1 (u64 0x7ffffffffffff) in
let m2 = eq_mask f2 (u64 0x7ffffffffffff) in
let m3 = eq_mask f3 (u64 0x7ffffffffffff) in
let m4 = eq_mask f4 (u64 0x7ffffffffffff) in
let mask = m0 &. m1 &. m2 &. m3 &. m4 in
let f0' = f0 -. (mask &. u64 0x7ffffffffffed) in
let f1' = f1 -. (mask &. u64 0x7ffffffffffff) in
let f2' = f2 -. (mask &. u64 0x7ffffffffffff) in
let f3' = f3 -. (mask &. u64 0x7ffffffffffff) in
let f4' = f4 -. (mask &. u64 0x7ffffffffffff) in
logand_lemma mask (u64 0x7ffffffffffed);
logand_lemma mask (u64 0x7ffffffffffff);
lemma_subtract_p (f0, f1, f2, f3, f4) (f0', f1', f2', f3', f4');
(f0', f1', f2', f3', f4')
inline_for_extraction noextract
val store_felem5:
f:felem5{mul_inv_t f}
-> Pure (uint64 & uint64 & uint64 & uint64)
(requires True)
(ensures fun (o0, o1, o2, o3) ->
feval f == v o0 + v o1 * pow2 64 + | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field51.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field51.Definition.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field51.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field51.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 2,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.Curve25519.Field51.Definition.felem5{Hacl.Spec.Curve25519.Field51.mul_inv_t f}
-> Prims.Pure
(((Lib.IntTypes.uint64 * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) * Lib.IntTypes.uint64) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field51.Definition.felem5",
"Hacl.Spec.Curve25519.Field51.mul_inv_t",
"Lib.IntTypes.uint64",
"FStar.Pervasives.Native.Mktuple4",
"Prims.unit",
"Hacl.Spec.Curve25519.Field51.Lemmas.lemma_store_felem",
"FStar.Pervasives.Native.Mktuple5",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Bar_Dot",
"Lib.IntTypes.op_Greater_Greater_Dot",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.op_Less_Less_Dot",
"FStar.Pervasives.Native.tuple4",
"Hacl.Spec.Curve25519.Field51.subtract_p5",
"Prims.l_and",
"Prims.eq2",
"Spec.Curve25519.elem",
"Hacl.Spec.Curve25519.Field51.Definition.feval",
"Hacl.Spec.Curve25519.Field51.Definition.felem_fits5",
"Prims.nat",
"Hacl.Spec.Curve25519.Field51.carry_felem5_full"
] | [] | false | false | false | false | false | let store_felem5 (f0, f1, f2, f3, f4) =
| let f0, f1, f2, f3, f4 = carry_felem5_full (f0, f1, f2, f3, f4) in
let f0, f1, f2, f3, f4 = subtract_p5 (f0, f1, f2, f3, f4) in
let o0 = f0 |. (f1 <<. 51ul) in
let o1 = (f1 >>. 13ul) |. (f2 <<. 38ul) in
let o2 = (f2 >>. 26ul) |. (f3 <<. 25ul) in
let o3 = (f3 >>. 39ul) |. (f4 <<. 12ul) in
lemma_store_felem (f0, f1, f2, f3, f4);
(o0, o1, o2, o3) | false |
Vale.AES.GF128.fsti | Vale.AES.GF128.shift_key_1 | val shift_key_1 (n: pos) (f h: poly) : poly | val shift_key_1 (n: pos) (f h: poly) : poly | let shift_key_1 (n:pos) (f h:poly) : poly =
let g = monomial n +. f in
let h1 = shift h 1 in
let offset = reverse (shift g (-1)) (n - 1) in
mask h1 n +. (if h1.[n] then offset else zero) | {
"file_name": "vale/code/crypto/aes/Vale.AES.GF128.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 191,
"start_col": 0,
"start_line": 187
} | module Vale.AES.GF128
open FStar.Seq
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Words.Four_s
open Vale.Def.Types_s
open Vale.Arch.Types
open Vale.AES.GF128_s
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
let quad32_shift_left_1 (q:quad32) : quad32 =
let l = four_map (fun (i:nat32) -> ishl i 1) q in
let r = four_map (fun (i:nat32) -> ishr i 31) q in
let Mkfour r0 r1 r2 r3 = r in
quad32_xor l (Mkfour 0 r0 r1 r2)
let quad32_shift_2_left_1 (qa qb:quad32) : quad32 & quad32 =
let la = four_map (fun (i:nat32) -> ishl i 1) qa in
let lb = four_map (fun (i:nat32) -> ishl i 1) qb in
let ra = four_map (fun (i:nat32) -> ishr i 31) qa in
let rb = four_map (fun (i:nat32) -> ishr i 31) qb in
let Mkfour ra0 ra1 ra2 ra3 = ra in
let Mkfour rb0 rb1 rb2 rb3 = rb in
let qa' = quad32_xor la (Mkfour 0 ra0 ra1 ra2) in
let qb' = quad32_xor lb (quad32_xor (Mkfour ra3 0 0 0) (Mkfour 0 rb0 rb1 rb2)) in
(qa', qb')
val lemma_shift_left_1 (a:poly) : Lemma
(requires degree a < 128)
(ensures to_quad32 (shift a 1) == quad32_shift_left_1 (to_quad32 a))
val lemma_shift_2_left_1 (lo hi:poly) : Lemma
(requires degree hi < 127 /\ degree lo < 128)
(ensures (
let n = monomial 128 in
let a = hi *. n +. lo in
let a' = shift a 1 in
let (lo', hi') = quad32_shift_2_left_1 (to_quad32 lo) (to_quad32 hi) in
lo' == to_quad32 (a' %. n) /\
hi' == to_quad32 (a' /. n)
))
// TODO: move this to Poly library
val lemma_reverse_reverse (a:poly) (n:nat) : Lemma
(requires degree a <= n)
(ensures reverse (reverse a n) n == a)
[SMTPat (reverse (reverse a n) n)]
val lemma_gf128_degree (_:unit) : Lemma
(ensures
degree gf128_modulus_low_terms == 7 /\
degree (monomial 128) == 128 /\
degree gf128_modulus == 128
)
val lemma_gf128_constant_rev (q:quad32) : Lemma
(ensures
to_quad32 (reverse gf128_modulus_low_terms 127) == Mkfour 0 0 0 0xe1000000 /\
quad32_xor q q == Mkfour 0 0 0 0
)
val lemma_quad32_double_hi_rev (a:poly) : Lemma
(requires degree a <= 127 /\ degree (reverse a 127) <= 63)
(ensures of_double32 (quad32_double_hi (to_quad32 a)) == reverse (reverse a 127) 63)
// Compute 128-bit multiply in terms of 64-bit multiplies
val lemma_gf128_mul (a b c d:poly) (n:nat) : Lemma
(ensures (
let m = monomial n in
let ab = a *. m +. b in
let cd = c *. m +. d in
let ac = a *. c in
let ad = a *. d in
let bc = b *. c in
let bd = b *. d in
ab *. cd ==
shift (ac +. bc /. m +. ad /. m) (n + n) +.
((bc %. m) *. m +. (ad %. m) *. m +. bd)
))
// Compute (a * b) % g, where g = n + h and %. n is easy to compute (e.g. n = x^128)
val lemma_gf128_reduce (a b g n h:poly) : Lemma
(requires
degree h >= 0 /\
degree n > 2 * degree h /\
degree g == degree n /\
degree a <= degree n /\
degree b <= degree n /\
g == n +. h
)
(ensures (
let d = (a *. b) /. n in
let dh = d *. h in
degree ((dh /. n) *. h) <= 2 * degree h /\
(a *. b) %. g == (dh /. n) *. h +. dh %. n +. (a *. b) %. n
))
val lemma_gf128_reduce_rev (a b h:poly) (n:pos) : Lemma
(requires
degree h >= 0 /\
n > 2 * degree h /\
degree (monomial n +. h) == n /\
degree a < n /\
degree b < n
)
(ensures (
let m = monomial n in
let g = m +. h in
let r x = reverse x (n - 1) in
let rr x = reverse x (2 * n - 1) in
let rab = rr (a *. b) in
let rd = rab %. m in
let rdh = rr (r rd *. h) in
let rdhL = rdh %. m in
let rdhLh = r (r rdhL *. h) in
degree (r rdhL) <= 2 * degree h /\
degree (r rdhLh) <= 2 * degree h /\
r ((a *. b) %. g) == rdhLh +. rdh /. m +. rab /. m
))
val lemma_reduce_rev (a0 a1 a2 h:poly) (n:pos) : Lemma
(requires
n == 64 /\ // verification times out unless n is known
degree a0 < n + n /\
degree a1 < n + n /\
degree a2 < n + n /\
degree (monomial (n + n) +. h) == n + n /\
degree h < n /\
h.[0]
)
(ensures (
let nn = n + n in
let mm = monomial nn in
let m = monomial n in
let g = mm +. h in
let c = reverse (shift h (-1)) (n - 1) in
let y_10 = a0 +. shift (mask a1 64) 64 in
let y_0 = mask y_10 64 in
let y_10c = swap y_10 64 +. y_0 *. c in
let a = a0 +. shift a1 64 +. shift a2 128 in
let x = reverse a (nn + nn - 1) in
reverse (x %. g) (nn - 1) == swap y_10c 64 +. (a2 +. shift a1 (-64)) +. mask y_10c 64 *. c
))
// of_fun 8 (fun (i:nat) -> i = 0 || i = 1 || i = 6)
let gf128_low_shift : poly = shift gf128_modulus_low_terms (-1)
// of_fun 8 (fun (i:nat) -> i = 127 || i = 126 || i = 121)
let gf128_rev_shift : poly = reverse gf128_low_shift 127
val lemma_gf128_low_shift (_:unit) : Lemma
(shift (of_quad32 (Mkfour 0 0 0 0xc2000000)) (-64) == reverse gf128_low_shift 63)
val lemma_gf128_high_bit (_:unit) : Lemma
(of_quad32 (Mkfour 0 0 0 0x80000000) == monomial 127)
val lemma_gf128_low_shift_1 (_:unit) : Lemma
(of_quad32 (Mkfour 1 0 0 0xc2000000) == reverse (shift (monomial 128 +. gf128_modulus_low_terms) (-1)) 127)
let gf128_mul_rev (a b:poly) : poly =
reverse (gf128_mul (reverse a 127) (reverse b 127)) 127
let ( *~ ) = gf128_mul_rev
val lemma_gf128_mul_rev_commute (a b:poly) : Lemma (a *~ b == b *~ a)
val lemma_gf128_mul_rev_associate (a b c:poly) : Lemma
(a *~ (b *~ c) == (a *~ b) *~ c)
val lemma_gf128_mul_rev_distribute_left (a b c:poly) : Lemma
((a +. b) *~ c == a *~ c +. b *~ c)
val lemma_gf128_mul_rev_distribute_right (a b c:poly) : Lemma
(a *~ (b +. c) == a *~ b +. a *~ c)
// TODO: change definition of reverse from (reverse a 127) to (reverse 128 a)
let mod_rev (n:pos) (a b:poly) : poly =
reverse (reverse a (n + n - 1) %. b) (n - 1)
val lemma_add_mod_rev (n:pos) (a1 a2 b:poly) : Lemma
(requires degree b >= 0)
(ensures mod_rev n (a1 +. a2) b == mod_rev n a1 b +. mod_rev n a2 b) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Words.Four_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"Vale.AES.GF128_s.fsti.checked",
"prims.fst.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.AES.GF128.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.TypesNative",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES.GF128_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words.Four_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.AES",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.pos -> f: Vale.Math.Poly2_s.poly -> h: Vale.Math.Poly2_s.poly -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.Math.Poly2.mask",
"Vale.Math.Poly2_s.op_String_Access",
"Prims.bool",
"Vale.Math.Poly2_s.zero",
"Vale.Math.Poly2_s.reverse",
"Vale.Math.Poly2_s.shift",
"Prims.op_Minus",
"Prims.op_Subtraction",
"Vale.Math.Poly2_s.monomial"
] | [] | false | false | false | true | false | let shift_key_1 (n: pos) (f h: poly) : poly =
| let g = monomial n +. f in
let h1 = shift h 1 in
let offset = reverse (shift g (- 1)) (n - 1) in
mask h1 n +. (if h1.[ n ] then offset else zero) | false |
Hacl.K256.PrecompTable.fst | Hacl.K256.PrecompTable.precomp_g_pow2_128_table_w4 | val precomp_g_pow2_128_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} | val precomp_g_pow2_128_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} | let precomp_g_pow2_128_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} =
createL_global precomp_g_pow2_128_table_list_w4 | {
"file_name": "code/k256/Hacl.K256.PrecompTable.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 255,
"start_col": 0,
"start_line": 253
} | module Hacl.K256.PrecompTable
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module SPT = Hacl.Spec.PrecompBaseTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module SPTK = Hacl.Spec.K256.PrecompTable
module S = Spec.K256
module SL = Spec.K256.Lemmas
open Hacl.Impl.K256.Point
include Hacl.Impl.K256.Group
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let proj_point_to_list p =
SPTK.proj_point_to_list_lemma p;
SPTK.proj_point_to_list p
let lemma_refl x =
SPTK.proj_point_to_list_lemma x
//-----------------
inline_for_extraction noextract
let proj_g_pow2_64 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
[@inline_let]
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
[@inline_let]
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
(rX, rY, rZ)
val lemma_proj_g_pow2_64_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops S.g 64 == proj_g_pow2_64)
let lemma_proj_g_pow2_64_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops S.g 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64);
let rX : S.felem = 0x46ec0aa60b0b98c37b29371784676ad967b7beb1a941ddb6fbbff95b44cb788b in
let rY : S.felem = 0x6b946755bbc6b677576579c990a1ccf14a710545251a1428fabbf02f40268e63 in
let rZ : S.felem = 0x3c114b2ac17c199ec9eba9f7cc64dc459ca2e53f5bbead2b4e618b318ffcc00e in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_128 : S.proj_point =
[@inline_let]
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
[@inline_let]
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
[@inline_let]
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
(rX, rY, rZ)
val lemma_proj_g_pow2_128_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64 == proj_g_pow2_128)
let lemma_proj_g_pow2_128_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_64 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64);
let rX : S.felem = 0x98299efbc8e459915404ae015b48cac3b929e0158665f3c7fa5489fbd25c4297 in
let rY : S.felem = 0xf1e5cbc9579e7d11a31681e947c2959ae0298a006d1c06ab1ad93d6716ea50cc in
let rZ : S.felem = 0x5c53ffe15001674a2eacb60c9327a8b0ddbd93a0fa6d90309de6cc124133938b in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
inline_for_extraction noextract
let proj_g_pow2_192 : S.proj_point =
[@inline_let]
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
[@inline_let]
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
[@inline_let]
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
(rX, rY, rZ)
val lemma_proj_g_pow2_192_eval : unit ->
Lemma (SE.exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64 == proj_g_pow2_192)
let lemma_proj_g_pow2_192_eval () =
SPT256.exp_pow2_rec_is_exp_pow2 S.mk_k256_concrete_ops proj_g_pow2_128 64;
let qX, qY, qZ = normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64) in
normalize_term_spec (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64);
let rX : S.felem = 0xbd382b67d20492b1480ca58a6d7d617ba413a9bc7c2f1cff51301ef960fb245c in
let rY : S.felem = 0x0b232afcf692673aa714357c524c07867a64ea3b9dfab53f0e74622159e86b0d in
let rZ : S.felem = 0x028a1380449aede5df8219420b458d464a6a4773ac91e8305237878cef1cffa6 in
assert_norm (qX == rX /\ qY == rY /\ qZ == rZ)
// let proj_g_pow2_64 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops S.g 64)
// let proj_g_pow2_128 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_64 64)
// let proj_g_pow2_192 : S.proj_point =
// normalize_term (SPT256.exp_pow2_rec S.mk_k256_concrete_ops proj_g_pow2_128 64)
inline_for_extraction noextract
let proj_g_pow2_64_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_64)
inline_for_extraction noextract
let proj_g_pow2_128_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_128)
inline_for_extraction noextract
let proj_g_pow2_192_list : SPTK.point_list =
normalize_term (SPTK.proj_point_to_list proj_g_pow2_192)
let proj_g_pow2_64_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
Seq.seq_of_list proj_g_pow2_64_list
let proj_g_pow2_128_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
Seq.seq_of_list proj_g_pow2_128_list
let proj_g_pow2_192_lseq : LSeq.lseq uint64 15 =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
Seq.seq_of_list proj_g_pow2_192_list
val proj_g_pow2_64_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_64 == pow_point (pow2 64) g_aff)
let proj_g_pow2_64_lemma () =
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_64_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_128_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_128 == pow_point (pow2 128) g_aff)
let proj_g_pow2_128_lemma () =
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_128_lemma S.mk_k256_concrete_ops S.g
val proj_g_pow2_192_lemma: unit ->
Lemma (S.to_aff_point proj_g_pow2_192 == pow_point (pow2 192) g_aff)
let proj_g_pow2_192_lemma () =
lemma_proj_g_pow2_192_eval ();
lemma_proj_g_pow2_128_eval ();
lemma_proj_g_pow2_64_eval ();
SPT256.a_pow2_192_lemma S.mk_k256_concrete_ops S.g
let proj_g_pow2_64_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_64);
proj_g_pow2_64_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_64
let proj_g_pow2_128_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_128);
proj_g_pow2_128_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_128
let proj_g_pow2_192_lseq_lemma () =
normalize_term_spec (SPTK.proj_point_to_list proj_g_pow2_192);
proj_g_pow2_192_lemma ();
SPTK.proj_point_to_list_lemma proj_g_pow2_192
let mk_proj_g_pow2_64 () =
createL proj_g_pow2_64_list
let mk_proj_g_pow2_128 () =
createL proj_g_pow2_128_list
let mk_proj_g_pow2_192 () =
createL proj_g_pow2_192_list
//----------------
/// window size = 4; precomputed table = [[0]G, [1]G, ..., [15]G]
inline_for_extraction noextract
let precomp_basepoint_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15)
let precomp_basepoint_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
Seq.seq_of_list precomp_basepoint_table_list_w4
let precomp_basepoint_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table S.g 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table S.g 16 precomp_basepoint_table_lseq_w4
let precomp_basepoint_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_basepoint_table_lseq_w4 /\ recallable x} =
createL_global precomp_basepoint_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 64]G), [1]([pow2 64]G), ..., [15]([pow2 64]G)]
inline_for_extraction noextract
let precomp_g_pow2_64_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15)
let precomp_g_pow2_64_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15);
Seq.seq_of_list precomp_g_pow2_64_table_list_w4
let precomp_g_pow2_64_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_64 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table
proj_g_pow2_64 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_64_lemma ()
let precomp_g_pow2_64_table_w4:
x:glbuffer uint64 240ul{witnessed x precomp_g_pow2_64_table_lseq_w4 /\ recallable x} =
createL_global precomp_g_pow2_64_table_list_w4
/// window size = 4; precomputed table = [[0]([pow2 128]G), [1]([pow2 128]G),...,[15]([pow2 128]G)]
inline_for_extraction noextract
let precomp_g_pow2_128_table_list_w4: x:list uint64{FStar.List.Tot.length x = 240} =
normalize_term (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15)
let precomp_g_pow2_128_table_lseq_w4 : LSeq.lseq uint64 240 =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15);
Seq.seq_of_list precomp_g_pow2_128_table_list_w4
let precomp_g_pow2_128_table_lemma_w4 () =
normalize_term_spec (SPT.precomp_base_table_list mk_k256_precomp_base_table proj_g_pow2_128 15);
SPT.precomp_base_table_lemma mk_k256_precomp_base_table
proj_g_pow2_128 16 precomp_g_pow2_64_table_lseq_w4;
proj_g_pow2_128_lemma () | {
"checked_file": "/",
"dependencies": [
"Spec.K256.Lemmas.fsti.checked",
"Spec.K256.fst.checked",
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.PrecompBaseTable.fsti.checked",
"Hacl.Spec.K256.PrecompTable.fsti.checked",
"Hacl.Impl.K256.Point.fsti.checked",
"Hacl.Impl.K256.Group.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.K256.PrecompTable.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.K256.Lemmas",
"short_module": "SL"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.K256.PrecompTable",
"short_module": "SPTK"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.K256.Point",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.K256",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable",
"short_module": "SPT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation.Definitions",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x:
Lib.Buffer.glbuffer Lib.IntTypes.uint64 240ul
{ Lib.Buffer.witnessed x Hacl.K256.PrecompTable.precomp_g_pow2_128_table_lseq_w4 /\
Lib.Buffer.recallable x } | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Hacl.K256.PrecompTable.precomp_g_pow2_128_table_list_w4",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Prims.l_and",
"Lib.Buffer.witnessed",
"Hacl.K256.PrecompTable.precomp_g_pow2_128_table_lseq_w4",
"Lib.Buffer.recallable",
"Lib.Buffer.CONST"
] | [] | false | false | false | false | false | let precomp_g_pow2_128_table_w4:x:
glbuffer uint64 240ul {witnessed x precomp_g_pow2_128_table_lseq_w4 /\ recallable x} =
| createL_global precomp_g_pow2_128_table_list_w4 | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.encode_point | val encode_point : Hacl.Meta.Curve25519.generic_encode_point_higher_t Prims.l_True | let encode_point = generic_encode_point_higher #M51 True C.store_felem C.fmul finv | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 82,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51
let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list
#set-options "--max_fuel 0 --max_ifuel 0 --z3rlimit 100"
let point_add_and_double =
addanddouble_point_add_and_double_higher #M51 True C.fmul C.fsqr2 C.fmul1 C.fmul2 C.fsub C.fadd
let point_double =
addanddouble_point_double_higher #M51 True C.fmul2 C.fmul1 C.fsqr2 C.fsub C.fadd
let montgomery_ladder =
generic_montgomery_ladder_higher #M51 True point_double C.cswap2 point_add_and_double
let fsquare_times = finv_fsquare_times_higher #M51 True C.fsqr | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Meta.Curve25519.generic_encode_point_higher_t Prims.l_True | Prims.Tot | [
"total"
] | [] | [
"Hacl.Meta.Curve25519.generic_encode_point_higher",
"Hacl.Impl.Curve25519.Fields.Core.M51",
"Prims.l_True",
"Hacl.Impl.Curve25519.Field51.store_felem",
"Hacl.Impl.Curve25519.Field51.fmul",
"Hacl.Curve25519_51.finv"
] | [] | false | false | false | true | false | let encode_point =
| generic_encode_point_higher #M51 True C.store_felem C.fmul finv | false |
|
Hacl.Impl.Frodo.KEM.Encaps.fst | Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1 | val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) | val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) | let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
push_frame ();
let bp_matrix = matrix_create params_nbar (params_n a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix;
frodo_pack (params_logq a) bp_matrix c1;
pop_frame () | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 77,
"start_col": 0,
"start_line": 72
} | module Hacl.Impl.Frodo.KEM.Encaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module FP = Spec.Frodo.Params
module S = Spec.Frodo.KEM.Encaps
module M = Spec.Matrix
module KG = Hacl.Impl.Frodo.KEM.KeyGen
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val frodo_mul_add_sa_plus_e:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\
disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\
as_matrix h1 bp_matrix ==
S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix =
push_frame ();
let a_matrix = matrix_create (params_n a) (params_n a) in
frodo_gen_matrix gen_a (params_n a) seed_a a_matrix;
matrix_mul sp_matrix a_matrix bp_matrix;
matrix_add bp_matrix ep_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} ->
seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a ->
sp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
ep_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
c1: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.ct1bytes_len a)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Prims.b2t",
"Hacl.Impl.Frodo.Params.is_supported",
"Hacl.Impl.Matrix.lbytes",
"Hacl.Impl.Frodo.Params.bytes_seed_a",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Frodo.Params.params_n",
"Hacl.Impl.Frodo.Params.ct1bytes_len",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Frodo.Pack.frodo_pack",
"Hacl.Impl.Frodo.Params.params_logq",
"Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sa_plus_e",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Matrix.matrix_create",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
| push_frame ();
let bp_matrix = matrix_create params_nbar (params_n a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix;
frodo_pack (params_logq a) bp_matrix c1;
pop_frame () | false |
EverParse3d.InputStream.Extern.Type.fst | EverParse3d.InputStream.Extern.Type.make_input_buffer_with_length | val make_input_buffer_with_length
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
(length: LPE.pos_t)
: HST.Stack input_buffer
(requires
(fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position /\
U64.v length <= U64.v (len_all base)))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) | val make_input_buffer_with_length
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
(length: LPE.pos_t)
: HST.Stack input_buffer
(requires
(fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position /\
U64.v length <= U64.v (len_all base)))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) | let make_input_buffer_with_length
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
(length: LPE.pos_t)
: HST.Stack input_buffer
(requires (fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
B.live h position /\
U64.v length <= U64.v (len_all base)
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer position) h h'
))
= position *= 0uL;
{
base = base;
has_length = true;
length = length;
position = position;
prf = ();
} | {
"file_name": "src/3d/prelude/extern/EverParse3d.InputStream.Extern.Type.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 66,
"start_col": 0,
"start_line": 46
} | module EverParse3d.InputStream.Extern.Type
include EverParse3d.InputStream.Extern.Base
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module U8 = FStar.UInt8
module LPE = EverParse3d.ErrorCode
module U64 = FStar.UInt64
noeq
type input_buffer = {
base: t;
has_length: bool;
length: LPE.pos_t;
position: B.pointer (Ghost.erased LPE.pos_t);
prf: squash (
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
(has_length == true ==> U64.v length <= U64.v (len_all base))
);
}
open LowStar.BufferOps
let make_input_buffer
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires (fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
B.live h position
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer position) h h'
))
= position *= 0uL;
{
base = base;
has_length = false;
length = 0uL;
position = position;
prf = ();
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.InputStream.Extern.Base.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Extern.Type.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "EverParse3d.ErrorCode",
"short_module": "LPE"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
base: EverParse3d.InputStream.Extern.Base.t ->
position: LowStar.Buffer.pointer (FStar.Ghost.erased EverParse3d.ErrorCode.pos_t) ->
length: EverParse3d.ErrorCode.pos_t
-> FStar.HyperStack.ST.Stack EverParse3d.InputStream.Extern.Type.input_buffer | FStar.HyperStack.ST.Stack | [] | [] | [
"EverParse3d.InputStream.Extern.Base.t",
"LowStar.Buffer.pointer",
"FStar.Ghost.erased",
"EverParse3d.ErrorCode.pos_t",
"EverParse3d.InputStream.Extern.Type.Mkinput_buffer",
"EverParse3d.InputStream.Extern.Type.input_buffer",
"Prims.unit",
"LowStar.BufferOps.op_Star_Equals",
"LowStar.Buffer.trivial_preorder",
"FStar.Ghost.hide",
"FStar.UInt64.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverParse3d.InputStream.Extern.Base.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"FStar.UInt64.v",
"EverParse3d.InputStream.Extern.Base.len_all",
"LowStar.Monotonic.Buffer.modifies"
] | [] | false | true | false | false | false | let make_input_buffer_with_length
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
(length: LPE.pos_t)
: HST.Stack input_buffer
(requires
(fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position /\
U64.v length <= U64.v (len_all base)))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) =
| position *= 0uL;
{ base = base; has_length = true; length = length; position = position; prf = () } | false |
EverParse3d.InputStream.Extern.Type.fst | EverParse3d.InputStream.Extern.Type.default_error_handler | val default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer LPE.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) | val default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer LPE.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) | let default_error_handler
(typename_s: string)
(fieldname: string)
(reason: string)
(error_code: U64.t)
(context: B.pointer LPE.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h'))
=
if not ( !* context ).LPE.filled then begin
context *= {
LPE.filled = true;
LPE.start_pos = start_pos;
LPE.typename_s = typename_s;
LPE.fieldname = fieldname;
LPE.reason = reason;
LPE.error_code = error_code;
}
end | {
"file_name": "src/3d/prelude/extern/EverParse3d.InputStream.Extern.Type.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 5,
"end_line": 89,
"start_col": 0,
"start_line": 68
} | module EverParse3d.InputStream.Extern.Type
include EverParse3d.InputStream.Extern.Base
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module U8 = FStar.UInt8
module LPE = EverParse3d.ErrorCode
module U64 = FStar.UInt64
noeq
type input_buffer = {
base: t;
has_length: bool;
length: LPE.pos_t;
position: B.pointer (Ghost.erased LPE.pos_t);
prf: squash (
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
(has_length == true ==> U64.v length <= U64.v (len_all base))
);
}
open LowStar.BufferOps
let make_input_buffer
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires (fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
B.live h position
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer position) h h'
))
= position *= 0uL;
{
base = base;
has_length = false;
length = 0uL;
position = position;
prf = ();
}
let make_input_buffer_with_length
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
(length: LPE.pos_t)
: HST.Stack input_buffer
(requires (fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
B.live h position /\
U64.v length <= U64.v (len_all base)
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer position) h h'
))
= position *= 0uL;
{
base = base;
has_length = true;
length = length;
position = position;
prf = ();
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.InputStream.Extern.Base.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Extern.Type.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "EverParse3d.ErrorCode",
"short_module": "LPE"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
typename_s: Prims.string ->
fieldname: Prims.string ->
reason: Prims.string ->
error_code: FStar.UInt64.t ->
context: LowStar.Buffer.pointer EverParse3d.ErrorCode.error_frame ->
input: EverParse3d.InputStream.Extern.Type.input_buffer ->
start_pos: FStar.UInt64.t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Prims.string",
"FStar.UInt64.t",
"LowStar.Buffer.pointer",
"EverParse3d.ErrorCode.error_frame",
"EverParse3d.InputStream.Extern.Type.input_buffer",
"LowStar.BufferOps.op_Star_Equals",
"LowStar.Buffer.trivial_preorder",
"EverParse3d.ErrorCode.Mkerror_frame",
"Prims.unit",
"Prims.bool",
"Prims.op_Negation",
"EverParse3d.ErrorCode.__proj__Mkerror_frame__item__filled",
"LowStar.BufferOps.op_Bang_Star",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer"
] | [] | false | true | false | false | false | let default_error_handler
(typename_s fieldname reason: string)
(error_code: U64.t)
(context: B.pointer LPE.error_frame)
(input: input_buffer)
(start_pos: U64.t)
: HST.Stack unit
(requires (fun h -> B.live h context))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer context) h h')) =
| if not (!*context).LPE.filled
then
context *=
{
LPE.filled = true;
LPE.start_pos = start_pos;
LPE.typename_s = typename_s;
LPE.fieldname = fieldname;
LPE.reason = reason;
LPE.error_code = error_code
} | false |
Hacl.Curve25519_51.fst | Hacl.Curve25519_51.g25519 | val g25519:g25519_t | val g25519:g25519_t | let g25519: g25519_t =
Lib.Buffer.createL_global Spec.Curve25519.basepoint_list | {
"file_name": "code/curve25519/Hacl.Curve25519_51.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 58,
"end_line": 10,
"start_col": 0,
"start_line": 9
} | module Hacl.Curve25519_51
friend Hacl.Meta.Curve25519
open Hacl.Meta.Curve25519
// The Hacl core.
module C = Hacl.Impl.Curve25519.Field51 | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Meta.Curve25519.fst.checked",
"Hacl.Impl.Curve25519.Field51.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Curve25519_51.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Curve25519.Field51",
"short_module": "C"
},
{
"abbrev": false,
"full_module": "Hacl.Meta.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Generic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Impl.Curve25519.Generic.g25519_t | Prims.Tot | [
"total"
] | [] | [
"Lib.Buffer.createL_global",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.PUB",
"Spec.Curve25519.basepoint_list",
"Lib.Buffer.glbuffer",
"Lib.IntTypes.size",
"FStar.Pervasives.normalize_term",
"Lib.IntTypes.size_nat",
"FStar.List.Tot.Base.length"
] | [] | false | false | false | true | false | let g25519:g25519_t =
| Lib.Buffer.createL_global Spec.Curve25519.basepoint_list | false |
EverParse3d.InputStream.Extern.Type.fst | EverParse3d.InputStream.Extern.Type.make_input_buffer | val make_input_buffer (base: t) (position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires
(fun h -> B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) | val make_input_buffer (base: t) (position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires
(fun h -> B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) | let make_input_buffer
(base: t)
(position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires (fun h ->
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
B.live h position
))
(ensures (fun h _ h' ->
B.modifies (B.loc_buffer position) h h'
))
= position *= 0uL;
{
base = base;
has_length = false;
length = 0uL;
position = position;
prf = ();
} | {
"file_name": "src/3d/prelude/extern/EverParse3d.InputStream.Extern.Type.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 3,
"end_line": 44,
"start_col": 0,
"start_line": 26
} | module EverParse3d.InputStream.Extern.Type
include EverParse3d.InputStream.Extern.Base
module B = LowStar.Buffer
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module U8 = FStar.UInt8
module LPE = EverParse3d.ErrorCode
module U64 = FStar.UInt64
noeq
type input_buffer = {
base: t;
has_length: bool;
length: LPE.pos_t;
position: B.pointer (Ghost.erased LPE.pos_t);
prf: squash (
B.loc_disjoint (footprint base) (B.loc_buffer position) /\
(has_length == true ==> U64.v length <= U64.v (len_all base))
);
}
open LowStar.BufferOps | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt64.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked",
"EverParse3d.InputStream.Extern.Base.fsti.checked",
"EverParse3d.ErrorCode.fst.checked"
],
"interface_file": false,
"source_file": "EverParse3d.InputStream.Extern.Type.fst"
} | [
{
"abbrev": false,
"full_module": "LowStar.BufferOps",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.UInt64",
"short_module": "U64"
},
{
"abbrev": true,
"full_module": "EverParse3d.ErrorCode",
"short_module": "LPE"
},
{
"abbrev": true,
"full_module": "FStar.UInt8",
"short_module": "U8"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "EverParse3d.InputStream.Extern",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 2,
"max_fuel": 0,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [
"smt.qi.eager_threshold=100"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 8,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
base: EverParse3d.InputStream.Extern.Base.t ->
position: LowStar.Buffer.pointer (FStar.Ghost.erased EverParse3d.ErrorCode.pos_t)
-> FStar.HyperStack.ST.Stack EverParse3d.InputStream.Extern.Type.input_buffer | FStar.HyperStack.ST.Stack | [] | [] | [
"EverParse3d.InputStream.Extern.Base.t",
"LowStar.Buffer.pointer",
"FStar.Ghost.erased",
"EverParse3d.ErrorCode.pos_t",
"EverParse3d.InputStream.Extern.Type.Mkinput_buffer",
"FStar.UInt64.__uint_to_t",
"EverParse3d.InputStream.Extern.Type.input_buffer",
"Prims.unit",
"LowStar.BufferOps.op_Star_Equals",
"LowStar.Buffer.trivial_preorder",
"FStar.Ghost.hide",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.loc_disjoint",
"EverParse3d.InputStream.Extern.Base.footprint",
"LowStar.Monotonic.Buffer.loc_buffer",
"LowStar.Monotonic.Buffer.live",
"LowStar.Monotonic.Buffer.modifies"
] | [] | false | true | false | false | false | let make_input_buffer (base: t) (position: B.pointer (Ghost.erased LPE.pos_t))
: HST.Stack input_buffer
(requires
(fun h -> B.loc_disjoint (footprint base) (B.loc_buffer position) /\ B.live h position))
(ensures (fun h _ h' -> B.modifies (B.loc_buffer position) h h')) =
| position *= 0uL;
{ base = base; has_length = false; length = 0uL; position = position; prf = () } | false |
Hacl.Impl.Frodo.KEM.Encaps.fst | Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct0 | val crypto_kem_enc_ct0:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> b:lbytes (publicmatrixbytes_len a)
-> mu:lbytes (bytes_mu a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h b /\ live h mu /\ live h ct /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\
disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
(let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in
let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in
v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\
as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) | val crypto_kem_enc_ct0:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> b:lbytes (publicmatrixbytes_len a)
-> mu:lbytes (bytes_mu a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h b /\ live h mu /\ live h ct /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\
disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
(let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in
let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in
v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\
as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) | let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct =
let c1 = sub ct 0ul (ct1bytes_len a) in
let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in
let h0 = ST.get () in
crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1;
let h1 = ST.get () in
crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a)))
(LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)));
LSeq.lemma_concat2
(v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)))
(v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 107,
"end_line": 225,
"start_col": 0,
"start_line": 212
} | module Hacl.Impl.Frodo.KEM.Encaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module FP = Spec.Frodo.Params
module S = Spec.Frodo.KEM.Encaps
module M = Spec.Matrix
module KG = Hacl.Impl.Frodo.KEM.KeyGen
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val frodo_mul_add_sa_plus_e:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\
disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\
as_matrix h1 bp_matrix ==
S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix =
push_frame ();
let a_matrix = matrix_create (params_n a) (params_n a) in
frodo_gen_matrix gen_a (params_n a) seed_a a_matrix;
matrix_mul sp_matrix a_matrix bp_matrix;
matrix_add bp_matrix ep_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
push_frame ();
let bp_matrix = matrix_create params_nbar (params_n a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix;
frodo_pack (params_logq a) bp_matrix c1;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e:
a:FP.frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix =
push_frame ();
let b_matrix = matrix_create (params_n a) params_nbar in
frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix;
matrix_mul sp_matrix b_matrix v_matrix;
matrix_add v_matrix epp_matrix;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e_plus_mu:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h mu /\ live h v_matrix /\
live h sp_matrix /\ live h epp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\
disjoint v_matrix mu /\ disjoint v_matrix epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix =
push_frame ();
frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix;
let mu_encode = matrix_create params_nbar params_nbar in
frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode;
matrix_add v_matrix mu_encode;
clear_matrix mu_encode;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c2:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> c2:lbytes (ct2bytes_len a)
-> Stack unit
(requires fun h ->
live h mu /\ live h b /\ live h sp_matrix /\
live h epp_matrix /\ live h c2 /\
disjoint mu c2 /\ disjoint b c2 /\
disjoint sp_matrix c2 /\ disjoint epp_matrix c2)
(ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\
as_seq h1 c2 ==
S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
#push-options "--z3rlimit 200"
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 =
push_frame ();
let v_matrix = matrix_create params_nbar params_nbar in
frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix;
frodo_pack (params_logq a) v_matrix c2;
clear_matrix v_matrix;
pop_frame ()
#pop-options
inline_for_extraction noextract
val get_sp_ep_epp_matrices:
a:FP.frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h seed_se /\ live h sp_matrix /\
live h ep_matrix /\ live h epp_matrix /\
disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\
disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\
disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\
(as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) ==
S.get_sp_ep_epp_matrices a (as_seq h0 seed_se))
let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix =
push_frame ();
[@inline_let] let s_bytes_len = secretmatrixbytes_len a in
let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in
KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r;
frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix;
frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix;
frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct0:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> b:lbytes (publicmatrixbytes_len a)
-> mu:lbytes (bytes_mu a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h b /\ live h mu /\ live h ct /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\
disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
(let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in
let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in
v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\
as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 100,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} ->
seed_a: Hacl.Impl.Matrix.lbytes Hacl.Impl.Frodo.Params.bytes_seed_a ->
b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) ->
mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) ->
sp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
ep_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
epp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
Hacl.Impl.Frodo.Params.params_nbar ->
ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Prims.b2t",
"Hacl.Impl.Frodo.Params.is_supported",
"Hacl.Impl.Matrix.lbytes",
"Hacl.Impl.Frodo.Params.bytes_seed_a",
"Hacl.Impl.Frodo.Params.publicmatrixbytes_len",
"Hacl.Impl.Frodo.Params.bytes_mu",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Frodo.Params.params_n",
"Hacl.Impl.Frodo.Params.crypto_ciphertextbytes",
"Lib.Sequence.lemma_concat2",
"Lib.IntTypes.uint8",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Frodo.Params.ct1bytes_len",
"Lib.Sequence.sub",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Hacl.Impl.Frodo.Params.ct2bytes_len",
"Prims.unit",
"Lib.Sequence.eq_intro",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c2",
"Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c1",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Buffer.sub",
"FStar.UInt32.__uint_to_t"
] | [] | false | true | false | false | false | let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct =
| let c1 = sub ct 0ul (ct1bytes_len a) in
let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in
let h0 = ST.get () in
crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1;
let h1 = ST.get () in
crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2;
let h2 = ST.get () in
LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a)))
(LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)));
LSeq.lemma_concat2 (v (ct1bytes_len a))
(LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)))
(v (ct2bytes_len a))
(LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a)))
(as_seq h2 ct) | false |
Hacl.Impl.Frodo.KEM.Encaps.fst | Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_pack_c2 | val crypto_kem_enc_ct_pack_c2:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> c2:lbytes (ct2bytes_len a)
-> Stack unit
(requires fun h ->
live h mu /\ live h b /\ live h sp_matrix /\
live h epp_matrix /\ live h c2 /\
disjoint mu c2 /\ disjoint b c2 /\
disjoint sp_matrix c2 /\ disjoint epp_matrix c2)
(ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\
as_seq h1 c2 ==
S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) | val crypto_kem_enc_ct_pack_c2:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> c2:lbytes (ct2bytes_len a)
-> Stack unit
(requires fun h ->
live h mu /\ live h b /\ live h sp_matrix /\
live h epp_matrix /\ live h c2 /\
disjoint mu c2 /\ disjoint b c2 /\
disjoint sp_matrix c2 /\ disjoint epp_matrix c2)
(ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\
as_seq h1 c2 ==
S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) | let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 =
push_frame ();
let v_matrix = matrix_create params_nbar params_nbar in
frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix;
frodo_pack (params_logq a) v_matrix c2;
clear_matrix v_matrix;
pop_frame () | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 157,
"start_col": 0,
"start_line": 151
} | module Hacl.Impl.Frodo.KEM.Encaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module FP = Spec.Frodo.Params
module S = Spec.Frodo.KEM.Encaps
module M = Spec.Matrix
module KG = Hacl.Impl.Frodo.KEM.KeyGen
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val frodo_mul_add_sa_plus_e:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\
disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\
as_matrix h1 bp_matrix ==
S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix =
push_frame ();
let a_matrix = matrix_create (params_n a) (params_n a) in
frodo_gen_matrix gen_a (params_n a) seed_a a_matrix;
matrix_mul sp_matrix a_matrix bp_matrix;
matrix_add bp_matrix ep_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
push_frame ();
let bp_matrix = matrix_create params_nbar (params_n a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix;
frodo_pack (params_logq a) bp_matrix c1;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e:
a:FP.frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix =
push_frame ();
let b_matrix = matrix_create (params_n a) params_nbar in
frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix;
matrix_mul sp_matrix b_matrix v_matrix;
matrix_add v_matrix epp_matrix;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e_plus_mu:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h mu /\ live h v_matrix /\
live h sp_matrix /\ live h epp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\
disjoint v_matrix mu /\ disjoint v_matrix epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix =
push_frame ();
frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix;
let mu_encode = matrix_create params_nbar params_nbar in
frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode;
matrix_add v_matrix mu_encode;
clear_matrix mu_encode;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c2:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> c2:lbytes (ct2bytes_len a)
-> Stack unit
(requires fun h ->
live h mu /\ live h b /\ live h sp_matrix /\
live h epp_matrix /\ live h c2 /\
disjoint mu c2 /\ disjoint b c2 /\
disjoint sp_matrix c2 /\ disjoint epp_matrix c2)
(ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\
as_seq h1 c2 ==
S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) ->
b: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.publicmatrixbytes_len a) ->
sp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
(Hacl.Impl.Frodo.Params.params_n a) ->
epp_matrix:
Hacl.Impl.Matrix.matrix_t Hacl.Impl.Frodo.Params.params_nbar
Hacl.Impl.Frodo.Params.params_nbar ->
c2: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.ct2bytes_len a)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Hacl.Impl.Matrix.lbytes",
"Hacl.Impl.Frodo.Params.bytes_mu",
"Hacl.Impl.Frodo.Params.publicmatrixbytes_len",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Frodo.Params.params_n",
"Hacl.Impl.Frodo.Params.ct2bytes_len",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Hacl.Impl.Frodo.KEM.clear_matrix",
"Hacl.Impl.Frodo.Pack.frodo_pack",
"Hacl.Impl.Frodo.Params.params_logq",
"Hacl.Impl.Frodo.KEM.Encaps.frodo_mul_add_sb_plus_e_plus_mu",
"Lib.Buffer.lbuffer_t",
"Lib.Buffer.MUT",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Hacl.Impl.Matrix.matrix_create",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 =
| push_frame ();
let v_matrix = matrix_create params_nbar params_nbar in
frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix;
frodo_pack (params_logq a) v_matrix c2;
clear_matrix v_matrix;
pop_frame () | false |
Hacl.Impl.Ed25519.Ladder.fst | Hacl.Impl.Ed25519.Ladder.point_mul_g_double_vartime_noalloc | val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:lbuffer uint64 4ul -> q1:point
-> scalar2:lbuffer uint64 4ul -> q2:point
-> table2: lbuffer uint64 640ul ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
BD.bn_v h scalar1 < pow2 256 /\ BD.bn_v h scalar2 < pow2 256 /\
F51.linv (as_seq h q1) /\ F51.linv (as_seq h q2) /\
F51.point_eval h q1 == g_c /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.linv (as_seq h1 out) /\
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_double_fw #S.aff_point_c S.mk_ed25519_comm_monoid
(S.to_aff_point (F51.point_eval h0 q1)) 256 (BD.bn_v h0 scalar1)
(S.to_aff_point (F51.point_eval h0 q2)) (BD.bn_v h0 scalar2) 5) | val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:lbuffer uint64 4ul -> q1:point
-> scalar2:lbuffer uint64 4ul -> q2:point
-> table2: lbuffer uint64 640ul ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
BD.bn_v h scalar1 < pow2 256 /\ BD.bn_v h scalar2 < pow2 256 /\
F51.linv (as_seq h q1) /\ F51.linv (as_seq h q2) /\
F51.point_eval h q1 == g_c /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.linv (as_seq h1 out) /\
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_double_fw #S.aff_point_c S.mk_ed25519_comm_monoid
(S.to_aff_point (F51.point_eval h0 q1)) 256 (BD.bn_v h0 scalar1)
(S.to_aff_point (F51.point_eval h0 q2)) (BD.bn_v h0 scalar2) 5) | let point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2 =
[@inline_let] let len = 20ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_ed25519_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
[@inline_let] let bLen = 4ul in
[@inline_let] let bBits = 256ul in
assert_norm (pow2 (v l) == v table_len);
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w5 precomp_basepoint_table_lseq_w5;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w5 ();
assert (table_inv_w5 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w5));
assert (table_inv_w5 (as_seq h1 q2) (as_seq h1 table2));
ME.mk_lexp_double_fw_tables len ctx_len k l table_len
table_inv_w5 table_inv_w5
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(null uint64) q1 bLen bBits scalar1 q2 scalar2
(to_const precomp_basepoint_table_w5) (to_const table2) out | {
"file_name": "code/ed25519/Hacl.Impl.Ed25519.Ladder.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 63,
"end_line": 297,
"start_col": 0,
"start_line": 276
} | module Hacl.Impl.Ed25519.Ladder
module ST = FStar.HyperStack.ST
open FStar.HyperStack.All
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum25519
module F51 = Hacl.Impl.Ed25519.Field51
module BSeq = Lib.ByteSequence
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BE = Hacl.Impl.Exponentiation
module ME = Hacl.Impl.MultiExponentiation
module PT = Hacl.Impl.PrecompTable
module SPT256 = Hacl.Spec.PrecompBaseTable256
module BD = Hacl.Bignum.Definitions
module SD = Hacl.Spec.Bignum.Definitions
module S = Spec.Ed25519
open Hacl.Impl.Ed25519.PointConstants
include Hacl.Impl.Ed25519.Group
include Hacl.Ed25519.PrecompTable
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
inline_for_extraction noextract
let table_inv_w4 : BE.table_inv_t U64 20ul 16ul =
[@inline_let] let len = 20ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_ed25519_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
let table_inv_w5 : BE.table_inv_t U64 20ul 32ul =
[@inline_let] let len = 20ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_ed25519_concrete_ops in
[@inline_let] let l = 5ul in
[@inline_let] let table_len = 32ul in
assert_norm (pow2 (v l) = v table_len);
BE.table_inv_precomp len ctx_len k l table_len
inline_for_extraction noextract
val convert_scalar: scalar:lbuffer uint8 32ul -> bscalar:lbuffer uint64 4ul ->
Stack unit
(requires fun h -> live h scalar /\ live h bscalar /\ disjoint scalar bscalar)
(ensures fun h0 _ h1 -> modifies (loc bscalar) h0 h1 /\
BD.bn_v h1 bscalar == BSeq.nat_from_bytes_le (as_seq h0 scalar))
let convert_scalar scalar bscalar =
let h0 = ST.get () in
Hacl.Spec.Bignum.Convert.bn_from_bytes_le_lemma #U64 32 (as_seq h0 scalar);
Hacl.Bignum.Convert.mk_bn_from_bytes_le true 32ul scalar bscalar
inline_for_extraction noextract
val point_mul_noalloc:
out:point
-> bscalar:lbuffer uint64 4ul
-> q:point ->
Stack unit
(requires fun h ->
live h bscalar /\ live h q /\ live h out /\
disjoint q out /\ disjoint q bscalar /\ disjoint out bscalar /\
F51.point_inv_t h q /\ F51.inv_ext_point (as_seq h q) /\
BD.bn_v h bscalar < pow2 256)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.point_inv_t h1 out /\ F51.inv_ext_point (as_seq h1 out) /\
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_fw S.mk_ed25519_comm_monoid
(S.to_aff_point (F51.point_eval h0 q)) 256 (BD.bn_v h0 bscalar) 4)
let point_mul_noalloc out bscalar q =
BE.lexp_fw_consttime 20ul 0ul mk_ed25519_concrete_ops
4ul (null uint64) q 4ul 256ul bscalar out
let point_mul out scalar q =
let h0 = ST.get () in
SE.exp_fw_lemma S.mk_ed25519_concrete_ops
(F51.point_eval h0 q) 256 (BSeq.nat_from_bytes_le (as_seq h0 scalar)) 4;
push_frame ();
let bscalar = create 4ul (u64 0) in
convert_scalar scalar bscalar;
point_mul_noalloc out bscalar q;
pop_frame ()
val precomp_get_consttime: BE.pow_a_to_small_b_st U64 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul
(BE.table_inv_precomp 20ul 0ul mk_ed25519_concrete_ops 4ul 16ul)
[@CInline]
let precomp_get_consttime ctx a table bits_l tmp =
[@inline_let] let len = 20ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_ed25519_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
BE.lprecomp_get_consttime len ctx_len k l table_len ctx a table bits_l tmp
inline_for_extraction noextract
val point_mul_g_noalloc: out:point -> bscalar:lbuffer uint64 4ul
-> q1:point -> q2:point
-> q3:point -> q4:point ->
Stack unit
(requires fun h ->
live h bscalar /\ live h out /\ live h q1 /\
live h q2 /\ live h q3 /\ live h q4 /\
disjoint out bscalar /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out q3 /\ disjoint out q4 /\
disjoint q1 q2 /\ disjoint q1 q3 /\ disjoint q1 q4 /\
disjoint q2 q3 /\ disjoint q2 q4 /\ disjoint q3 q4 /\
BD.bn_v h bscalar < pow2 256 /\
F51.linv (as_seq h q1) /\ refl (as_seq h q1) == g_aff /\
F51.linv (as_seq h q2) /\ refl (as_seq h q2) == g_pow2_64 /\
F51.linv (as_seq h q3) /\ refl (as_seq h q3) == g_pow2_128 /\
F51.linv (as_seq h q4) /\ refl (as_seq h q4) == g_pow2_192)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.linv (as_seq h1 out) /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v h0 bscalar) in
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_four_fw S.mk_ed25519_comm_monoid
g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
let point_mul_g_noalloc out bscalar q1 q2 q3 q4 =
[@inline_let] let len = 20ul in
[@inline_let] let ctx_len = 0ul in
[@inline_let] let k = mk_ed25519_concrete_ops in
[@inline_let] let l = 4ul in
[@inline_let] let table_len = 16ul in
[@inline_let] let bLen = 1ul in
[@inline_let] let bBits = 64ul in
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w4 precomp_basepoint_table_lseq_w4;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w4));
recall_contents precomp_g_pow2_64_table_w4 precomp_g_pow2_64_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_64_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q2) (as_seq h1 precomp_g_pow2_64_table_w4));
recall_contents precomp_g_pow2_128_table_w4 precomp_g_pow2_128_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_128_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q3) (as_seq h1 precomp_g_pow2_128_table_w4));
recall_contents precomp_g_pow2_192_table_w4 precomp_g_pow2_192_table_lseq_w4;
let h1 = ST.get () in
precomp_g_pow2_192_table_lemma_w4 ();
assert (table_inv_w4 (as_seq h1 q4) (as_seq h1 precomp_g_pow2_192_table_w4));
let r1 = sub bscalar 0ul 1ul in
let r2 = sub bscalar 1ul 1ul in
let r3 = sub bscalar 2ul 1ul in
let r4 = sub bscalar 3ul 1ul in
SPT256.lemma_decompose_nat256_as_four_u64_lbignum (as_seq h0 bscalar);
ME.mk_lexp_four_fw_tables len ctx_len k l table_len
table_inv_w4 table_inv_w4 table_inv_w4 table_inv_w4
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
precomp_get_consttime
(null uint64) q1 bLen bBits r1 q2 r2 q3 r3 q4 r4
(to_const precomp_basepoint_table_w4)
(to_const precomp_g_pow2_64_table_w4)
(to_const precomp_g_pow2_128_table_w4)
(to_const precomp_g_pow2_192_table_w4)
out;
LowStar.Ignore.ignore q2; // q2, q3, q4 are unused variables
LowStar.Ignore.ignore q3;
LowStar.Ignore.ignore q4
inline_for_extraction noextract
val point_mul_g_mk_q1234: out:point -> bscalar:lbuffer uint64 4ul -> q1:point ->
Stack unit
(requires fun h ->
live h bscalar /\ live h out /\ live h q1 /\
disjoint out bscalar /\ disjoint out q1 /\
BD.bn_v h bscalar < pow2 256 /\
F51.linv (as_seq h q1) /\ refl (as_seq h q1) == g_aff)
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.linv (as_seq h1 out) /\
(let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 (BD.bn_v h0 bscalar) in
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_four_fw S.mk_ed25519_comm_monoid
g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4))
let point_mul_g_mk_q1234 out bscalar q1 =
push_frame ();
let q2 = mk_ext_g_pow2_64 () in
let q3 = mk_ext_g_pow2_128 () in
let q4 = mk_ext_g_pow2_192 () in
ext_g_pow2_64_lseq_lemma ();
ext_g_pow2_128_lseq_lemma ();
ext_g_pow2_192_lseq_lemma ();
point_mul_g_noalloc out bscalar q1 q2 q3 q4;
pop_frame ()
val lemma_exp_four_fw_local: b:BSeq.lbytes 32 ->
Lemma (let bn = BSeq.nat_from_bytes_le b in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in
let cm = S.mk_ed25519_comm_monoid in
LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 ==
S.to_aff_point (S.point_mul_g b))
let lemma_exp_four_fw_local b =
let bn = BSeq.nat_from_bytes_le b in
let (b0, b1, b2, b3) = SPT256.decompose_nat256_as_four_u64 bn in
let cm = S.mk_ed25519_comm_monoid in
let res = LE.exp_four_fw cm g_aff 64 b0 g_pow2_64 b1 g_pow2_128 b2 g_pow2_192 b3 4 in
assert (res == SPT256.exp_as_exp_four_nat256_precomp cm g_aff bn);
SPT256.lemma_point_mul_base_precomp4 cm g_aff bn;
assert (res == LE.pow cm g_aff bn);
SE.exp_fw_lemma S.mk_ed25519_concrete_ops g_c 256 bn 4;
LE.exp_fw_lemma cm g_aff 256 bn 4;
assert (S.to_aff_point (S.point_mul_g b) == LE.pow cm g_aff bn)
[@CInline]
let point_mul_g out scalar =
push_frame ();
let h0 = ST.get () in
let bscalar = create 4ul (u64 0) in
convert_scalar scalar bscalar;
let q1 = create 20ul (u64 0) in
make_g q1;
point_mul_g_mk_q1234 out bscalar q1;
lemma_exp_four_fw_local (as_seq h0 scalar);
pop_frame ()
inline_for_extraction noextract
val point_mul_g_double_vartime_noalloc:
out:point
-> scalar1:lbuffer uint64 4ul -> q1:point
-> scalar2:lbuffer uint64 4ul -> q2:point
-> table2: lbuffer uint64 640ul ->
Stack unit
(requires fun h ->
live h out /\ live h scalar1 /\ live h q1 /\
live h scalar2 /\ live h q2 /\ live h table2 /\
eq_or_disjoint q1 q2 /\ disjoint out q1 /\ disjoint out q2 /\
disjoint out scalar1 /\ disjoint out scalar2 /\ disjoint out table2 /\
BD.bn_v h scalar1 < pow2 256 /\ BD.bn_v h scalar2 < pow2 256 /\
F51.linv (as_seq h q1) /\ F51.linv (as_seq h q2) /\
F51.point_eval h q1 == g_c /\
table_inv_w5 (as_seq h q2) (as_seq h table2))
(ensures fun h0 _ h1 -> modifies (loc out) h0 h1 /\
F51.linv (as_seq h1 out) /\
S.to_aff_point (F51.point_eval h1 out) ==
LE.exp_double_fw #S.aff_point_c S.mk_ed25519_comm_monoid
(S.to_aff_point (F51.point_eval h0 q1)) 256 (BD.bn_v h0 scalar1)
(S.to_aff_point (F51.point_eval h0 q2)) (BD.bn_v h0 scalar2) 5) | {
"checked_file": "/",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"Spec.Ed25519.Lemmas.fsti.checked",
"Spec.Ed25519.fst.checked",
"prims.fst.checked",
"LowStar.Ignore.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.PrecompBaseTable256.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.Convert.fst.checked",
"Hacl.Impl.PrecompTable.fsti.checked",
"Hacl.Impl.MultiExponentiation.fsti.checked",
"Hacl.Impl.Exponentiation.fsti.checked",
"Hacl.Impl.Ed25519.PointNegate.fst.checked",
"Hacl.Impl.Ed25519.PointConstants.fst.checked",
"Hacl.Impl.Ed25519.Group.fst.checked",
"Hacl.Impl.Ed25519.Field51.fst.checked",
"Hacl.Ed25519.PrecompTable.fsti.checked",
"Hacl.Bignum25519.fsti.checked",
"Hacl.Bignum.Definitions.fst.checked",
"Hacl.Bignum.Convert.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Impl.Ed25519.Ladder.fst"
} | [
{
"abbrev": false,
"full_module": "Hacl.Ed25519.PrecompTable",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519.Group",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519.PointConstants",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.PrecompBaseTable256",
"short_module": "SPT256"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.PrecompTable",
"short_module": "PT"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.MultiExponentiation",
"short_module": "ME"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Exponentiation",
"short_module": "BE"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": true,
"full_module": "Spec.Ed25519",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Hacl.Impl.Ed25519.Field51",
"short_module": "F51"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": false,
"full_module": "Hacl.Bignum25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Ed25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
out: Hacl.Bignum25519.point ->
scalar1: Lib.Buffer.lbuffer Lib.IntTypes.uint64 4ul ->
q1: Hacl.Bignum25519.point ->
scalar2: Lib.Buffer.lbuffer Lib.IntTypes.uint64 4ul ->
q2: Hacl.Bignum25519.point ->
table2: Lib.Buffer.lbuffer Lib.IntTypes.uint64 640ul
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum25519.point",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint64",
"FStar.UInt32.__uint_to_t",
"Hacl.Impl.MultiExponentiation.mk_lexp_double_fw_tables",
"Lib.IntTypes.U64",
"Hacl.Impl.Ed25519.Ladder.table_inv_w5",
"Hacl.Impl.Exponentiation.lprecomp_get_vartime",
"Lib.Buffer.null",
"Lib.Buffer.MUT",
"Lib.Buffer.to_const",
"Lib.Buffer.CONST",
"Hacl.Ed25519.PrecompTable.precomp_basepoint_table_w5",
"Prims.unit",
"Prims._assert",
"Lib.Buffer.as_seq",
"Hacl.Ed25519.PrecompTable.precomp_basepoint_table_lemma_w5",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Lib.Buffer.recall_contents",
"Hacl.Ed25519.PrecompTable.precomp_basepoint_table_lseq_w5",
"FStar.Pervasives.assert_norm",
"Prims.eq2",
"Prims.int",
"Prims.l_or",
"Prims.b2t",
"Prims.op_GreaterThan",
"Lib.IntTypes.range",
"Lib.IntTypes.U32",
"Prims.pow2",
"Lib.IntTypes.v",
"Lib.IntTypes.PUB",
"FStar.UInt32.t",
"Hacl.Impl.Exponentiation.Definitions.concrete_ops",
"FStar.UInt32.uint_to_t",
"Hacl.Impl.Ed25519.Group.mk_ed25519_concrete_ops"
] | [] | false | true | false | false | false | let point_mul_g_double_vartime_noalloc out scalar1 q1 scalar2 q2 table2 =
| [@@ inline_let ]let len = 20ul in
[@@ inline_let ]let ctx_len = 0ul in
[@@ inline_let ]let k = mk_ed25519_concrete_ops in
[@@ inline_let ]let l = 5ul in
[@@ inline_let ]let table_len = 32ul in
[@@ inline_let ]let bLen = 4ul in
[@@ inline_let ]let bBits = 256ul in
assert_norm (pow2 (v l) == v table_len);
let h0 = ST.get () in
recall_contents precomp_basepoint_table_w5 precomp_basepoint_table_lseq_w5;
let h1 = ST.get () in
precomp_basepoint_table_lemma_w5 ();
assert (table_inv_w5 (as_seq h1 q1) (as_seq h1 precomp_basepoint_table_w5));
assert (table_inv_w5 (as_seq h1 q2) (as_seq h1 table2));
ME.mk_lexp_double_fw_tables len ctx_len k l table_len table_inv_w5 table_inv_w5
(BE.lprecomp_get_vartime len ctx_len k l table_len)
(BE.lprecomp_get_vartime len ctx_len k l table_len) (null uint64) q1 bLen bBits scalar1 q2 scalar2
(to_const precomp_basepoint_table_w5) (to_const table2) out | false |
Hacl.Impl.Frodo.KEM.Encaps.fst | Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct | val crypto_kem_enc_ct:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h mu /\ live h pk /\ live h seed_se /\ live h ct /\
disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) | val crypto_kem_enc_ct:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h mu /\ live h pk /\ live h seed_se /\ live h ct /\
disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) | let crypto_kem_enc_ct a gen_a mu pk seed_se ct =
push_frame ();
let h0 = ST.get () in
FP.expand_crypto_publickeybytes a;
let seed_a = sub pk 0ul bytes_seed_a in
let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix = matrix_create params_nbar (params_n a) in
let ep_matrix = matrix_create params_nbar (params_n a) in
let epp_matrix = matrix_create params_nbar params_nbar in
get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix;
crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct;
clear_matrix3 a sp_matrix ep_matrix epp_matrix;
let h1 = ST.get () in
LSeq.eq_intro
(as_seq h1 ct)
(S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se));
pop_frame () | {
"file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 14,
"end_line": 281,
"start_col": 0,
"start_line": 263
} | module Hacl.Impl.Frodo.KEM.Encaps
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Matrix
open Hacl.Impl.Frodo.Params
open Hacl.Impl.Frodo.KEM
open Hacl.Impl.Frodo.Encode
open Hacl.Impl.Frodo.Pack
open Hacl.Impl.Frodo.Sample
open Hacl.Frodo.Random
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
module LB = Lib.ByteSequence
module FP = Spec.Frodo.Params
module S = Spec.Frodo.KEM.Encaps
module M = Spec.Matrix
module KG = Hacl.Impl.Frodo.KEM.KeyGen
#set-options "--z3rlimit 100 --fuel 0 --ifuel 0"
inline_for_extraction noextract
val frodo_mul_add_sa_plus_e:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> bp_matrix:matrix_t params_nbar (params_n a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\
disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\
as_matrix h1 bp_matrix ==
S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix =
push_frame ();
let a_matrix = matrix_create (params_n a) (params_n a) in
frodo_gen_matrix gen_a (params_n a) seed_a a_matrix;
matrix_mul sp_matrix a_matrix bp_matrix;
matrix_add bp_matrix ep_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c1:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> c1:lbytes (ct1bytes_len a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\
disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1)
(ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\
as_seq h1 c1 ==
S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix))
let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 =
push_frame ();
let bp_matrix = matrix_create params_nbar (params_n a) in
frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix;
frodo_pack (params_logq a) bp_matrix c1;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e:
a:FP.frodo_alg
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix =
push_frame ();
let b_matrix = matrix_create (params_n a) params_nbar in
frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix;
matrix_mul sp_matrix b_matrix v_matrix;
matrix_add v_matrix epp_matrix;
pop_frame ()
inline_for_extraction noextract
val frodo_mul_add_sb_plus_e_plus_mu:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> v_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h b /\ live h mu /\ live h v_matrix /\
live h sp_matrix /\ live h epp_matrix /\
disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\
disjoint v_matrix mu /\ disjoint v_matrix epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\
as_matrix h1 v_matrix ==
S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix =
push_frame ();
frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix;
let mu_encode = matrix_create params_nbar params_nbar in
frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode;
matrix_add v_matrix mu_encode;
clear_matrix mu_encode;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct_pack_c2:
a:FP.frodo_alg
-> mu:lbytes (bytes_mu a)
-> b:lbytes (publicmatrixbytes_len a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> c2:lbytes (ct2bytes_len a)
-> Stack unit
(requires fun h ->
live h mu /\ live h b /\ live h sp_matrix /\
live h epp_matrix /\ live h c2 /\
disjoint mu c2 /\ disjoint b c2 /\
disjoint sp_matrix c2 /\ disjoint epp_matrix c2)
(ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\
as_seq h1 c2 ==
S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix))
#push-options "--z3rlimit 200"
let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 =
push_frame ();
let v_matrix = matrix_create params_nbar params_nbar in
frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix;
frodo_pack (params_logq a) v_matrix c2;
clear_matrix v_matrix;
pop_frame ()
#pop-options
inline_for_extraction noextract
val get_sp_ep_epp_matrices:
a:FP.frodo_alg
-> seed_se:lbytes (crypto_bytes a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h seed_se /\ live h sp_matrix /\
live h ep_matrix /\ live h epp_matrix /\
disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\
disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\
disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\
(as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) ==
S.get_sp_ep_epp_matrices a (as_seq h0 seed_se))
let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix =
push_frame ();
[@inline_let] let s_bytes_len = secretmatrixbytes_len a in
let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in
KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r;
frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix;
frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix;
frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix;
pop_frame ()
inline_for_extraction noextract
val crypto_kem_enc_ct0:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> seed_a:lbytes bytes_seed_a
-> b:lbytes (publicmatrixbytes_len a)
-> mu:lbytes (bytes_mu a)
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h seed_a /\ live h b /\ live h mu /\ live h ct /\
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\
disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
(let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in
let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in
v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\
as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2))
let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct =
let c1 = sub ct 0ul (ct1bytes_len a) in
let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in
let h0 = ST.get () in
crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1;
let h1 = ST.get () in
crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2;
let h2 = ST.get () in
LSeq.eq_intro
(LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a)))
(LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)));
LSeq.lemma_concat2
(v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a)))
(v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct)
inline_for_extraction noextract
val clear_matrix3:
a:FP.frodo_alg
-> sp_matrix:matrix_t params_nbar (params_n a)
-> ep_matrix:matrix_t params_nbar (params_n a)
-> epp_matrix:matrix_t params_nbar params_nbar
-> Stack unit
(requires fun h ->
live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\
disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\
disjoint ep_matrix epp_matrix)
(ensures fun h0 _ h1 ->
modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1)
let clear_matrix3 a sp_matrix ep_matrix epp_matrix =
clear_matrix sp_matrix;
clear_matrix ep_matrix;
clear_matrix epp_matrix
inline_for_extraction noextract
val crypto_kem_enc_ct:
a:FP.frodo_alg
-> gen_a:FP.frodo_gen_a{is_supported gen_a}
-> mu:lbytes (bytes_mu a)
-> pk:lbytes (crypto_publickeybytes a)
-> seed_se:lbytes (crypto_bytes a)
-> ct:lbytes (crypto_ciphertextbytes a)
-> Stack unit
(requires fun h ->
live h mu /\ live h pk /\ live h seed_se /\ live h ct /\
disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se)
(ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\
as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) | {
"checked_file": "/",
"dependencies": [
"Spec.Matrix.fst.checked",
"Spec.Frodo.Params.fst.checked",
"Spec.Frodo.KEM.Encaps.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Matrix.fst.checked",
"Hacl.Impl.Frodo.Sample.fst.checked",
"Hacl.Impl.Frodo.Params.fst.checked",
"Hacl.Impl.Frodo.Pack.fst.checked",
"Hacl.Impl.Frodo.KEM.KeyGen.fst.checked",
"Hacl.Impl.Frodo.KEM.fst.checked",
"Hacl.Impl.Frodo.Encode.fst.checked",
"Hacl.Frodo.Random.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Impl.Frodo.KEM.KeyGen",
"short_module": "KG"
},
{
"abbrev": true,
"full_module": "Spec.Matrix",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.KEM.Encaps",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Params",
"short_module": "FP"
},
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "LB"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Frodo.Random",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Sample",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Pack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Encode",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.Params",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Matrix",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Frodo.KEM",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 200,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Frodo.Params.frodo_alg ->
gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} ->
mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) ->
pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) ->
seed_se: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) ->
ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Spec.Frodo.Params.frodo_alg",
"Spec.Frodo.Params.frodo_gen_a",
"Prims.b2t",
"Hacl.Impl.Frodo.Params.is_supported",
"Hacl.Impl.Matrix.lbytes",
"Hacl.Impl.Frodo.Params.bytes_mu",
"Hacl.Impl.Frodo.Params.crypto_publickeybytes",
"Hacl.Impl.Frodo.Params.crypto_bytes",
"Hacl.Impl.Frodo.Params.crypto_ciphertextbytes",
"FStar.HyperStack.ST.pop_frame",
"Prims.unit",
"Lib.Sequence.eq_intro",
"Lib.IntTypes.uint8",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Lib.Buffer.MUT",
"Spec.Frodo.KEM.Encaps.crypto_kem_enc_ct",
"FStar.Monotonic.HyperStack.mem",
"FStar.HyperStack.ST.get",
"Hacl.Impl.Frodo.KEM.Encaps.clear_matrix3",
"Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct0",
"Hacl.Impl.Frodo.KEM.Encaps.get_sp_ep_epp_matrices",
"Lib.Buffer.lbuffer_t",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U16",
"Lib.IntTypes.SEC",
"Lib.IntTypes.mul",
"Hacl.Impl.Frodo.Params.params_nbar",
"Hacl.Impl.Matrix.matrix_create",
"Hacl.Impl.Matrix.matrix_t",
"Hacl.Impl.Frodo.Params.params_n",
"Lib.IntTypes.U8",
"Hacl.Impl.Frodo.Params.publicmatrixbytes_len",
"Lib.Buffer.sub",
"Hacl.Impl.Frodo.Params.bytes_seed_a",
"FStar.UInt32.__uint_to_t",
"Spec.Frodo.Params.expand_crypto_publickeybytes",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let crypto_kem_enc_ct a gen_a mu pk seed_se ct =
| push_frame ();
let h0 = ST.get () in
FP.expand_crypto_publickeybytes a;
let seed_a = sub pk 0ul bytes_seed_a in
let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in
let sp_matrix = matrix_create params_nbar (params_n a) in
let ep_matrix = matrix_create params_nbar (params_n a) in
let epp_matrix = matrix_create params_nbar params_nbar in
get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix;
crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct;
clear_matrix3 a sp_matrix ep_matrix epp_matrix;
let h1 = ST.get () in
LSeq.eq_intro (as_seq h1 ct)
(S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se));
pop_frame () | false |
Hacl.Spec.P256.Montgomery.fst | Hacl.Spec.P256.Montgomery.bn_qmont_reduction_lemma | val bn_qmont_reduction_lemma: x:LSeq.lseq uint64 8 -> n:LSeq.lseq uint64 4 -> Lemma
(requires BD.bn_v n = S.order /\ BD.bn_v x < S.order * S.order)
(ensures BD.bn_v (SBM.bn_mont_reduction n (u64 0xccd1c8aaee00bc4f) x) ==
BD.bn_v x * qmont_R_inv % S.order) | val bn_qmont_reduction_lemma: x:LSeq.lseq uint64 8 -> n:LSeq.lseq uint64 4 -> Lemma
(requires BD.bn_v n = S.order /\ BD.bn_v x < S.order * S.order)
(ensures BD.bn_v (SBM.bn_mont_reduction n (u64 0xccd1c8aaee00bc4f) x) ==
BD.bn_v x * qmont_R_inv % S.order) | let bn_qmont_reduction_lemma x n =
let k0 = 0xccd1c8aaee00bc4f in
lemma_order_mont ();
assert (SBM.bn_mont_pre n (u64 k0));
let d, _ = SBML.eea_pow2_odd 256 (BD.bn_v n) in
let res = SBM.bn_mont_reduction n (u64 k0) x in
assert_norm (S.order * S.order < S.order * pow2 256);
assert (BD.bn_v x < S.order * pow2 256);
SBM.bn_mont_reduction_lemma n (u64 k0) x;
assert (BD.bn_v res == SBML.mont_reduction 64 4 (BD.bn_v n) k0 (BD.bn_v x));
SBML.mont_reduction_lemma 64 4 (BD.bn_v n) k0 (BD.bn_v x);
assert (BD.bn_v res == BD.bn_v x * d % S.order);
calc (==) {
(BD.bn_v x) * d % S.order;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (BD.bn_v x) d S.order }
(BD.bn_v x) * (d % S.order) % S.order;
(==) { }
(BD.bn_v x) * qmont_R_inv % S.order;
} | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Montgomery.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 279,
"start_col": 0,
"start_line": 259
} | module Hacl.Spec.P256.Montgomery
open FStar.Mul
open Lib.IntTypes
module S = Spec.P256
module M = Lib.NatMod
module BD = Hacl.Spec.Bignum.Definitions
module SBM = Hacl.Spec.Bignum.Montgomery
module SBML = Hacl.Spec.Montgomery.Lemmas
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Montgomery arithmetic for a base field
val lemma_abc_is_acb (a b c:nat) : Lemma (a * b * c = a * c * b)
let lemma_abc_is_acb a b c =
Math.Lemmas.paren_mul_right a b c;
Math.Lemmas.swap_mul b c;
Math.Lemmas.paren_mul_right a c b
val lemma_mod_mul_assoc (n:pos) (a b c:nat) : Lemma ((a * b % n) * c % n == (a * (b * c % n)) % n)
let lemma_mod_mul_assoc m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
val lemma_to_from_mont_id_gen (n mont_R mont_R_inv:pos) (a:nat{a < n}) : Lemma
(requires mont_R * mont_R_inv % n = 1)
(ensures (a * mont_R % n) * mont_R_inv % n == a)
let lemma_to_from_mont_id_gen n mont_R mont_R_inv a =
lemma_mod_mul_assoc n a mont_R mont_R_inv;
Math.Lemmas.modulo_lemma a n
val lemma_from_to_mont_id_gen (n mont_R mont_R_inv:pos) (a:nat{a < n}) : Lemma
(requires mont_R_inv * mont_R % n = 1)
(ensures (a * mont_R_inv % n) * mont_R % n == a)
let lemma_from_to_mont_id_gen n mont_R mont_R_inv a =
lemma_to_from_mont_id_gen n mont_R_inv mont_R a
val mont_mul_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma (((a * mont_R_inv % n) * (b * mont_R_inv % n)) % n ==
((a * b * mont_R_inv) % n) * mont_R_inv % n)
let mont_mul_lemma_gen n mont_R_inv a b =
calc (==) {
((a * mont_R_inv % n) * (b * mont_R_inv % n)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l
(a * mont_R_inv) (b * mont_R_inv % n) n }
(a * mont_R_inv * (b * mont_R_inv % n)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (a * mont_R_inv) (b * mont_R_inv) n }
(a * mont_R_inv * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a mont_R_inv (b * mont_R_inv) }
(a * (mont_R_inv * (b * mont_R_inv))) % n;
(==) { Math.Lemmas.paren_mul_right mont_R_inv b mont_R_inv }
(a * (mont_R_inv * b * mont_R_inv)) % n;
(==) { Math.Lemmas.swap_mul mont_R_inv b }
(a * (b * mont_R_inv * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a (b * mont_R_inv) mont_R_inv }
(a * (b * mont_R_inv) * mont_R_inv) % n;
(==) { Math.Lemmas.paren_mul_right a b mont_R_inv }
(a * b * mont_R_inv * mont_R_inv) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b * mont_R_inv) mont_R_inv n }
((a * b * mont_R_inv) % n) * mont_R_inv % n;
}
val mont_add_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma ((a * mont_R_inv % n + b * mont_R_inv % n) % n == (a + b) % n * mont_R_inv % n)
let mont_add_lemma_gen n mont_R_inv a b =
calc (==) {
(a * mont_R_inv % n + b * mont_R_inv % n) % n;
(==) { Math.Lemmas.modulo_distributivity (a * mont_R_inv) (b * mont_R_inv) n }
(a * mont_R_inv + b * mont_R_inv) % n;
(==) { Math.Lemmas.distributivity_add_left a b mont_R_inv }
(a + b) * mont_R_inv % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a + b) mont_R_inv n }
(a + b) % n * mont_R_inv % n;
}
val mont_sub_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma ((a * mont_R_inv % n - b * mont_R_inv % n) % n == (a - b) % n * mont_R_inv % n)
let mont_sub_lemma_gen n mont_R_inv a b =
calc (==) {
(a * mont_R_inv % n - b * mont_R_inv % n) % n;
(==) { Math.Lemmas.lemma_mod_sub_distr (a * mont_R_inv % n) (b * mont_R_inv) n }
(a * mont_R_inv % n - b * mont_R_inv) % n;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * mont_R_inv) (- b * mont_R_inv) n }
(a * mont_R_inv - b * mont_R_inv) % n;
(==) { Math.Lemmas.distributivity_sub_left a b mont_R_inv }
(a - b) * mont_R_inv % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a - b) mont_R_inv n }
(a - b) % n * mont_R_inv % n;
}
val lemma_mont_inv_gen (n:pos{1 < n}) (mont_R:pos) (mont_R_inv:nat{mont_R_inv < n}) (a:nat{a < n}) :
Lemma
(requires M.pow_mod #n mont_R_inv (n - 2) == mont_R % n)
(ensures M.pow_mod #n (a * mont_R_inv % n) (n - 2) == M.pow_mod #n a (n - 2) * mont_R % n)
let lemma_mont_inv_gen n mont_R mont_R_inv k =
M.lemma_pow_mod #n (k * mont_R_inv % n) (n - 2);
// assert (M.pow_mod #n (k * mont_R_inv % n) (n - 2) ==
// M.pow (k * mont_R_inv % n) (n - 2) % n);
M.lemma_pow_mod_base (k * mont_R_inv) (n - 2) n;
// == M.pow (k * mont_R_inv) (n - 2) % n
M.lemma_pow_mul_base k mont_R_inv (n - 2);
// == M.pow k (n - 2) * M.pow mont_R_inv (n - 2) % n
Math.Lemmas.lemma_mod_mul_distr_r (M.pow k (n - 2)) (M.pow mont_R_inv (n - 2)) n;
// == M.pow k (n - 2) * (M.pow mont_R_inv (n - 2) % n) % n
M.lemma_pow_mod #n mont_R_inv (n - 2);
assert (M.pow_mod #n (k * mont_R_inv % n) (n - 2) == M.pow k (n - 2) * (mont_R % n) % n);
Math.Lemmas.lemma_mod_mul_distr_r (M.pow k (n - 2)) mont_R n;
// == M.pow k (n - 2) * mont_R % n
Math.Lemmas.lemma_mod_mul_distr_l (M.pow k (n - 2)) mont_R n;
// == M.pow k (n - 2) % n * mont_R % n
M.lemma_pow_mod #n k (n - 2)
let mont_cancel_lemma_gen n mont_R mont_R_inv a b =
calc (==) {
(a * mont_R % n * b * mont_R_inv) % n;
(==) { Math.Lemmas.paren_mul_right (a * mont_R % n) b mont_R_inv }
(a * mont_R % n * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * mont_R) (b * mont_R_inv) n }
(a * mont_R * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a mont_R (b * mont_R_inv);
Math.Lemmas.swap_mul mont_R (b * mont_R_inv) }
(a * (b * mont_R_inv * mont_R)) % n;
(==) { Math.Lemmas.paren_mul_right b mont_R_inv mont_R }
(a * (b * (mont_R_inv * mont_R))) % n;
(==) { Math.Lemmas.paren_mul_right a b (mont_R_inv * mont_R) }
(a * b * (mont_R_inv * mont_R)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (a * b) (mont_R_inv * mont_R) n }
(a * b * (mont_R_inv * mont_R % n)) % n;
(==) { assert (mont_R_inv * mont_R % n = 1) }
(a * b) % n;
}
let fmont_R_inv =
let d, _ = SBML.eea_pow2_odd 256 S.prime in d % S.prime
let mul_fmont_R_and_R_inv_is_one () =
let d, k = SBML.eea_pow2_odd 256 S.prime in
SBML.mont_preconditions_d 64 4 S.prime;
assert (d * pow2 256 % S.prime = 1);
Math.Lemmas.lemma_mod_mul_distr_l d (pow2 256) S.prime
//--------------------------------------//
// bn_mont_reduction is x * fmont_R_inv //
//--------------------------------------//
val lemma_prime_mont: unit ->
Lemma (S.prime % 2 = 1 /\ S.prime < pow2 256 /\ (1 + S.prime) % pow2 64 = 0)
let lemma_prime_mont () =
assert_norm (S.prime % 2 = 1);
assert_norm (S.prime < pow2 256);
assert_norm ((1 + S.prime) % pow2 64 = 0)
let bn_mont_reduction_lemma x n =
lemma_prime_mont ();
assert (SBM.bn_mont_pre n (u64 1));
let d, _ = SBML.eea_pow2_odd 256 (BD.bn_v n) in
let res = SBM.bn_mont_reduction n (u64 1) x in
assert_norm (S.prime * S.prime < S.prime * pow2 256);
assert (BD.bn_v x < S.prime * pow2 256);
SBM.bn_mont_reduction_lemma n (u64 1) x;
assert (BD.bn_v res == SBML.mont_reduction 64 4 (BD.bn_v n) 1 (BD.bn_v x));
SBML.mont_reduction_lemma 64 4 (BD.bn_v n) 1 (BD.bn_v x);
assert (BD.bn_v res == BD.bn_v x * d % S.prime);
calc (==) {
BD.bn_v x * d % S.prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (BD.bn_v x) d S.prime }
BD.bn_v x * (d % S.prime) % S.prime;
(==) { }
BD.bn_v x * fmont_R_inv % S.prime;
}
//---------------------------
let lemma_from_mont_zero a =
Spec.P256.Lemmas.prime_lemma ();
Lib.NatMod.lemma_mul_mod_prime_zero #S.prime a fmont_R_inv
let lemma_to_from_mont_id a =
mul_fmont_R_and_R_inv_is_one ();
lemma_to_from_mont_id_gen S.prime fmont_R fmont_R_inv a
let lemma_from_to_mont_id a =
mul_fmont_R_and_R_inv_is_one ();
lemma_from_to_mont_id_gen S.prime fmont_R fmont_R_inv a
let fmont_mul_lemma a b =
mont_mul_lemma_gen S.prime fmont_R_inv a b
let fmont_add_lemma a b =
mont_add_lemma_gen S.prime fmont_R_inv a b
let fmont_sub_lemma a b =
mont_sub_lemma_gen S.prime fmont_R_inv a b
/// Montgomery arithmetic for a scalar field
let qmont_R_inv =
let d, _ = SBML.eea_pow2_odd 256 S.order in d % S.order
let mul_qmont_R_and_R_inv_is_one () =
let d, k = SBML.eea_pow2_odd 256 S.order in
SBML.mont_preconditions_d 64 4 S.order;
assert (d * pow2 256 % S.order = 1);
Math.Lemmas.lemma_mod_mul_distr_l d (pow2 256) S.order;
assert (d % S.order * pow2 256 % S.order = 1)
//--------------------------------------//
// bn_mont_reduction is x * qmont_R_inv //
//--------------------------------------//
val lemma_order_mont: unit ->
Lemma (S.order % 2 = 1 /\ S.order < pow2 256 /\ (1 + S.order * 0xccd1c8aaee00bc4f) % pow2 64 = 0)
let lemma_order_mont () =
assert_norm (S.order % 2 = 1);
assert_norm (S.order < pow2 256);
assert_norm ((1 + S.order * 0xccd1c8aaee00bc4f) % pow2 64 = 0) | {
"checked_file": "/",
"dependencies": [
"Spec.P256.Lemmas.fsti.checked",
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.P256.Montgomery.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "SBML"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SBM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Lib.Sequence.lseq Lib.IntTypes.uint64 8 -> n: Lib.Sequence.lseq Lib.IntTypes.uint64 4
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.Bignum.Definitions.bn_v n = Spec.P256.PointOps.order /\
Hacl.Spec.Bignum.Definitions.bn_v x < Spec.P256.PointOps.order * Spec.P256.PointOps.order)
(ensures
Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Bignum.Montgomery.bn_mont_reduction n
(Lib.IntTypes.u64 0xccd1c8aaee00bc4f)
x) ==
Hacl.Spec.Bignum.Definitions.bn_v x * Hacl.Spec.P256.Montgomery.qmont_R_inv %
Spec.P256.PointOps.order) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Lib.Sequence.lseq",
"Lib.IntTypes.uint64",
"Prims.int",
"FStar.Calc.calc_finish",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.Bignum.Definitions.bn_v",
"Lib.IntTypes.U64",
"Spec.P256.PointOps.order",
"Hacl.Spec.P256.Montgomery.qmont_R_inv",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"FStar.Math.Lemmas.lemma_mod_mul_distr_r",
"Prims.squash",
"Prims._assert",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction_lemma",
"Prims.nat",
"Hacl.Spec.Montgomery.Lemmas.mont_reduction",
"Hacl.Spec.Bignum.Montgomery.bn_mont_reduction_lemma",
"Lib.IntTypes.u64",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Pervasives.assert_norm",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Bignum.Montgomery.bn_mont_reduction",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Montgomery.Lemmas.eea_pow2_odd",
"Hacl.Spec.Bignum.Montgomery.bn_mont_pre",
"Hacl.Spec.P256.Montgomery.lemma_order_mont"
] | [] | false | false | true | false | false | let bn_qmont_reduction_lemma x n =
| let k0 = 0xccd1c8aaee00bc4f in
lemma_order_mont ();
assert (SBM.bn_mont_pre n (u64 k0));
let d, _ = SBML.eea_pow2_odd 256 (BD.bn_v n) in
let res = SBM.bn_mont_reduction n (u64 k0) x in
assert_norm (S.order * S.order < S.order * pow2 256);
assert (BD.bn_v x < S.order * pow2 256);
SBM.bn_mont_reduction_lemma n (u64 k0) x;
assert (BD.bn_v res == SBML.mont_reduction 64 4 (BD.bn_v n) k0 (BD.bn_v x));
SBML.mont_reduction_lemma 64 4 (BD.bn_v n) k0 (BD.bn_v x);
assert (BD.bn_v res == BD.bn_v x * d % S.order);
calc ( == ) {
(BD.bn_v x) * d % S.order;
( == ) { Math.Lemmas.lemma_mod_mul_distr_r (BD.bn_v x) d S.order }
(BD.bn_v x) * (d % S.order) % S.order;
( == ) { () }
(BD.bn_v x) * qmont_R_inv % S.order;
} | false |
Hacl.Spec.P256.Montgomery.fst | Hacl.Spec.P256.Montgomery.qmont_inv_mul_lemma | val qmont_inv_mul_lemma: s:S.qelem -> sinv:S.qelem -> b:S.qelem -> Lemma
(requires from_qmont sinv == S.qinv (from_qmont s)) // post-condition of qinv
(ensures S.qinv s * b % S.order == from_qmont (sinv * from_qmont b)) | val qmont_inv_mul_lemma: s:S.qelem -> sinv:S.qelem -> b:S.qelem -> Lemma
(requires from_qmont sinv == S.qinv (from_qmont s)) // post-condition of qinv
(ensures S.qinv s * b % S.order == from_qmont (sinv * from_qmont b)) | let qmont_inv_mul_lemma s sinv b =
let s_mont = from_qmont s in
let b_mont = from_qmont b in
calc (==) {
(sinv * b_mont * qmont_R_inv) % S.order;
(==) { lemma_from_to_qmont_id sinv }
(S.qinv s_mont * qmont_R % S.order * b_mont * qmont_R_inv) % S.order;
(==) { qmont_cancel_lemma1 (S.qinv s_mont) b_mont }
S.qinv s_mont * b_mont % S.order;
(==) { qmont_inv_lemma s }
(S.qinv s * qmont_R % S.order * (b * qmont_R_inv % S.order)) % S.order;
(==) { qmont_cancel_lemma2 (S.qinv s) b }
S.qinv s * b % S.order;
} | {
"file_name": "code/ecdsap256/Hacl.Spec.P256.Montgomery.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 351,
"start_col": 0,
"start_line": 338
} | module Hacl.Spec.P256.Montgomery
open FStar.Mul
open Lib.IntTypes
module S = Spec.P256
module M = Lib.NatMod
module BD = Hacl.Spec.Bignum.Definitions
module SBM = Hacl.Spec.Bignum.Montgomery
module SBML = Hacl.Spec.Montgomery.Lemmas
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
/// Montgomery arithmetic for a base field
val lemma_abc_is_acb (a b c:nat) : Lemma (a * b * c = a * c * b)
let lemma_abc_is_acb a b c =
Math.Lemmas.paren_mul_right a b c;
Math.Lemmas.swap_mul b c;
Math.Lemmas.paren_mul_right a c b
val lemma_mod_mul_assoc (n:pos) (a b c:nat) : Lemma ((a * b % n) * c % n == (a * (b * c % n)) % n)
let lemma_mod_mul_assoc m a b c =
calc (==) {
(a * b % m) * c % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b) c m }
(a * b) * c % m;
(==) { Math.Lemmas.paren_mul_right a b c }
a * (b * c) % m;
(==) { Math.Lemmas.lemma_mod_mul_distr_r a (b * c) m }
a * (b * c % m) % m;
}
val lemma_to_from_mont_id_gen (n mont_R mont_R_inv:pos) (a:nat{a < n}) : Lemma
(requires mont_R * mont_R_inv % n = 1)
(ensures (a * mont_R % n) * mont_R_inv % n == a)
let lemma_to_from_mont_id_gen n mont_R mont_R_inv a =
lemma_mod_mul_assoc n a mont_R mont_R_inv;
Math.Lemmas.modulo_lemma a n
val lemma_from_to_mont_id_gen (n mont_R mont_R_inv:pos) (a:nat{a < n}) : Lemma
(requires mont_R_inv * mont_R % n = 1)
(ensures (a * mont_R_inv % n) * mont_R % n == a)
let lemma_from_to_mont_id_gen n mont_R mont_R_inv a =
lemma_to_from_mont_id_gen n mont_R_inv mont_R a
val mont_mul_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma (((a * mont_R_inv % n) * (b * mont_R_inv % n)) % n ==
((a * b * mont_R_inv) % n) * mont_R_inv % n)
let mont_mul_lemma_gen n mont_R_inv a b =
calc (==) {
((a * mont_R_inv % n) * (b * mont_R_inv % n)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l
(a * mont_R_inv) (b * mont_R_inv % n) n }
(a * mont_R_inv * (b * mont_R_inv % n)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (a * mont_R_inv) (b * mont_R_inv) n }
(a * mont_R_inv * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a mont_R_inv (b * mont_R_inv) }
(a * (mont_R_inv * (b * mont_R_inv))) % n;
(==) { Math.Lemmas.paren_mul_right mont_R_inv b mont_R_inv }
(a * (mont_R_inv * b * mont_R_inv)) % n;
(==) { Math.Lemmas.swap_mul mont_R_inv b }
(a * (b * mont_R_inv * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a (b * mont_R_inv) mont_R_inv }
(a * (b * mont_R_inv) * mont_R_inv) % n;
(==) { Math.Lemmas.paren_mul_right a b mont_R_inv }
(a * b * mont_R_inv * mont_R_inv) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * b * mont_R_inv) mont_R_inv n }
((a * b * mont_R_inv) % n) * mont_R_inv % n;
}
val mont_add_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma ((a * mont_R_inv % n + b * mont_R_inv % n) % n == (a + b) % n * mont_R_inv % n)
let mont_add_lemma_gen n mont_R_inv a b =
calc (==) {
(a * mont_R_inv % n + b * mont_R_inv % n) % n;
(==) { Math.Lemmas.modulo_distributivity (a * mont_R_inv) (b * mont_R_inv) n }
(a * mont_R_inv + b * mont_R_inv) % n;
(==) { Math.Lemmas.distributivity_add_left a b mont_R_inv }
(a + b) * mont_R_inv % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a + b) mont_R_inv n }
(a + b) % n * mont_R_inv % n;
}
val mont_sub_lemma_gen (n:pos) (mont_R_inv a b: nat) :
Lemma ((a * mont_R_inv % n - b * mont_R_inv % n) % n == (a - b) % n * mont_R_inv % n)
let mont_sub_lemma_gen n mont_R_inv a b =
calc (==) {
(a * mont_R_inv % n - b * mont_R_inv % n) % n;
(==) { Math.Lemmas.lemma_mod_sub_distr (a * mont_R_inv % n) (b * mont_R_inv) n }
(a * mont_R_inv % n - b * mont_R_inv) % n;
(==) { Math.Lemmas.lemma_mod_plus_distr_l (a * mont_R_inv) (- b * mont_R_inv) n }
(a * mont_R_inv - b * mont_R_inv) % n;
(==) { Math.Lemmas.distributivity_sub_left a b mont_R_inv }
(a - b) * mont_R_inv % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a - b) mont_R_inv n }
(a - b) % n * mont_R_inv % n;
}
val lemma_mont_inv_gen (n:pos{1 < n}) (mont_R:pos) (mont_R_inv:nat{mont_R_inv < n}) (a:nat{a < n}) :
Lemma
(requires M.pow_mod #n mont_R_inv (n - 2) == mont_R % n)
(ensures M.pow_mod #n (a * mont_R_inv % n) (n - 2) == M.pow_mod #n a (n - 2) * mont_R % n)
let lemma_mont_inv_gen n mont_R mont_R_inv k =
M.lemma_pow_mod #n (k * mont_R_inv % n) (n - 2);
// assert (M.pow_mod #n (k * mont_R_inv % n) (n - 2) ==
// M.pow (k * mont_R_inv % n) (n - 2) % n);
M.lemma_pow_mod_base (k * mont_R_inv) (n - 2) n;
// == M.pow (k * mont_R_inv) (n - 2) % n
M.lemma_pow_mul_base k mont_R_inv (n - 2);
// == M.pow k (n - 2) * M.pow mont_R_inv (n - 2) % n
Math.Lemmas.lemma_mod_mul_distr_r (M.pow k (n - 2)) (M.pow mont_R_inv (n - 2)) n;
// == M.pow k (n - 2) * (M.pow mont_R_inv (n - 2) % n) % n
M.lemma_pow_mod #n mont_R_inv (n - 2);
assert (M.pow_mod #n (k * mont_R_inv % n) (n - 2) == M.pow k (n - 2) * (mont_R % n) % n);
Math.Lemmas.lemma_mod_mul_distr_r (M.pow k (n - 2)) mont_R n;
// == M.pow k (n - 2) * mont_R % n
Math.Lemmas.lemma_mod_mul_distr_l (M.pow k (n - 2)) mont_R n;
// == M.pow k (n - 2) % n * mont_R % n
M.lemma_pow_mod #n k (n - 2)
let mont_cancel_lemma_gen n mont_R mont_R_inv a b =
calc (==) {
(a * mont_R % n * b * mont_R_inv) % n;
(==) { Math.Lemmas.paren_mul_right (a * mont_R % n) b mont_R_inv }
(a * mont_R % n * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_l (a * mont_R) (b * mont_R_inv) n }
(a * mont_R * (b * mont_R_inv)) % n;
(==) { Math.Lemmas.paren_mul_right a mont_R (b * mont_R_inv);
Math.Lemmas.swap_mul mont_R (b * mont_R_inv) }
(a * (b * mont_R_inv * mont_R)) % n;
(==) { Math.Lemmas.paren_mul_right b mont_R_inv mont_R }
(a * (b * (mont_R_inv * mont_R))) % n;
(==) { Math.Lemmas.paren_mul_right a b (mont_R_inv * mont_R) }
(a * b * (mont_R_inv * mont_R)) % n;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (a * b) (mont_R_inv * mont_R) n }
(a * b * (mont_R_inv * mont_R % n)) % n;
(==) { assert (mont_R_inv * mont_R % n = 1) }
(a * b) % n;
}
let fmont_R_inv =
let d, _ = SBML.eea_pow2_odd 256 S.prime in d % S.prime
let mul_fmont_R_and_R_inv_is_one () =
let d, k = SBML.eea_pow2_odd 256 S.prime in
SBML.mont_preconditions_d 64 4 S.prime;
assert (d * pow2 256 % S.prime = 1);
Math.Lemmas.lemma_mod_mul_distr_l d (pow2 256) S.prime
//--------------------------------------//
// bn_mont_reduction is x * fmont_R_inv //
//--------------------------------------//
val lemma_prime_mont: unit ->
Lemma (S.prime % 2 = 1 /\ S.prime < pow2 256 /\ (1 + S.prime) % pow2 64 = 0)
let lemma_prime_mont () =
assert_norm (S.prime % 2 = 1);
assert_norm (S.prime < pow2 256);
assert_norm ((1 + S.prime) % pow2 64 = 0)
let bn_mont_reduction_lemma x n =
lemma_prime_mont ();
assert (SBM.bn_mont_pre n (u64 1));
let d, _ = SBML.eea_pow2_odd 256 (BD.bn_v n) in
let res = SBM.bn_mont_reduction n (u64 1) x in
assert_norm (S.prime * S.prime < S.prime * pow2 256);
assert (BD.bn_v x < S.prime * pow2 256);
SBM.bn_mont_reduction_lemma n (u64 1) x;
assert (BD.bn_v res == SBML.mont_reduction 64 4 (BD.bn_v n) 1 (BD.bn_v x));
SBML.mont_reduction_lemma 64 4 (BD.bn_v n) 1 (BD.bn_v x);
assert (BD.bn_v res == BD.bn_v x * d % S.prime);
calc (==) {
BD.bn_v x * d % S.prime;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (BD.bn_v x) d S.prime }
BD.bn_v x * (d % S.prime) % S.prime;
(==) { }
BD.bn_v x * fmont_R_inv % S.prime;
}
//---------------------------
let lemma_from_mont_zero a =
Spec.P256.Lemmas.prime_lemma ();
Lib.NatMod.lemma_mul_mod_prime_zero #S.prime a fmont_R_inv
let lemma_to_from_mont_id a =
mul_fmont_R_and_R_inv_is_one ();
lemma_to_from_mont_id_gen S.prime fmont_R fmont_R_inv a
let lemma_from_to_mont_id a =
mul_fmont_R_and_R_inv_is_one ();
lemma_from_to_mont_id_gen S.prime fmont_R fmont_R_inv a
let fmont_mul_lemma a b =
mont_mul_lemma_gen S.prime fmont_R_inv a b
let fmont_add_lemma a b =
mont_add_lemma_gen S.prime fmont_R_inv a b
let fmont_sub_lemma a b =
mont_sub_lemma_gen S.prime fmont_R_inv a b
/// Montgomery arithmetic for a scalar field
let qmont_R_inv =
let d, _ = SBML.eea_pow2_odd 256 S.order in d % S.order
let mul_qmont_R_and_R_inv_is_one () =
let d, k = SBML.eea_pow2_odd 256 S.order in
SBML.mont_preconditions_d 64 4 S.order;
assert (d * pow2 256 % S.order = 1);
Math.Lemmas.lemma_mod_mul_distr_l d (pow2 256) S.order;
assert (d % S.order * pow2 256 % S.order = 1)
//--------------------------------------//
// bn_mont_reduction is x * qmont_R_inv //
//--------------------------------------//
val lemma_order_mont: unit ->
Lemma (S.order % 2 = 1 /\ S.order < pow2 256 /\ (1 + S.order * 0xccd1c8aaee00bc4f) % pow2 64 = 0)
let lemma_order_mont () =
assert_norm (S.order % 2 = 1);
assert_norm (S.order < pow2 256);
assert_norm ((1 + S.order * 0xccd1c8aaee00bc4f) % pow2 64 = 0)
let bn_qmont_reduction_lemma x n =
let k0 = 0xccd1c8aaee00bc4f in
lemma_order_mont ();
assert (SBM.bn_mont_pre n (u64 k0));
let d, _ = SBML.eea_pow2_odd 256 (BD.bn_v n) in
let res = SBM.bn_mont_reduction n (u64 k0) x in
assert_norm (S.order * S.order < S.order * pow2 256);
assert (BD.bn_v x < S.order * pow2 256);
SBM.bn_mont_reduction_lemma n (u64 k0) x;
assert (BD.bn_v res == SBML.mont_reduction 64 4 (BD.bn_v n) k0 (BD.bn_v x));
SBML.mont_reduction_lemma 64 4 (BD.bn_v n) k0 (BD.bn_v x);
assert (BD.bn_v res == BD.bn_v x * d % S.order);
calc (==) {
(BD.bn_v x) * d % S.order;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (BD.bn_v x) d S.order }
(BD.bn_v x) * (d % S.order) % S.order;
(==) { }
(BD.bn_v x) * qmont_R_inv % S.order;
}
//--------------------------
let lemma_to_from_qmont_id a =
mul_qmont_R_and_R_inv_is_one ();
lemma_to_from_mont_id_gen S.order qmont_R qmont_R_inv a
let lemma_from_to_qmont_id a =
mul_qmont_R_and_R_inv_is_one ();
Math.Lemmas.swap_mul qmont_R qmont_R_inv;
lemma_from_to_mont_id_gen S.order qmont_R qmont_R_inv a
let qmont_add_lemma a b =
mont_add_lemma_gen S.order qmont_R_inv a b
let qmont_mul_lemma a b =
mont_mul_lemma_gen S.order qmont_R_inv a b
let qmont_inv_lemma k =
assert_norm (M.pow_mod_ #S.order qmont_R_inv (S.order - 2) == qmont_R % S.order);
M.pow_mod_def #S.order qmont_R_inv (S.order - 2);
assert (M.pow_mod #S.order qmont_R_inv (S.order - 2) == qmont_R % S.order);
lemma_mont_inv_gen S.order qmont_R qmont_R_inv k;
assert (M.pow_mod #S.order (k * qmont_R_inv % S.order) (S.order - 2) ==
M.pow_mod #S.order k (S.order - 2) * qmont_R % S.order);
assert (S.qinv (k * qmont_R_inv % S.order) == S.qinv k * qmont_R % S.order)
val qmont_cancel_lemma1: a:S.qelem -> b:S.qelem ->
Lemma ((a * qmont_R % S.order * b * qmont_R_inv) % S.order = a * b % S.order)
let qmont_cancel_lemma1 a b =
mul_qmont_R_and_R_inv_is_one ();
mont_cancel_lemma_gen S.order qmont_R qmont_R_inv a b
val qmont_cancel_lemma2: a:S.qelem -> b:S.qelem ->
Lemma (to_qmont a * from_qmont b % S.order = a * b % S.order)
let qmont_cancel_lemma2 a b =
calc (==) {
to_qmont a * from_qmont b % S.order;
(==) { }
(a * qmont_R % S.order * (b * qmont_R_inv % S.order)) % S.order;
(==) { Math.Lemmas.lemma_mod_mul_distr_r (a * qmont_R % S.order) (b * qmont_R_inv) S.order }
(a * qmont_R % S.order * (b * qmont_R_inv)) % S.order;
(==) { Math.Lemmas.paren_mul_right (a * qmont_R % S.order) b qmont_R_inv }
(a * qmont_R % S.order * b * qmont_R_inv) % S.order;
(==) { qmont_cancel_lemma1 a b }
a * b % S.order;
} | {
"checked_file": "/",
"dependencies": [
"Spec.P256.Lemmas.fsti.checked",
"Spec.P256.fst.checked",
"prims.fst.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Montgomery.Lemmas.fst.checked",
"Hacl.Spec.Bignum.Montgomery.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.P256.Montgomery.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Montgomery.Lemmas",
"short_module": "SBML"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Montgomery",
"short_module": "SBM"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": true,
"full_module": "Spec.P256",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.P256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Spec.P256.PointOps.qelem -> sinv: Spec.P256.PointOps.qelem -> b: Spec.P256.PointOps.qelem
-> FStar.Pervasives.Lemma
(requires
Hacl.Spec.P256.Montgomery.from_qmont sinv ==
Spec.P256.PointOps.qinv (Hacl.Spec.P256.Montgomery.from_qmont s))
(ensures
Spec.P256.PointOps.qinv s * b % Spec.P256.PointOps.order ==
Hacl.Spec.P256.Montgomery.from_qmont (sinv * Hacl.Spec.P256.Montgomery.from_qmont b)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Spec.P256.PointOps.qelem",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Modulus",
"FStar.Mul.op_Star",
"Hacl.Spec.P256.Montgomery.qmont_R_inv",
"Spec.P256.PointOps.order",
"Spec.P256.PointOps.qinv",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Hacl.Spec.P256.Montgomery.qmont_R",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Hacl.Spec.P256.Montgomery.lemma_from_to_qmont_id",
"Prims.squash",
"Hacl.Spec.P256.Montgomery.qmont_cancel_lemma1",
"Hacl.Spec.P256.Montgomery.qmont_inv_lemma",
"Hacl.Spec.P256.Montgomery.qmont_cancel_lemma2",
"Hacl.Spec.P256.Montgomery.from_qmont"
] | [] | false | false | true | false | false | let qmont_inv_mul_lemma s sinv b =
| let s_mont = from_qmont s in
let b_mont = from_qmont b in
calc ( == ) {
((sinv * b_mont) * qmont_R_inv) % S.order;
( == ) { lemma_from_to_qmont_id sinv }
(((S.qinv s_mont * qmont_R % S.order) * b_mont) * qmont_R_inv) % S.order;
( == ) { qmont_cancel_lemma1 (S.qinv s_mont) b_mont }
S.qinv s_mont * b_mont % S.order;
( == ) { qmont_inv_lemma s }
((S.qinv s * qmont_R % S.order) * (b * qmont_R_inv % S.order)) % S.order;
( == ) { qmont_cancel_lemma2 (S.qinv s) b }
S.qinv s * b % S.order;
} | false |
LowParse.Spec.List.fst | LowParse.Spec.List.parse_list | val parse_list
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot (parser parse_list_kind (list t)) | val parse_list
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Tot (parser parse_list_kind (list t)) | let parse_list #k #t p =
parse_list_bare_injective p;
parse_list_bare_consumes_all p;
parser_kind_prop_equiv parse_list_kind (parse_list_bare p);
parse_list_bare p | {
"file_name": "src/lowparse/LowParse.Spec.List.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 19,
"end_line": 59,
"start_col": 0,
"start_line": 55
} | module LowParse.Spec.List
include LowParse.Spec.Combinators // for seq_slice_append_l
module Seq = FStar.Seq
module L = FStar.List.Tot
module U32 = FStar.UInt32
module Classical = FStar.Classical
(* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *)
#push-options "--z3rlimit 16"
let parse_list_bare_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Lemma
(ensures (injective (parse_list_bare p)))
= parser_kind_prop_equiv k p;
let f () : Lemma
(injective p)
= ()
in
let rec aux
(b1: bytes)
(b2: bytes)
: Lemma
(requires (injective_precond (parse_list_bare p) b1 b2))
(ensures (injective_postcond (parse_list_bare p) b1 b2))
(decreases (Seq.length b1 + Seq.length b2))
= if Seq.length b1 = 0
then begin
() // assert (Seq.equal b1 b2)
end else begin
assert (injective_precond p b1 b2);
f ();
assert (injective_postcond p b1 b2);
let (Some (_, len1)) = parse p b1 in
let (Some (_, len2)) = parse p b2 in
assert ((len1 <: nat) == (len2 <: nat));
let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in
let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in
aux b1' b2';
let (Some (_, len1')) = parse (parse_list_bare p) b1' in
let (Some (_, len2')) = parse (parse_list_bare p) b2' in
Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1;
Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2;
assert (injective_postcond (parse_list_bare p) b1 b2)
end
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b))
#pop-options | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.List.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: LowParse.Spec.Base.parser k t
-> LowParse.Spec.Base.parser LowParse.Spec.List.parse_list_kind (Prims.list t) | Prims.Tot | [
"total"
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.List.parse_list_bare",
"Prims.unit",
"LowParse.Spec.Base.parser_kind_prop_equiv",
"Prims.list",
"LowParse.Spec.List.parse_list_kind",
"LowParse.Spec.List.parse_list_bare_consumes_all",
"LowParse.Spec.List.parse_list_bare_injective"
] | [] | false | false | false | false | false | let parse_list #k #t p =
| parse_list_bare_injective p;
parse_list_bare_consumes_all p;
parser_kind_prop_equiv parse_list_kind (parse_list_bare p);
parse_list_bare p | false |
Spec.Blake2.Definitions.fst | Spec.Blake2.Definitions.wt | val wt (a: alg) : t: inttype{unsigned t} | val wt (a: alg) : t: inttype{unsigned t} | let wt (a:alg) : t:inttype{unsigned t} =
match a with
| Blake2S -> U32
| Blake2B -> U64 | {
"file_name": "specs/Spec.Blake2.Definitions.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 21,
"start_col": 0,
"start_line": 18
} | module Spec.Blake2.Definitions
open FStar.Mul
open Lib.IntTypes
open Lib.RawIntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 50"
type alg =
| Blake2S
| Blake2B
let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Blake2.Definitions.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.RawIntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Blake2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Spec.Blake2.Definitions.alg -> t: Lib.IntTypes.inttype{Lib.IntTypes.unsigned t} | Prims.Tot | [
"total"
] | [] | [
"Spec.Blake2.Definitions.alg",
"Lib.IntTypes.U32",
"Lib.IntTypes.U64",
"Lib.IntTypes.inttype",
"Prims.b2t",
"Lib.IntTypes.unsigned"
] | [] | false | false | false | false | false | let wt (a: alg) : t: inttype{unsigned t} =
| match a with
| Blake2S -> U32
| Blake2B -> U64 | false |
LowParse.Spec.List.fst | LowParse.Spec.List.tot_parse_list_aux | val tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes)
: Pure (option (list t * (consumed_length b)))
(requires True)
(ensures (fun y -> y == parse_list_aux #k p b))
(decreases (Seq.length b)) | val tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes)
: Pure (option (list t * (consumed_length b)))
(requires True)
(ensures (fun y -> y == parse_list_aux #k p b))
(decreases (Seq.length b)) | let rec tot_parse_list_aux
(#k: parser_kind)
(#t: Type)
(p: tot_parser k t)
(b: bytes)
: Pure (option (list t * (consumed_length b)))
(requires True)
(ensures (fun y -> y == parse_list_aux #k p b))
(decreases (Seq.length b))
= if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match p b with
| None -> None
| Some (v, n) ->
if n = 0
then None (* elements cannot be empty *)
else
match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None | {
"file_name": "src/lowparse/LowParse.Spec.List.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 12,
"end_line": 127,
"start_col": 0,
"start_line": 106
} | module LowParse.Spec.List
include LowParse.Spec.Combinators // for seq_slice_append_l
module Seq = FStar.Seq
module L = FStar.List.Tot
module U32 = FStar.UInt32
module Classical = FStar.Classical
(* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *)
#push-options "--z3rlimit 16"
let parse_list_bare_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Lemma
(ensures (injective (parse_list_bare p)))
= parser_kind_prop_equiv k p;
let f () : Lemma
(injective p)
= ()
in
let rec aux
(b1: bytes)
(b2: bytes)
: Lemma
(requires (injective_precond (parse_list_bare p) b1 b2))
(ensures (injective_postcond (parse_list_bare p) b1 b2))
(decreases (Seq.length b1 + Seq.length b2))
= if Seq.length b1 = 0
then begin
() // assert (Seq.equal b1 b2)
end else begin
assert (injective_precond p b1 b2);
f ();
assert (injective_postcond p b1 b2);
let (Some (_, len1)) = parse p b1 in
let (Some (_, len2)) = parse p b2 in
assert ((len1 <: nat) == (len2 <: nat));
let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in
let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in
aux b1' b2';
let (Some (_, len1')) = parse (parse_list_bare p) b1' in
let (Some (_, len2')) = parse (parse_list_bare p) b2' in
Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1;
Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2;
assert (injective_postcond (parse_list_bare p) b1 b2)
end
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b))
#pop-options
let parse_list #k #t p =
parse_list_bare_injective p;
parse_list_bare_consumes_all p;
parser_kind_prop_equiv parse_list_kind (parse_list_bare p);
parse_list_bare p
let parse_list_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(b: bytes)
: Lemma
(parse (parse_list p) b == (
if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match parse p b with
| None -> None
| Some (v, n) ->
if n = 0
then None (* elements cannot be empty *)
else
match parse (parse_list p) (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None
))
= ()
let parse_list_eq'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(b: bytes)
: Lemma
(requires (k.parser_kind_low > 0))
(ensures (parse (parse_list p) b == (
if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match parse p b with
| None -> None
| Some (v, n) ->
begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None
end
)))
= () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.List.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: LowParse.Spec.Base.tot_parser k t -> b: LowParse.Bytes.bytes
-> Prims.Pure
(FStar.Pervasives.Native.option (Prims.list t * LowParse.Spec.Base.consumed_length b)) | Prims.Pure | [
""
] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.tot_parser",
"LowParse.Bytes.bytes",
"Prims.op_Equality",
"Prims.int",
"FStar.Seq.Base.length",
"LowParse.Bytes.byte",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.tuple2",
"Prims.list",
"LowParse.Spec.Base.consumed_length",
"FStar.Pervasives.Native.Mktuple2",
"Prims.Nil",
"Prims.bool",
"FStar.Pervasives.Native.None",
"LowParse.Spec.List.tot_parse_list_aux",
"FStar.Seq.Base.slice",
"Prims.Cons",
"Prims.op_Addition",
"FStar.Pervasives.Native.option",
"Prims.l_True",
"Prims.eq2",
"LowParse.Spec.List.parse_list_aux"
] | [
"recursion"
] | false | false | false | false | false | let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes)
: Pure (option (list t * (consumed_length b)))
(requires True)
(ensures (fun y -> y == parse_list_aux #k p b))
(decreases (Seq.length b)) =
| if Seq.length b = 0
then Some ([], (0 <: consumed_length b))
else
match p b with
| None -> None
| Some (v, n) ->
if n = 0
then None
else
match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None | false |
LowParse.Spec.List.fst | LowParse.Spec.List.serialize_list | val serialize_list
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(s: serializer p)
: Pure (serializer (parse_list p))
(requires (
serialize_list_precond k
))
(ensures (fun _ -> True)) | val serialize_list
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(s: serializer p)
: Pure (serializer (parse_list p))
(requires (
serialize_list_precond k
))
(ensures (fun _ -> True)) | let serialize_list
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(s: serializer p)
: Pure (serializer (parse_list p))
(requires (
serialize_list_precond k
))
(ensures (fun _ -> True))
= bare_serialize_list_correct p s;
bare_serialize_list p s | {
"file_name": "src/lowparse/LowParse.Spec.List.fst",
"git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa",
"git_url": "https://github.com/project-everest/everparse.git",
"project_name": "everparse"
} | {
"end_col": 25,
"end_line": 180,
"start_col": 0,
"start_line": 169
} | module LowParse.Spec.List
include LowParse.Spec.Combinators // for seq_slice_append_l
module Seq = FStar.Seq
module L = FStar.List.Tot
module U32 = FStar.UInt32
module Classical = FStar.Classical
(* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *)
#push-options "--z3rlimit 16"
let parse_list_bare_injective
(#k: parser_kind)
(#t: Type)
(p: parser k t)
: Lemma
(ensures (injective (parse_list_bare p)))
= parser_kind_prop_equiv k p;
let f () : Lemma
(injective p)
= ()
in
let rec aux
(b1: bytes)
(b2: bytes)
: Lemma
(requires (injective_precond (parse_list_bare p) b1 b2))
(ensures (injective_postcond (parse_list_bare p) b1 b2))
(decreases (Seq.length b1 + Seq.length b2))
= if Seq.length b1 = 0
then begin
() // assert (Seq.equal b1 b2)
end else begin
assert (injective_precond p b1 b2);
f ();
assert (injective_postcond p b1 b2);
let (Some (_, len1)) = parse p b1 in
let (Some (_, len2)) = parse p b2 in
assert ((len1 <: nat) == (len2 <: nat));
let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in
let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in
aux b1' b2';
let (Some (_, len1')) = parse (parse_list_bare p) b1' in
let (Some (_, len2')) = parse (parse_list_bare p) b2' in
Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1;
Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2;
assert (injective_postcond (parse_list_bare p) b1 b2)
end
in
Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b))
#pop-options
let parse_list #k #t p =
parse_list_bare_injective p;
parse_list_bare_consumes_all p;
parser_kind_prop_equiv parse_list_kind (parse_list_bare p);
parse_list_bare p
let parse_list_eq
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(b: bytes)
: Lemma
(parse (parse_list p) b == (
if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match parse p b with
| None -> None
| Some (v, n) ->
if n = 0
then None (* elements cannot be empty *)
else
match parse (parse_list p) (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None
))
= ()
let parse_list_eq'
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(b: bytes)
: Lemma
(requires (k.parser_kind_low > 0))
(ensures (parse (parse_list p) b == (
if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match parse p b with
| None -> None
| Some (v, n) ->
begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None
end
)))
= ()
let rec tot_parse_list_aux
(#k: parser_kind)
(#t: Type)
(p: tot_parser k t)
(b: bytes)
: Pure (option (list t * (consumed_length b)))
(requires True)
(ensures (fun y -> y == parse_list_aux #k p b))
(decreases (Seq.length b))
= if Seq.length b = 0
then
Some ([], (0 <: consumed_length b))
else
match p b with
| None -> None
| Some (v, n) ->
if n = 0
then None (* elements cannot be empty *)
else
match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with
| Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b))
| _ -> None
let tot_parse_list #k #t p =
parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p);
tot_parse_list_aux p
let bare_serialize_list_correct
(#k: parser_kind)
(#t: Type)
(p: parser k t)
(s: serializer p)
: Lemma
(requires (serialize_list_precond k))
(ensures (serializer_correct (parse_list p) (bare_serialize_list p s)))
= parser_kind_prop_equiv k p;
let f () : Lemma (serialize_list_precond k) = () in
let rec prf
(l: list t)
: Lemma
(parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l)))
= match l with
| [] -> ()
| a :: q ->
let pa = parse p (bare_serialize_list p s l) in
f ();
parser_kind_prop_equiv k p;
assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l));
seq_slice_append_l (serialize s a) (bare_serialize_list p s q);
assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l));
assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l));
assert (Some? pa);
assert (injective_precond p (serialize s a) (bare_serialize_list p s l));
assert (injective_postcond p (serialize s a) (bare_serialize_list p s l));
let (Some (a', lena)) = pa in
assert (a == a');
assert (lena == Seq.length (serialize s a));
assert (lena > 0);
prf q;
seq_slice_append_r (serialize s a) (bare_serialize_list p s q)
in
Classical.forall_intro prf | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowParse.Spec.Combinators.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "LowParse.Spec.List.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.Classical",
"short_module": "Classical"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": false,
"full_module": "LowParse.Spec.Combinators",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowParse.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: LowParse.Spec.Base.parser k t -> s: LowParse.Spec.Base.serializer p
-> Prims.Pure (LowParse.Spec.Base.serializer (LowParse.Spec.List.parse_list p)) | Prims.Pure | [] | [] | [
"LowParse.Spec.Base.parser_kind",
"LowParse.Spec.Base.parser",
"LowParse.Spec.Base.serializer",
"LowParse.Spec.List.bare_serialize_list",
"Prims.unit",
"LowParse.Spec.List.bare_serialize_list_correct",
"LowParse.Spec.List.parse_list_kind",
"Prims.list",
"LowParse.Spec.List.parse_list",
"Prims.b2t",
"LowParse.Spec.List.serialize_list_precond",
"Prims.l_True"
] | [] | false | false | false | false | false | let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p)
: Pure (serializer (parse_list p))
(requires (serialize_list_precond k))
(ensures (fun _ -> True)) =
| bare_serialize_list_correct p s;
bare_serialize_list p s | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.