file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
listlengths
0
2
mutual_with
listlengths
0
11
ideal_premises
listlengths
0
236
proof_features
listlengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.rounds
val rounds : a: Spec.Blake2.Definitions.alg -> Prims.int
let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 27, "start_col": 0, "start_line": 24 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.int" ]
[]
false
false
false
true
false
let rounds (a: alg) =
match a with | Blake2S -> 10 | Blake2B -> 12
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_hash_w
val size_hash_w:size_nat
val size_hash_w:size_nat
let size_hash_w : size_nat = 8
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 30, "start_col": 22, "start_line": 30 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
false
false
let size_hash_w:size_nat =
8
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_block_w
val size_block_w:size_nat
val size_block_w:size_nat
let size_block_w : size_nat = 16
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 31, "start_col": 22, "start_line": 31 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
false
false
let size_block_w:size_nat =
16
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_word
val size_word (a: alg) : size_nat
val size_word (a: alg) : size_nat
let size_word (a:alg) : size_nat = numbytes (wt a)
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 32, "start_col": 22, "start_line": 32 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.size_nat
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.numbytes", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.size_nat" ]
[]
false
false
false
true
false
let size_word (a: alg) : size_nat =
numbytes (wt a)
false
LowParse.Spec.List.fst
LowParse.Spec.List.tot_parse_list
val tot_parse_list (#k: parser_kind) (#t: Type) (p: tot_parser k t) : Pure (tot_parser parse_list_kind (list t)) (requires True) (ensures (fun y -> forall x . parse y x == parse (parse_list #k p) x ))
val tot_parse_list (#k: parser_kind) (#t: Type) (p: tot_parser k t) : Pure (tot_parser parse_list_kind (list t)) (requires True) (ensures (fun y -> forall x . parse y x == parse (parse_list #k p) x ))
let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 22, "end_line": 131, "start_col": 0, "start_line": 129 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.tot_parser k t -> Prims.Pure (LowParse.Spec.Base.tot_parser LowParse.Spec.List.parse_list_kind (Prims.list t))
Prims.Pure
[]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.tot_parser", "LowParse.Spec.List.tot_parse_list_aux", "Prims.unit", "LowParse.Spec.Base.parser_kind_prop_ext", "Prims.list", "LowParse.Spec.List.parse_list_kind", "LowParse.Spec.List.parse_list" ]
[]
false
false
false
false
false
let tot_parse_list #k #t p =
parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p
false
LowParse.Spec.List.fst
LowParse.Spec.List.serialize_list_cons_upd_chain
val serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s' ))
val serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s' ))
let serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s' )) = serialize_list_upd_chain s [] x l2 y i' s'
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 44, "end_line": 265, "start_col": 0, "start_line": 240 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Pure (serializer (parse_list p)) (requires ( serialize_list_precond k )) (ensures (fun _ -> True)) = bare_serialize_list_correct p s; bare_serialize_list p s let serialize_list_nil (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires ( serialize_list_precond k )) (ensures (serialize (serialize_list p s) [] == Seq.empty)) = () let serialize_list_cons (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) (q: list t) : Lemma (requires ( serialize_list_precond k )) (ensures ( serialize (serialize_list p s) (a :: q) == Seq.append (serialize s a) (serialize (serialize_list p s) q) )) = () let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) = Seq.append_empty_r (serialize s a) let rec serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2))) = match l1 with | a :: q -> serialize_list_append p s q l2; Seq.append_assoc (serialize s a) (serialize (serialize_list p s) q) (serialize (serialize_list p s) l2) | [] -> Seq.append_empty_l (serialize (serialize_list p s) l2) #push-options "--z3rlimit 64"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: LowParse.Spec.Base.serializer p -> x: t -> l2: Prims.list t -> y: t -> i': Prims.nat -> s': LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (requires (let sx = LowParse.Spec.Base.serialize s x in LowParse.Spec.List.serialize_list_precond k /\ i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length sx /\ LowParse.Spec.Base.serialize s y == LowParse.Spec.Base.seq_upd_seq sx i' s')) (ensures (let ln2 = FStar.Seq.Base.length (LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) l2) in let sx = LowParse.Spec.Base.serialize s x in let sl = LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) (x :: l2) in FStar.Seq.Base.length sl == FStar.Seq.Base.length sx + ln2 /\ i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length sl /\ LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) (y :: l2) == LowParse.Spec.Base.seq_upd_seq sl i' s'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.list", "Prims.nat", "LowParse.Bytes.bytes", "LowParse.Spec.List.serialize_list_upd_chain", "Prims.Nil", "Prims.unit", "Prims.l_and", "Prims.b2t", "LowParse.Spec.List.serialize_list_precond", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "Prims.eq2", "FStar.Seq.Base.seq", "LowParse.Spec.Base.serialize", "LowParse.Spec.Base.seq_upd_seq", "Prims.squash", "Prims.int", "LowParse.Spec.List.parse_list_kind", "LowParse.Spec.List.parse_list", "LowParse.Spec.List.serialize_list", "Prims.Cons", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i': nat) (s': bytes) : Lemma (requires (let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s')) (ensures (let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s')) =
serialize_list_upd_chain s [] x l2 y i' s'
false
LowParse.Spec.List.fst
LowParse.Spec.List.serialize_list_append
val serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2)))
val serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2)))
let rec serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2))) = match l1 with | a :: q -> serialize_list_append p s q l2; Seq.append_assoc (serialize s a) (serialize (serialize_list p s) q) (serialize (serialize_list p s) l2) | [] -> Seq.append_empty_l (serialize (serialize_list p s) l2)
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 235, "start_col": 0, "start_line": 221 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Pure (serializer (parse_list p)) (requires ( serialize_list_precond k )) (ensures (fun _ -> True)) = bare_serialize_list_correct p s; bare_serialize_list p s let serialize_list_nil (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires ( serialize_list_precond k )) (ensures (serialize (serialize_list p s) [] == Seq.empty)) = () let serialize_list_cons (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) (q: list t) : Lemma (requires ( serialize_list_precond k )) (ensures ( serialize (serialize_list p s) (a :: q) == Seq.append (serialize s a) (serialize (serialize_list p s) q) )) = () let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) = Seq.append_empty_r (serialize s a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> s: LowParse.Spec.Base.serializer p -> l1: Prims.list t -> l2: Prims.list t -> FStar.Pervasives.Lemma (requires LowParse.Spec.List.serialize_list_precond k) (ensures LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) (l1 @ l2) == FStar.Seq.Base.append (LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) l1) (LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) l2))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.list", "FStar.Seq.Base.append_assoc", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "LowParse.Spec.List.parse_list_kind", "LowParse.Spec.List.parse_list", "LowParse.Spec.List.serialize_list", "Prims.unit", "LowParse.Spec.List.serialize_list_append", "FStar.Seq.Base.append_empty_l", "Prims.b2t", "LowParse.Spec.List.serialize_list_precond", "Prims.squash", "Prims.eq2", "FStar.Seq.Base.seq", "FStar.List.Tot.Base.append", "FStar.Seq.Base.append", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2))) =
match l1 with | a :: q -> serialize_list_append p s q l2; Seq.append_assoc (serialize s a) (serialize (serialize_list p s) q) (serialize (serialize_list p s) l2) | [] -> Seq.append_empty_l (serialize (serialize_list p s) l2)
false
LowParse.Spec.List.fst
LowParse.Spec.List.serialize_list_singleton
val serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a))
val serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a))
let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) = Seq.append_empty_r (serialize s a)
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 219, "start_col": 0, "start_line": 210 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Pure (serializer (parse_list p)) (requires ( serialize_list_precond k )) (ensures (fun _ -> True)) = bare_serialize_list_correct p s; bare_serialize_list p s let serialize_list_nil (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires ( serialize_list_precond k )) (ensures (serialize (serialize_list p s) [] == Seq.empty)) = () let serialize_list_cons (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) (q: list t) : Lemma (requires ( serialize_list_precond k )) (ensures ( serialize (serialize_list p s) (a :: q) == Seq.append (serialize s a) (serialize (serialize_list p s) q) )) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> s: LowParse.Spec.Base.serializer p -> a: t -> FStar.Pervasives.Lemma (requires LowParse.Spec.List.serialize_list_precond k) (ensures LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) [a] == LowParse.Spec.Base.serialize s a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "FStar.Seq.Base.append_empty_r", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "Prims.unit", "Prims.b2t", "LowParse.Spec.List.serialize_list_precond", "Prims.squash", "Prims.eq2", "LowParse.Bytes.bytes", "LowParse.Spec.List.parse_list_kind", "Prims.list", "LowParse.Spec.List.parse_list", "LowParse.Spec.List.serialize_list", "Prims.Cons", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) =
Seq.append_empty_r (serialize s a)
false
LowParse.Spec.List.fst
LowParse.Spec.List.serialize_list_snoc_upd_chain
val serialize_list_snoc_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (l1: list t) (x: t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln1 = Seq.length (serialize (serialize_list _ s) l1) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (l1 `L.append` [x]) in Seq.length sl == ln1 + Seq.length sx /\ ln1 + i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (l1 `L.append` [y]) == seq_upd_seq sl (ln1 + i') s' ))
val serialize_list_snoc_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (l1: list t) (x: t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln1 = Seq.length (serialize (serialize_list _ s) l1) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (l1 `L.append` [x]) in Seq.length sl == ln1 + Seq.length sx /\ ln1 + i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (l1 `L.append` [y]) == seq_upd_seq sl (ln1 + i') s' ))
let serialize_list_snoc_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (l1: list t) (x: t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln1 = Seq.length (serialize (serialize_list _ s) l1) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (l1 `L.append` [x]) in Seq.length sl == ln1 + Seq.length sx /\ ln1 + i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (l1 `L.append` [y]) == seq_upd_seq sl (ln1 + i') s' )) = serialize_list_upd_chain s l1 x [] y i' s'
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 44, "end_line": 292, "start_col": 0, "start_line": 267 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Pure (serializer (parse_list p)) (requires ( serialize_list_precond k )) (ensures (fun _ -> True)) = bare_serialize_list_correct p s; bare_serialize_list p s let serialize_list_nil (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires ( serialize_list_precond k )) (ensures (serialize (serialize_list p s) [] == Seq.empty)) = () let serialize_list_cons (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) (q: list t) : Lemma (requires ( serialize_list_precond k )) (ensures ( serialize (serialize_list p s) (a :: q) == Seq.append (serialize s a) (serialize (serialize_list p s) q) )) = () let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) = Seq.append_empty_r (serialize s a) let rec serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2))) = match l1 with | a :: q -> serialize_list_append p s q l2; Seq.append_assoc (serialize s a) (serialize (serialize_list p s) q) (serialize (serialize_list p s) l2) | [] -> Seq.append_empty_l (serialize (serialize_list p s) l2) #push-options "--z3rlimit 64" let serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s' )) = serialize_list_upd_chain s [] x l2 y i' s'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 64, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: LowParse.Spec.Base.serializer p -> l1: Prims.list t -> x: t -> y: t -> i': Prims.nat -> s': LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (requires (let sx = LowParse.Spec.Base.serialize s x in LowParse.Spec.List.serialize_list_precond k /\ i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length sx /\ LowParse.Spec.Base.serialize s y == LowParse.Spec.Base.seq_upd_seq sx i' s')) (ensures (let ln1 = FStar.Seq.Base.length (LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) l1) in let sx = LowParse.Spec.Base.serialize s x in let sl = LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) (l1 @ [x]) in FStar.Seq.Base.length sl == ln1 + FStar.Seq.Base.length sx /\ ln1 + i' + FStar.Seq.Base.length s' <= FStar.Seq.Base.length sl /\ LowParse.Spec.Base.serialize (LowParse.Spec.List.serialize_list p s) (l1 @ [y]) == LowParse.Spec.Base.seq_upd_seq sl (ln1 + i') s'))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "Prims.list", "Prims.nat", "LowParse.Bytes.bytes", "LowParse.Spec.List.serialize_list_upd_chain", "Prims.Nil", "Prims.unit", "Prims.l_and", "Prims.b2t", "LowParse.Spec.List.serialize_list_precond", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "Prims.eq2", "FStar.Seq.Base.seq", "LowParse.Spec.Base.serialize", "LowParse.Spec.Base.seq_upd_seq", "Prims.squash", "Prims.int", "LowParse.Spec.List.parse_list_kind", "LowParse.Spec.List.parse_list", "LowParse.Spec.List.serialize_list", "FStar.List.Tot.Base.append", "Prims.Cons", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let serialize_list_snoc_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (l1: list t) (x y: t) (i': nat) (s': bytes) : Lemma (requires (let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s')) (ensures (let ln1 = Seq.length (serialize (serialize_list _ s) l1) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (l1 `L.append` [x]) in Seq.length sl == ln1 + Seq.length sx /\ ln1 + i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (l1 `L.append` [y]) == seq_upd_seq sl (ln1 + i') s')) =
serialize_list_upd_chain s l1 x [] y i' s'
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.get_blake2s_salt
val get_blake2s_salt : p: Spec.Blake2.Definitions.blake2s_params -> Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) (Spec.Blake2.Definitions.salt_length Spec.Blake2.Definitions.Blake2S)
let get_blake2s_salt (p:blake2s_params) = p.salt
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 124, "start_col": 0, "start_line": 124 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2s_params -> Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) (Spec.Blake2.Definitions.salt_length Spec.Blake2.Definitions.Blake2S)
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2s_params", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__salt", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.salt_length", "Spec.Blake2.Definitions.Blake2S" ]
[]
false
false
false
true
false
let get_blake2s_salt (p: blake2s_params) =
p.salt
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.get_blake2s_personal
val get_blake2s_personal : p: Spec.Blake2.Definitions.blake2s_params -> Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) (Spec.Blake2.Definitions.personal_length Spec.Blake2.Definitions.Blake2S)
let get_blake2s_personal (p:blake2s_params) = p.personal
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 56, "end_line": 127, "start_col": 0, "start_line": 127 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2s_params -> Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U8 Lib.IntTypes.SEC) (Spec.Blake2.Definitions.personal_length Spec.Blake2.Definitions.Blake2S)
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2s_params", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__personal", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.personal_length", "Spec.Blake2.Definitions.Blake2S" ]
[]
false
false
false
true
false
let get_blake2s_personal (p: blake2s_params) =
p.personal
false
LowParse.Spec.List.fst
LowParse.Spec.List.list_length_constant_size_parser_correct
val list_length_constant_size_parser_correct (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ Some? (parse (parse_list p) b) )) (ensures ( let pb = parse (parse_list p) b in Some? pb /\ ( let (Some (l, _)) = pb in FStar.Mul.op_Star (L.length l) k.parser_kind_low == Seq.length b ))) (decreases (Seq.length b))
val list_length_constant_size_parser_correct (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires ( k.parser_kind_high == Some k.parser_kind_low /\ Some? (parse (parse_list p) b) )) (ensures ( let pb = parse (parse_list p) b in Some? pb /\ ( let (Some (l, _)) = pb in FStar.Mul.op_Star (L.length l) k.parser_kind_low == Seq.length b ))) (decreases (Seq.length b))
let rec list_length_constant_size_parser_correct #k #t p b = parser_kind_prop_equiv k p; let n = k.parser_kind_low in if Seq.length b = 0 then () else begin let (Some (_, consumed)) = parse p b in assert ((consumed <: nat) == n); assert (n > 0); let b' : bytes = Seq.slice b n (Seq.length b) in list_length_constant_size_parser_correct p b'; let (Some (l', _)) = parse (parse_list p) b' in FStar.Math.Lemmas.distributivity_add_left 1 (L.length l') n end
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 309, "start_col": 0, "start_line": 296 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf let serialize_list (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Pure (serializer (parse_list p)) (requires ( serialize_list_precond k )) (ensures (fun _ -> True)) = bare_serialize_list_correct p s; bare_serialize_list p s let serialize_list_nil (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires ( serialize_list_precond k )) (ensures (serialize (serialize_list p s) [] == Seq.empty)) = () let serialize_list_cons (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) (q: list t) : Lemma (requires ( serialize_list_precond k )) (ensures ( serialize (serialize_list p s) (a :: q) == Seq.append (serialize s a) (serialize (serialize_list p s) q) )) = () let serialize_list_singleton (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (a: t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) [a] == serialize s a)) = Seq.append_empty_r (serialize s a) let rec serialize_list_append (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) (l1 l2: list t) : Lemma (requires (serialize_list_precond k)) (ensures (serialize (serialize_list p s) (L.append l1 l2) == Seq.append (serialize (serialize_list p s) l1) (serialize (serialize_list p s) l2))) = match l1 with | a :: q -> serialize_list_append p s q l2; Seq.append_assoc (serialize s a) (serialize (serialize_list p s) q) (serialize (serialize_list p s) l2) | [] -> Seq.append_empty_l (serialize (serialize_list p s) l2) #push-options "--z3rlimit 64" let serialize_list_cons_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (x: t) (l2: list t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln2 = Seq.length (serialize (serialize_list _ s) l2) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (x :: l2) in Seq.length sl == Seq.length sx + ln2 /\ i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (y :: l2) == seq_upd_seq sl i' s' )) = serialize_list_upd_chain s [] x l2 y i' s' let serialize_list_snoc_upd_chain (#k: parser_kind) (#t: Type) (#p: parser k t) (s: serializer p) (l1: list t) (x: t) (y: t) (i' : nat) (s' : bytes) : Lemma (requires ( let sx = serialize s x in serialize_list_precond k /\ i' + Seq.length s' <= Seq.length sx /\ serialize s y == seq_upd_seq sx i' s' )) (ensures ( let ln1 = Seq.length (serialize (serialize_list _ s) l1) in let sx = serialize s x in let sl = serialize (serialize_list _ s) (l1 `L.append` [x]) in Seq.length sl == ln1 + Seq.length sx /\ ln1 + i' + Seq.length s' <= Seq.length sl /\ serialize (serialize_list _ s) (l1 `L.append` [y]) == seq_upd_seq sl (ln1 + i') s' )) = serialize_list_upd_chain s l1 x [] y i' s' #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> b: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (requires Mkparser_kind'?.parser_kind_high k == FStar.Pervasives.Native.Some (Mkparser_kind'?.parser_kind_low k) /\ Some? (LowParse.Spec.Base.parse (LowParse.Spec.List.parse_list p) b)) (ensures (let pb = LowParse.Spec.Base.parse (LowParse.Spec.List.parse_list p) b in Some? pb /\ (let _ = pb in (let FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ l _) = _ in FStar.List.Tot.Base.length l * Mkparser_kind'?.parser_kind_low k == FStar.Seq.Base.length b) <: Prims.logical))) (decreases FStar.Seq.Base.length b)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Bytes.bytes", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "Prims.bool", "LowParse.Spec.Base.consumed_length", "Prims.list", "FStar.Math.Lemmas.distributivity_add_left", "FStar.List.Tot.Base.length", "Prims.unit", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.parse", "LowParse.Spec.List.parse_list", "LowParse.Spec.List.list_length_constant_size_parser_correct", "FStar.Seq.Base.slice", "Prims._assert", "Prims.b2t", "Prims.op_GreaterThan", "Prims.eq2", "Prims.nat", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "LowParse.Spec.Base.parser_kind_prop_equiv" ]
[ "recursion" ]
false
false
true
false
false
let rec list_length_constant_size_parser_correct #k #t p b =
parser_kind_prop_equiv k p; let n = k.parser_kind_low in if Seq.length b = 0 then () else let Some (_, consumed) = parse p b in assert ((consumed <: nat) == n); assert (n > 0); let b':bytes = Seq.slice b n (Seq.length b) in list_length_constant_size_parser_correct p b'; let Some (l', _) = parse (parse_list p) b' in FStar.Math.Lemmas.distributivity_add_left 1 (L.length l') n
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.max_output
val max_output : a: Spec.Blake2.Definitions.alg -> Prims.int
let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 44, "start_col": 22, "start_line": 41 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.int" ]
[]
false
false
false
true
false
let max_output (a: alg) =
match a with | Blake2S -> 32 | Blake2B -> 64
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_ivTable
val size_ivTable:size_nat
val size_ivTable:size_nat
let size_ivTable : size_nat = 8
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 34, "start_col": 22, "start_line": 34 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
false
false
let size_ivTable:size_nat =
8
false
LowParse.Spec.List.fst
LowParse.Spec.List.parse_list_bare_injective
val parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p)))
val parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p)))
let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b))
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 69, "end_line": 51, "start_col": 0, "start_line": 13 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 16, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.injective (LowParse.Spec.List.parse_list_bare p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "FStar.Classical.forall_intro_2", "LowParse.Bytes.bytes", "Prims.l_imp", "LowParse.Spec.Base.injective_precond", "Prims.list", "LowParse.Spec.List.parse_list_bare", "LowParse.Spec.Base.injective_postcond", "FStar.Classical.move_requires", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_Addition", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "Prims.op_Equality", "Prims.int", "Prims.bool", "LowParse.Spec.Base.consumed_length", "Prims._assert", "FStar.Seq.Properties.lemma_split", "FStar.Seq.Base.slice", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.parse", "Prims.eq2", "Prims.nat", "LowParse.Spec.Base.injective", "LowParse.Spec.Base.parser_kind_prop_equiv" ]
[]
false
false
true
false
false
let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) =
parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1 b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then () else (assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let Some (_, len1) = parse p b1 in let Some (_, len2) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1':bytes = Seq.slice b1 len1 (Seq.length b1) in let b2':bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let Some (_, len1') = parse (parse_list_bare p) b1' in let Some (_, len2') = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2)) in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b))
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.max_key
val max_key : a: Spec.Blake2.Definitions.alg -> Prims.int
let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 40, "start_col": 22, "start_line": 37 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.int" ]
[]
false
false
false
true
false
let max_key (a: alg) =
match a with | Blake2S -> 32 | Blake2B -> 64
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_block
val size_block (a: alg) : size_nat
val size_block (a: alg) : size_nat
let size_block (a:alg) : size_nat = size_block_w * (size_word a)
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 86, "end_line": 33, "start_col": 22, "start_line": 33 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.size_nat
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "FStar.Mul.op_Star", "Spec.Blake2.Definitions.size_block_w", "Spec.Blake2.Definitions.size_word", "Lib.IntTypes.size_nat" ]
[]
false
false
false
true
false
let size_block (a: alg) : size_nat =
size_block_w * (size_word a)
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.size_sigmaTable
val size_sigmaTable:size_nat
val size_sigmaTable:size_nat
let size_sigmaTable : size_nat = 160
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 35, "start_col": 22, "start_line": 35 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= Prims.pow2 32 - 1}
Prims.Tot
[ "total" ]
[]
[]
[]
false
false
false
false
false
let size_sigmaTable:size_nat =
160
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.max_limb
val max_limb : a: Spec.Blake2.Definitions.alg -> Prims.int
let max_limb (a:alg) = maxint (limb_inttype a)
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 46, "end_line": 223, "start_col": 0, "start_line": 223 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.maxint", "Spec.Blake2.Definitions.limb_inttype", "Prims.int" ]
[]
false
false
false
true
false
let max_limb (a: alg) =
maxint (limb_inttype a)
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.row_idx
val row_idx : Type0
let row_idx = n:nat {n < 4}
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 261, "start_col": 0, "start_line": 261 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x inline_for_extraction let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l inline_for_extraction let word_to_limb (a:alg) (x:word_t a{uint_v x <= max_limb a}) : xl:limb_t a{uint_v xl == uint_v x} = match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x inline_for_extraction let limb_to_word (a:alg) (x:limb_t a) : word_t a = match (wt a) with | U32 -> to_u32 x | U64 -> to_u64 x unfold let rtable_t (a:alg) = lseq (rotval (wt a)) 4 type sigma_elt_t = n:size_t{size_v n < 16} type list_sigma_t = l:list sigma_elt_t{List.Tot.length l == 160} (* Algorithms types *) type block_s (a:alg) = lseq uint8 (size_block a) type block_w (a:alg) = lseq (word_t a) 16 type idx_t = n:size_nat{n < 16}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan" ]
[]
false
false
false
true
true
let row_idx =
n: nat{n < 4}
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.limb_inttype
val limb_inttype : a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.inttype
let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 52, "start_col": 7, "start_line": 49 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.inttype
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.U64", "Lib.IntTypes.U128", "Lib.IntTypes.inttype" ]
[]
false
false
false
true
false
let limb_inttype (a: alg) =
match (wt a) with | U32 -> U64 | U64 -> U128
false
LowParse.Spec.List.fst
LowParse.Spec.List.bare_serialize_list_correct
val bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s)))
val bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s)))
let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) = parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let (Some (a', lena)) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf
{ "file_name": "src/lowparse/LowParse.Spec.List.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 28, "end_line": 167, "start_col": 0, "start_line": 133 }
module LowParse.Spec.List include LowParse.Spec.Combinators // for seq_slice_append_l module Seq = FStar.Seq module L = FStar.List.Tot module U32 = FStar.UInt32 module Classical = FStar.Classical (* Parse a list, until there is nothing left to read. This parser will mostly fail EXCEPT if the whole size is known and the slice has been suitably truncated beforehand, or if the elements of the list all have a known constant size. *) #push-options "--z3rlimit 16" let parse_list_bare_injective (#k: parser_kind) (#t: Type) (p: parser k t) : Lemma (ensures (injective (parse_list_bare p))) = parser_kind_prop_equiv k p; let f () : Lemma (injective p) = () in let rec aux (b1: bytes) (b2: bytes) : Lemma (requires (injective_precond (parse_list_bare p) b1 b2)) (ensures (injective_postcond (parse_list_bare p) b1 b2)) (decreases (Seq.length b1 + Seq.length b2)) = if Seq.length b1 = 0 then begin () // assert (Seq.equal b1 b2) end else begin assert (injective_precond p b1 b2); f (); assert (injective_postcond p b1 b2); let (Some (_, len1)) = parse p b1 in let (Some (_, len2)) = parse p b2 in assert ((len1 <: nat) == (len2 <: nat)); let b1' : bytes = Seq.slice b1 len1 (Seq.length b1) in let b2' : bytes = Seq.slice b2 len2 (Seq.length b2) in aux b1' b2'; let (Some (_, len1')) = parse (parse_list_bare p) b1' in let (Some (_, len2')) = parse (parse_list_bare p) b2' in Seq.lemma_split (Seq.slice b1 0 (len1 + len1')) len1; Seq.lemma_split (Seq.slice b2 0 (len2 + len2')) len2; assert (injective_postcond (parse_list_bare p) b1 b2) end in Classical.forall_intro_2 (fun b -> Classical.move_requires (aux b)) #pop-options let parse_list #k #t p = parse_list_bare_injective p; parse_list_bare_consumes_all p; parser_kind_prop_equiv parse_list_kind (parse_list_bare p); parse_list_bare p let parse_list_eq (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None )) = () let parse_list_eq' (#k: parser_kind) (#t: Type) (p: parser k t) (b: bytes) : Lemma (requires (k.parser_kind_low > 0)) (ensures (parse (parse_list p) b == ( if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match parse p b with | None -> None | Some (v, n) -> begin match parse (parse_list p) (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None end ))) = () let rec tot_parse_list_aux (#k: parser_kind) (#t: Type) (p: tot_parser k t) (b: bytes) : Pure (option (list t * (consumed_length b))) (requires True) (ensures (fun y -> y == parse_list_aux #k p b)) (decreases (Seq.length b)) = if Seq.length b = 0 then Some ([], (0 <: consumed_length b)) else match p b with | None -> None | Some (v, n) -> if n = 0 then None (* elements cannot be empty *) else match tot_parse_list_aux p (Seq.slice b n (Seq.length b)) with | Some (l, n') -> Some (v :: l, (n + n' <: consumed_length b)) | _ -> None let tot_parse_list #k #t p = parser_kind_prop_ext parse_list_kind (parse_list #k p) (tot_parse_list_aux p); tot_parse_list_aux p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.List.fst" }
[ { "abbrev": true, "full_module": "FStar.Classical", "short_module": "Classical" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: LowParse.Spec.Base.parser k t -> s: LowParse.Spec.Base.serializer p -> FStar.Pervasives.Lemma (requires LowParse.Spec.List.serialize_list_precond k) (ensures LowParse.Spec.Base.serializer_correct (LowParse.Spec.List.parse_list p) (LowParse.Spec.List.bare_serialize_list p s))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Base.parser", "LowParse.Spec.Base.serializer", "FStar.Classical.forall_intro", "Prims.list", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.List.bare_serialize_list", "LowParse.Spec.Base.parse", "LowParse.Spec.List.parse_list", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "LowParse.Spec.Combinators.seq_slice_append_r", "LowParse.Spec.Base.serialize", "Prims._assert", "Prims.b2t", "Prims.op_GreaterThan", "Prims.nat", "LowParse.Spec.Base.injective_postcond", "LowParse.Spec.Base.injective_precond", "FStar.Pervasives.Native.uu___is_Some", "LowParse.Spec.Base.no_lookahead_on_postcond", "LowParse.Spec.Base.no_lookahead_on_precond", "LowParse.Spec.Combinators.seq_slice_append_l", "LowParse.Spec.Base.no_lookahead_on", "LowParse.Spec.Base.parser_kind_prop_equiv", "Prims.op_AmpAmp", "Prims.op_Equality", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "LowParse.Spec.Base.ParserStrong", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "LowParse.Spec.List.serialize_list_precond", "LowParse.Spec.Base.serializer_correct", "LowParse.Spec.List.parse_list_kind" ]
[]
false
false
true
false
false
let bare_serialize_list_correct (#k: parser_kind) (#t: Type) (p: parser k t) (s: serializer p) : Lemma (requires (serialize_list_precond k)) (ensures (serializer_correct (parse_list p) (bare_serialize_list p s))) =
parser_kind_prop_equiv k p; let f () : Lemma (serialize_list_precond k) = () in let rec prf (l: list t) : Lemma (parse (parse_list p) (bare_serialize_list p s l) == Some (l, Seq.length (bare_serialize_list p s l))) = match l with | [] -> () | a :: q -> let pa = parse p (bare_serialize_list p s l) in f (); parser_kind_prop_equiv k p; assert (no_lookahead_on p (serialize s a) (bare_serialize_list p s l)); seq_slice_append_l (serialize s a) (bare_serialize_list p s q); assert (no_lookahead_on_precond p (serialize s a) (bare_serialize_list p s l)); assert (no_lookahead_on_postcond p (serialize s a) (bare_serialize_list p s l)); assert (Some? pa); assert (injective_precond p (serialize s a) (bare_serialize_list p s l)); assert (injective_postcond p (serialize s a) (bare_serialize_list p s l)); let Some (a', lena) = pa in assert (a == a'); assert (lena == Seq.length (serialize s a)); assert (lena > 0); prf q; seq_slice_append_r (serialize s a) (bare_serialize_list p s q) in Classical.forall_intro prf
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.personal_length
val personal_length (a: alg) : size_nat
val personal_length (a: alg) : size_nat
let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 90, "start_col": 0, "start_line": 87 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.size_nat
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat" ]
[]
false
false
false
true
false
let personal_length (a: alg) : size_nat =
match a with | Blake2S -> 8 | Blake2B -> 16
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.state
val state : a: Spec.Blake2.Definitions.alg -> Type0
let state (a:alg) = lseq (row a) 4
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 41, "end_line": 78, "start_col": 7, "start_line": 78 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3]
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.row" ]
[]
false
false
false
true
true
let state (a: alg) =
lseq (row a) 4
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.salt_length
val salt_length (a: alg) : size_nat
val salt_length (a: alg) : size_nat
let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 84, "start_col": 0, "start_line": 81 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Lib.IntTypes.size_nat
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat" ]
[]
false
false
false
true
false
let salt_length (a: alg) : size_nat =
match a with | Blake2S -> 8 | Blake2B -> 16
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.zero
val zero (a: alg) : word_t a
val zero (a: alg) : word_t a
let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 61, "start_col": 0, "start_line": 58 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Spec.Blake2.Definitions.word_t a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.u32", "Lib.IntTypes.u64", "Spec.Blake2.Definitions.word_t" ]
[]
false
false
false
false
false
let zero (a: alg) : word_t a =
match a with | Blake2S -> u32 0 | Blake2B -> u64 0
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.zero_row
val zero_row (a: alg) : row a
val zero_row (a: alg) : row a
let zero_row (a:alg) : row a = create 4 (zero a)
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 67, "start_col": 0, "start_line": 67 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Spec.Blake2.Definitions.row a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.create", "Spec.Blake2.Definitions.word_t", "Spec.Blake2.Definitions.zero", "Spec.Blake2.Definitions.row" ]
[]
false
false
false
false
false
let zero_row (a: alg) : row a =
create 4 (zero a)
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.set_blake2s_key_length
val set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params
val set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params
let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk}
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 121, "start_col": 0, "start_line": 117 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2s_params -> kk: Lib.IntTypes.size_nat{kk <= Spec.Blake2.Definitions.max_key Spec.Blake2.Definitions.Blake2S} -> Spec.Blake2.Definitions.blake2s_params
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2s_params", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Spec.Blake2.Definitions.Blake2S", "Spec.Blake2.Definitions.Mkblake2s_params", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__digest_length", "Lib.IntTypes.u8", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__depth", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__leaf_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__xof_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_depth", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__inner_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__salt", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__personal" ]
[]
false
false
false
false
false
let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params =
{ p with key_length = u8 kk }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.get_salt
val get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a)
val get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a)
let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 174, "start_col": 0, "start_line": 171 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2_params a -> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Blake2.Definitions.salt_length a)
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2_params", "Spec.Blake2.Definitions.get_blake2s_salt", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__salt", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.Blake2.Definitions.salt_length" ]
[]
false
false
false
false
false
let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) =
match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.get_personal
val get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a)
val get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a)
let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 180, "start_col": 0, "start_line": 177 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2_params a -> Lib.Sequence.lseq Lib.IntTypes.uint8 (Spec.Blake2.Definitions.personal_length a)
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2_params", "Spec.Blake2.Definitions.get_blake2s_personal", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__personal", "Lib.Sequence.lseq", "Lib.IntTypes.uint8", "Spec.Blake2.Definitions.personal_length" ]
[]
false
false
false
false
false
let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) =
match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.set_blake2s_digest_length
val set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params
val set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params
let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn}
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 114, "start_col": 0, "start_line": 110 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2s_params -> nn: Lib.IntTypes.size_nat {1 <= nn /\ nn <= Spec.Blake2.Definitions.max_output Spec.Blake2.Definitions.Blake2S} -> Spec.Blake2.Definitions.blake2s_params
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.blake2s_params", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_output", "Spec.Blake2.Definitions.Blake2S", "Spec.Blake2.Definitions.Mkblake2s_params", "Lib.IntTypes.u8", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__key_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__depth", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__leaf_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__xof_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__node_depth", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__inner_length", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__salt", "Spec.Blake2.Definitions.__proj__Mkblake2s_params__item__personal" ]
[]
false
false
false
false
false
let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params =
{ p with digest_length = u8 nn }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.blake2_params
val blake2_params : a: Spec.Blake2.Definitions.alg -> Type0
let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 150, "start_col": 0, "start_line": 147 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2s_params", "Spec.Blake2.Definitions.blake2b_params" ]
[]
false
false
false
true
true
let blake2_params (a: alg) =
match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.row
val row : a: Spec.Blake2.Definitions.alg -> Type0
let row (a:alg) = lseq (word_t a) 4
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 64, "start_col": 7, "start_line": 64 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.word_t" ]
[]
false
false
false
true
true
let row (a: alg) =
lseq (word_t a) 4
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.set_digest_length
val set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a
val set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a
let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn}
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 159, "start_col": 0, "start_line": 153 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2_params a -> nn: Lib.IntTypes.size_nat{1 <= nn /\ nn <= Spec.Blake2.Definitions.max_output a} -> Spec.Blake2.Definitions.blake2_params a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2_params", "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_output", "Spec.Blake2.Definitions.set_blake2s_digest_length", "Spec.Blake2.Definitions.Mkblake2b_params", "Lib.IntTypes.u8", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__key_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__depth", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__leaf_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__xof_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_depth", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__inner_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__salt", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__personal" ]
[]
false
false
false
false
false
let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a =
match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> { p with digest_length = u8 nn }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.blake2_default_params
val blake2_default_params (a: alg) : blake2_params a
val blake2_default_params (a: alg) : blake2_params a
let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 214, "start_col": 0, "start_line": 211 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Spec.Blake2.Definitions.blake2_params a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2s_default_params", "Spec.Blake2.Definitions.blake2b_default_params", "Spec.Blake2.Definitions.blake2_params" ]
[]
false
false
false
false
false
let blake2_default_params (a: alg) : blake2_params a =
match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.limb_to_word
val limb_to_word (a: alg) (x: limb_t a) : word_t a
val limb_to_word (a: alg) (x: limb_t a) : word_t a
let limb_to_word (a:alg) (x:limb_t a) : word_t a = match (wt a) with | U32 -> to_u32 x | U64 -> to_u64 x
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 249, "start_col": 0, "start_line": 246 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x inline_for_extraction let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l inline_for_extraction let word_to_limb (a:alg) (x:word_t a{uint_v x <= max_limb a}) : xl:limb_t a{uint_v xl == uint_v x} = match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> x: Spec.Blake2.Definitions.limb_t a -> Spec.Blake2.Definitions.word_t a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.limb_t", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.to_u32", "Spec.Blake2.Definitions.limb_inttype", "Lib.IntTypes.SEC", "Lib.IntTypes.to_u64", "Spec.Blake2.Definitions.word_t" ]
[]
false
false
false
false
false
let limb_to_word (a: alg) (x: limb_t a) : word_t a =
match (wt a) with | U32 -> to_u32 x | U64 -> to_u64 x
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.blake2b_default_params
val blake2b_default_params:blake2b_params
val blake2b_default_params:blake2b_params
let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); }
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 208, "start_col": 0, "start_line": 196 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Blake2.Definitions.blake2b_params
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.Mkblake2b_params", "Lib.IntTypes.u8", "Lib.IntTypes.u32", "Lib.Sequence.create", "Lib.IntTypes.uint8" ]
[]
false
false
false
true
false
let blake2b_default_params:blake2b_params =
{ digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0) }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.set_key_length
val set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a
val set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a
let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk}
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 168, "start_col": 0, "start_line": 162 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Spec.Blake2.Definitions.blake2_params a -> kk: Lib.IntTypes.size_nat{kk <= Spec.Blake2.Definitions.max_key a} -> Spec.Blake2.Definitions.blake2_params a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.blake2_params", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_key", "Spec.Blake2.Definitions.set_blake2s_key_length", "Spec.Blake2.Definitions.Mkblake2b_params", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__digest_length", "Lib.IntTypes.u8", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__fanout", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__depth", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__leaf_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_offset", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__xof_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__node_depth", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__inner_length", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__salt", "Spec.Blake2.Definitions.__proj__Mkblake2b_params__item__personal" ]
[]
false
false
false
false
false
let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a =
match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> { p with key_length = u8 kk }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.blake2s_default_params
val blake2s_default_params:blake2s_params
val blake2s_default_params:blake2s_params
let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); }
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 194, "start_col": 0, "start_line": 182 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Blake2.Definitions.blake2s_params
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.Mkblake2s_params", "Lib.IntTypes.u8", "Lib.IntTypes.u32", "Lib.IntTypes.u16", "Lib.Sequence.create", "Lib.IntTypes.uint8" ]
[]
false
false
false
true
false
let blake2s_default_params:blake2s_params =
{ digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0) }
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.nat_to_word
val nat_to_word (a: alg) (x: size_nat) : word_t a
val nat_to_word (a: alg) (x: size_nat) : word_t a
let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 229, "start_col": 0, "start_line": 226 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> x: Lib.IntTypes.size_nat -> Spec.Blake2.Definitions.word_t a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.IntTypes.size_nat", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.u32", "Lib.IntTypes.u64", "Spec.Blake2.Definitions.word_t" ]
[]
false
false
false
false
false
let nat_to_word (a: alg) (x: size_nat) : word_t a =
match (wt a) with | U32 -> u32 x | U64 -> u64 x
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.rtable_t
val rtable_t : a: Spec.Blake2.Definitions.alg -> Type0
let rtable_t (a:alg) = lseq (rotval (wt a)) 4
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 251, "start_col": 7, "start_line": 251 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x inline_for_extraction let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l inline_for_extraction let word_to_limb (a:alg) (x:word_t a{uint_v x <= max_limb a}) : xl:limb_t a{uint_v xl == uint_v x} = match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x inline_for_extraction let limb_to_word (a:alg) (x:limb_t a) : word_t a = match (wt a) with | U32 -> to_u32 x | U64 -> to_u64 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> Type0
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.lseq", "Lib.IntTypes.rotval", "Spec.Blake2.Definitions.wt" ]
[]
false
false
false
true
true
let rtable_t (a: alg) =
lseq (rotval (wt a)) 4
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.word_to_limb
val word_to_limb (a: alg) (x: word_t a {uint_v x <= max_limb a}) : xl: limb_t a {uint_v xl == uint_v x}
val word_to_limb (a: alg) (x: word_t a {uint_v x <= max_limb a}) : xl: limb_t a {uint_v xl == uint_v x}
let word_to_limb (a:alg) (x:word_t a{uint_v x <= max_limb a}) : xl:limb_t a{uint_v xl == uint_v x} = match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 243, "start_col": 0, "start_line": 240 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x inline_for_extraction let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> x: Spec.Blake2.Definitions.word_t a {Lib.IntTypes.uint_v x <= Spec.Blake2.Definitions.max_limb a} -> xl: Spec.Blake2.Definitions.limb_t a {Lib.IntTypes.uint_v xl == Lib.IntTypes.uint_v x}
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.word_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.IntTypes.uint_v", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.SEC", "Spec.Blake2.Definitions.max_limb", "Lib.IntTypes.to_u64", "Lib.IntTypes.to_u128", "Spec.Blake2.Definitions.limb_t", "Prims.eq2", "Prims.int", "Prims.l_or", "Lib.IntTypes.range", "Spec.Blake2.Definitions.limb_inttype" ]
[]
false
false
false
false
false
let word_to_limb (a: alg) (x: word_t a {uint_v x <= max_limb a}) : xl: limb_t a {uint_v xl == uint_v x} =
match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.rotr
val rotr (#a: alg) (r1: row a) (r: row_idx) : row a
val rotr (#a: alg) (r1: row a) (r: row_idx) : row a
let rotr (#a:alg) (r1:row a) (r:row_idx) : row a = createi 4 (fun i -> r1.[(i+r)%4])
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 277, "start_col": 0, "start_line": 276 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x inline_for_extraction let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l inline_for_extraction let word_to_limb (a:alg) (x:word_t a{uint_v x <= max_limb a}) : xl:limb_t a{uint_v xl == uint_v x} = match (wt a) with | U32 -> to_u64 x | U64 -> to_u128 x inline_for_extraction let limb_to_word (a:alg) (x:limb_t a) : word_t a = match (wt a) with | U32 -> to_u32 x | U64 -> to_u64 x unfold let rtable_t (a:alg) = lseq (rotval (wt a)) 4 type sigma_elt_t = n:size_t{size_v n < 16} type list_sigma_t = l:list sigma_elt_t{List.Tot.length l == 160} (* Algorithms types *) type block_s (a:alg) = lseq uint8 (size_block a) type block_w (a:alg) = lseq (word_t a) 16 type idx_t = n:size_nat{n < 16} let row_idx = n:nat {n < 4} inline_for_extraction let ( ^| ) (#a:alg) (r1:row a) (r2:row a) : row a = map2 ( ^. ) r1 r2 inline_for_extraction let ( +| ) (#a:alg) (r1:row a) (r2:row a) : row a = map2 ( +. ) r1 r2 inline_for_extraction let ( >>>| ) (#a:alg) (r1:row a) (r:rotval (wt a)) : row a = map #(word_t a) (rotate_right_i r) r1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r1: Spec.Blake2.Definitions.row a -> r: Spec.Blake2.Definitions.row_idx -> Spec.Blake2.Definitions.row a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Spec.Blake2.Definitions.row", "Spec.Blake2.Definitions.row_idx", "Lib.Sequence.createi", "Spec.Blake2.Definitions.word_t", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.op_String_Access", "Prims.op_Modulus", "Prims.op_Addition" ]
[]
false
false
false
false
false
let rotr (#a: alg) (r1: row a) (r: row_idx) : row a =
createi 4 (fun i -> r1.[ (i + r) % 4 ])
false
Hacl.Impl.Frodo.KEM.Encaps.fst
Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc0
val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k = crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk
{ "file_name": "code/frodo/Hacl.Impl.Frodo.KEM.Encaps.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 388, "start_col": 0, "start_line": 386 }
module Hacl.Impl.Frodo.KEM.Encaps open FStar.HyperStack open FStar.HyperStack.ST open FStar.Mul open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Matrix open Hacl.Impl.Frodo.Params open Hacl.Impl.Frodo.KEM open Hacl.Impl.Frodo.Encode open Hacl.Impl.Frodo.Pack open Hacl.Impl.Frodo.Sample open Hacl.Frodo.Random module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module LB = Lib.ByteSequence module FP = Spec.Frodo.Params module S = Spec.Frodo.KEM.Encaps module M = Spec.Matrix module KG = Hacl.Impl.Frodo.KEM.KeyGen #set-options "--z3rlimit 100 --fuel 0 --ifuel 0" inline_for_extraction noextract val frodo_mul_add_sa_plus_e: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> bp_matrix:matrix_t params_nbar (params_n a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h bp_matrix /\ disjoint bp_matrix seed_a /\ disjoint bp_matrix ep_matrix /\ disjoint bp_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc bp_matrix) h0 h1 /\ as_matrix h1 bp_matrix == S.frodo_mul_add_sa_plus_e a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix = push_frame (); let a_matrix = matrix_create (params_n a) (params_n a) in frodo_gen_matrix gen_a (params_n a) seed_a a_matrix; matrix_mul sp_matrix a_matrix bp_matrix; matrix_add bp_matrix ep_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c1: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> c1:lbytes (ct1bytes_len a) -> Stack unit (requires fun h -> live h seed_a /\ live h ep_matrix /\ live h sp_matrix /\ live h c1 /\ disjoint seed_a c1 /\ disjoint ep_matrix c1 /\ disjoint sp_matrix c1) (ensures fun h0 _ h1 -> modifies (loc c1) h0 h1 /\ as_seq h1 c1 == S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_matrix h0 sp_matrix) (as_matrix h0 ep_matrix)) let crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1 = push_frame (); let bp_matrix = matrix_create params_nbar (params_n a) in frodo_mul_add_sa_plus_e a gen_a seed_a sp_matrix ep_matrix bp_matrix; frodo_pack (params_logq a) bp_matrix c1; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e: a:FP.frodo_alg -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h epp_matrix /\ live h v_matrix /\ live h sp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix epp_matrix /\ disjoint v_matrix sp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e a (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix = push_frame (); let b_matrix = matrix_create (params_n a) params_nbar in frodo_unpack (params_n a) params_nbar (params_logq a) b b_matrix; matrix_mul sp_matrix b_matrix v_matrix; matrix_add v_matrix epp_matrix; pop_frame () inline_for_extraction noextract val frodo_mul_add_sb_plus_e_plus_mu: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> v_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h b /\ live h mu /\ live h v_matrix /\ live h sp_matrix /\ live h epp_matrix /\ disjoint v_matrix b /\ disjoint v_matrix sp_matrix /\ disjoint v_matrix mu /\ disjoint v_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc v_matrix) h0 h1 /\ as_matrix h1 v_matrix == S.frodo_mul_add_sb_plus_e_plus_mu a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) let frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix = push_frame (); frodo_mul_add_sb_plus_e a b sp_matrix epp_matrix v_matrix; let mu_encode = matrix_create params_nbar params_nbar in frodo_key_encode (params_logq a) (params_extracted_bits a) params_nbar mu mu_encode; matrix_add v_matrix mu_encode; clear_matrix mu_encode; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_pack_c2: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> b:lbytes (publicmatrixbytes_len a) -> sp_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> c2:lbytes (ct2bytes_len a) -> Stack unit (requires fun h -> live h mu /\ live h b /\ live h sp_matrix /\ live h epp_matrix /\ live h c2 /\ disjoint mu c2 /\ disjoint b c2 /\ disjoint sp_matrix c2 /\ disjoint epp_matrix c2) (ensures fun h0 _ h1 -> modifies (loc c2) h0 h1 /\ as_seq h1 c2 == S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_matrix h0 sp_matrix) (as_matrix h0 epp_matrix)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2 = push_frame (); let v_matrix = matrix_create params_nbar params_nbar in frodo_mul_add_sb_plus_e_plus_mu a mu b sp_matrix epp_matrix v_matrix; frodo_pack (params_logq a) v_matrix c2; clear_matrix v_matrix; pop_frame () #pop-options inline_for_extraction noextract val get_sp_ep_epp_matrices: a:FP.frodo_alg -> seed_se:lbytes (crypto_bytes a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h seed_se /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint seed_se sp_matrix /\ disjoint seed_se ep_matrix /\ disjoint seed_se epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1 /\ (as_matrix h1 sp_matrix, as_matrix h1 ep_matrix, as_matrix h1 epp_matrix) == S.get_sp_ep_epp_matrices a (as_seq h0 seed_se)) let get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix = push_frame (); [@inline_let] let s_bytes_len = secretmatrixbytes_len a in let r = create (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) (u8 0) in KG.frodo_shake_r a (u8 0x96) seed_se (2ul *! s_bytes_len +! 2ul *! params_nbar *! params_nbar) r; frodo_sample_matrix a params_nbar (params_n a) (sub r 0ul s_bytes_len) sp_matrix; frodo_sample_matrix a params_nbar (params_n a) (sub r s_bytes_len s_bytes_len) ep_matrix; frodo_sample_matrix a params_nbar params_nbar (sub r (2ul *! s_bytes_len) (2ul *! params_nbar *! params_nbar)) epp_matrix; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_a:lbytes bytes_seed_a -> b:lbytes (publicmatrixbytes_len a) -> mu:lbytes (bytes_mu a) -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h seed_a /\ live h b /\ live h mu /\ live h ct /\ live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint ct seed_a /\ disjoint ct b /\ disjoint ct mu /\ disjoint ct sp_matrix /\ disjoint ct ep_matrix /\ disjoint ct epp_matrix) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ (let c1:LB.lbytes (FP.ct1bytes_len a) = S.crypto_kem_enc_ct_pack_c1 a gen_a (as_seq h0 seed_a) (as_seq h0 sp_matrix) (as_seq h0 ep_matrix) in let c2:LB.lbytes (FP.ct2bytes_len a) = S.crypto_kem_enc_ct_pack_c2 a (as_seq h0 mu) (as_seq h0 b) (as_seq h0 sp_matrix) (as_seq h0 epp_matrix) in v (crypto_ciphertextbytes a) == FP.ct1bytes_len a + FP.ct2bytes_len a /\ as_seq h1 ct `Seq.equal` LSeq.concat #_ #(FP.ct1bytes_len a) #(FP.ct2bytes_len a) c1 c2)) let crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct = let c1 = sub ct 0ul (ct1bytes_len a) in let c2 = sub ct (ct1bytes_len a) (ct2bytes_len a) in let h0 = ST.get () in crypto_kem_enc_ct_pack_c1 a gen_a seed_a sp_matrix ep_matrix c1; let h1 = ST.get () in crypto_kem_enc_ct_pack_c2 a mu b sp_matrix epp_matrix c2; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 ct) 0 (v (ct1bytes_len a))) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))); LSeq.lemma_concat2 (v (ct1bytes_len a)) (LSeq.sub (as_seq h1 ct) 0 (v (ct1bytes_len a))) (v (ct2bytes_len a)) (LSeq.sub (as_seq h2 ct) (v (ct1bytes_len a)) (v (ct2bytes_len a))) (as_seq h2 ct) inline_for_extraction noextract val clear_matrix3: a:FP.frodo_alg -> sp_matrix:matrix_t params_nbar (params_n a) -> ep_matrix:matrix_t params_nbar (params_n a) -> epp_matrix:matrix_t params_nbar params_nbar -> Stack unit (requires fun h -> live h sp_matrix /\ live h ep_matrix /\ live h epp_matrix /\ disjoint sp_matrix ep_matrix /\ disjoint sp_matrix epp_matrix /\ disjoint ep_matrix epp_matrix) (ensures fun h0 _ h1 -> modifies (loc sp_matrix |+| loc ep_matrix |+| loc epp_matrix) h0 h1) let clear_matrix3 a sp_matrix ep_matrix epp_matrix = clear_matrix sp_matrix; clear_matrix ep_matrix; clear_matrix epp_matrix inline_for_extraction noextract val crypto_kem_enc_ct: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se /\ live h ct /\ disjoint ct mu /\ disjoint ct pk /\ disjoint ct seed_se) (ensures fun h0 _ h1 -> modifies (loc ct) h0 h1 /\ as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)) #push-options "--z3rlimit 200" let crypto_kem_enc_ct a gen_a mu pk seed_se ct = push_frame (); let h0 = ST.get () in FP.expand_crypto_publickeybytes a; let seed_a = sub pk 0ul bytes_seed_a in let b = sub pk bytes_seed_a (publicmatrixbytes_len a) in let sp_matrix = matrix_create params_nbar (params_n a) in let ep_matrix = matrix_create params_nbar (params_n a) in let epp_matrix = matrix_create params_nbar params_nbar in get_sp_ep_epp_matrices a seed_se sp_matrix ep_matrix epp_matrix; crypto_kem_enc_ct0 a gen_a seed_a b mu sp_matrix ep_matrix epp_matrix ct; clear_matrix3 a sp_matrix ep_matrix epp_matrix; let h1 = ST.get () in LSeq.eq_intro (as_seq h1 ct) (S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) (as_seq h0 seed_se)); pop_frame () #pop-options inline_for_extraction noextract val crypto_kem_enc_ss: a:FP.frodo_alg -> k:lbytes (crypto_bytes a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> Stack unit (requires fun h -> live h k /\ live h ct /\ live h ss /\ disjoint ct ss /\ disjoint k ct /\ disjoint k ss) (ensures fun h0 _ h1 -> modifies (loc ss) h0 h1 /\ as_seq h1 ss == S.crypto_kem_enc_ss a (as_seq h0 k) (as_seq h0 ct)) let crypto_kem_enc_ss a k ct ss = push_frame (); let ss_init_len = crypto_ciphertextbytes a +! crypto_bytes a in let shake_input_ss = create ss_init_len (u8 0) in concat2 (crypto_ciphertextbytes a) ct (crypto_bytes a) k shake_input_ss; frodo_shake a ss_init_len shake_input_ss (crypto_bytes a) ss; clear_words_u8 shake_input_ss; pop_frame () inline_for_extraction noextract val crypto_kem_enc_seed_se_k: a:FP.frodo_alg -> mu:lbytes (bytes_mu a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h mu /\ live h pk /\ live h seed_se_k /\ disjoint seed_se_k mu /\ disjoint seed_se_k pk) (ensures fun h0 _ h1 -> modifies (loc seed_se_k) h0 h1 /\ as_seq h1 seed_se_k == S.crypto_kem_enc_seed_se_k a (as_seq h0 mu) (as_seq h0 pk)) let crypto_kem_enc_seed_se_k a mu pk seed_se_k = push_frame (); let pkh_mu = create (bytes_pkhash a +! bytes_mu a) (u8 0) in let h0 = ST.get () in update_sub_f h0 pkh_mu 0ul (bytes_pkhash a) (fun h -> FP.frodo_shake a (v (crypto_publickeybytes a)) (as_seq h0 pk) (v (bytes_pkhash a))) (fun _ -> frodo_shake a (crypto_publickeybytes a) pk (bytes_pkhash a) (sub pkh_mu 0ul (bytes_pkhash a))); let h1 = ST.get () in update_sub pkh_mu (bytes_pkhash a) (bytes_mu a) mu; let h2 = ST.get () in LSeq.eq_intro (LSeq.sub (as_seq h2 pkh_mu) 0 (v (bytes_pkhash a))) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))); LSeq.lemma_concat2 (v (bytes_pkhash a)) (LSeq.sub (as_seq h1 pkh_mu) 0 (v (bytes_pkhash a))) (v (bytes_mu a)) (as_seq h0 mu) (as_seq h2 pkh_mu); //concat2 (bytes_pkhash a) pkh (bytes_mu a) mu pkh_mu; frodo_shake a (bytes_pkhash a +! bytes_mu a) pkh_mu (2ul *! crypto_bytes a) seed_se_k; pop_frame () inline_for_extraction noextract val crypto_kem_enc_ct_ss: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> Stack unit (requires fun h -> live h seed_se_k /\ live h ct /\ live h ss /\ live h pk /\ live h mu /\ disjoint ct ss /\ disjoint ct pk /\ disjoint ss pk /\ disjoint mu ss /\ disjoint mu ct /\ disjoint seed_se_k ct /\ disjoint seed_se_k ss) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss) h0 h1 /\ (let seed_se = LSeq.sub (as_seq h0 seed_se_k) 0 (v (crypto_bytes a)) in let k = LSeq.sub (as_seq h0 seed_se_k) (v (crypto_bytes a)) (v (crypto_bytes a)) in as_seq h1 ct == S.crypto_kem_enc_ct a gen_a (as_seq h0 mu) (as_seq h0 pk) seed_se /\ as_seq h1 ss == S.crypto_kem_enc_ss a k (as_seq h1 ct))) let crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk = let seed_se = sub seed_se_k 0ul (crypto_bytes a) in let k = sub seed_se_k (crypto_bytes a) (crypto_bytes a) in crypto_kem_enc_ct a gen_a mu pk seed_se ct; crypto_kem_enc_ss a k ct ss inline_for_extraction noextract val crypto_kem_enc0: a:FP.frodo_alg -> gen_a:FP.frodo_gen_a{is_supported gen_a} -> mu:lbytes (bytes_mu a) -> ct:lbytes (crypto_ciphertextbytes a) -> ss:lbytes (crypto_bytes a) -> pk:lbytes (crypto_publickeybytes a) -> seed_se_k:lbytes (2ul *! crypto_bytes a) -> Stack unit (requires fun h -> live h ct /\ live h ss /\ live h pk /\ live h mu /\ live h seed_se_k /\ loc_pairwise_disjoint [loc mu; loc ct; loc ss; loc pk; loc seed_se_k]) (ensures fun h0 _ h1 -> modifies (loc ct |+| loc ss |+| loc seed_se_k) h0 h1 /\ (as_seq h1 ct, as_seq h1 ss) == S.crypto_kem_enc_ a gen_a (as_seq h0 mu) (as_seq h0 pk))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Params.fst.checked", "Spec.Frodo.KEM.Encaps.fst.checked", "prims.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Impl.Matrix.fst.checked", "Hacl.Impl.Frodo.Sample.fst.checked", "Hacl.Impl.Frodo.Params.fst.checked", "Hacl.Impl.Frodo.Pack.fst.checked", "Hacl.Impl.Frodo.KEM.KeyGen.fst.checked", "Hacl.Impl.Frodo.KEM.fst.checked", "Hacl.Impl.Frodo.Encode.fst.checked", "Hacl.Frodo.Random.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Frodo.KEM.Encaps.fst" }
[ { "abbrev": true, "full_module": "Hacl.Impl.Frodo.KEM.KeyGen", "short_module": "KG" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Spec.Frodo.KEM.Encaps", "short_module": "S" }, { "abbrev": true, "full_module": "Spec.Frodo.Params", "short_module": "FP" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "LB" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Frodo.Random", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Sample", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Pack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Encode", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.Params", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Frodo.KEM", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 200, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Frodo.Params.frodo_alg -> gen_a: Spec.Frodo.Params.frodo_gen_a{Hacl.Impl.Frodo.Params.is_supported gen_a} -> mu: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.bytes_mu a) -> ct: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_ciphertextbytes a) -> ss: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_bytes a) -> pk: Hacl.Impl.Matrix.lbytes (Hacl.Impl.Frodo.Params.crypto_publickeybytes a) -> seed_se_k: Hacl.Impl.Matrix.lbytes (2ul *! Hacl.Impl.Frodo.Params.crypto_bytes a) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Spec.Frodo.Params.frodo_alg", "Spec.Frodo.Params.frodo_gen_a", "Prims.b2t", "Hacl.Impl.Frodo.Params.is_supported", "Hacl.Impl.Matrix.lbytes", "Hacl.Impl.Frodo.Params.bytes_mu", "Hacl.Impl.Frodo.Params.crypto_ciphertextbytes", "Hacl.Impl.Frodo.Params.crypto_bytes", "Hacl.Impl.Frodo.Params.crypto_publickeybytes", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "FStar.UInt32.__uint_to_t", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_ct_ss", "Prims.unit", "Hacl.Impl.Frodo.KEM.Encaps.crypto_kem_enc_seed_se_k" ]
[]
false
true
false
false
false
let crypto_kem_enc0 a gen_a mu ct ss pk seed_se_k =
crypto_kem_enc_seed_se_k a mu pk seed_se_k; crypto_kem_enc_ct_ss a gen_a seed_se_k mu ct ss pk
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.load_row
val load_row (#a: alg) (s: lseq (word_t a) 4) : row a
val load_row (#a: alg) (s: lseq (word_t a) 4) : row a
let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]]
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 38, "end_line": 71, "start_col": 0, "start_line": 70 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Lib.Sequence.lseq (Spec.Blake2.Definitions.word_t a) 4 -> Spec.Blake2.Definitions.row a
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Lib.Sequence.lseq", "Spec.Blake2.Definitions.word_t", "Lib.Sequence.createL", "Prims.Cons", "Lib.Sequence.op_String_Access", "Prims.Nil", "Spec.Blake2.Definitions.row" ]
[]
false
false
false
false
false
let load_row (#a: alg) (s: lseq (word_t a) 4) : row a =
createL [s.[ 0 ]; s.[ 1 ]; s.[ 2 ]; s.[ 3 ]]
false
Vale.PPC64LE.Memory_Sems.fsti
Vale.PPC64LE.Memory_Sems.is_full_read
val is_full_read : h1: Vale.PPC64LE.Memory.vale_heap -> h2: Vale.PPC64LE.Memory.vale_heap -> b: Vale.PPC64LE.Memory.buffer t -> i: Prims.int -> Prims.logical
let is_full_read (#t:base_typ) (h1 h2:vale_heap) (b:buffer t) (i:int) = buffer_addr b h1 == buffer_addr b h2 /\ buffer_read b i h1 == buffer_read b i h2 /\ valid_buffer_read h1 b i
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Memory_Sems.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 48, "start_col": 0, "start_line": 45 }
module Vale.PPC64LE.Memory_Sems open FStar.Mul open Vale.Def.Prop_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.Lib.Seqs module S = Vale.PPC64LE.Semantics_s module Map16 = Vale.Lib.Map16 val same_domain (h:vale_heap) (m:S.machine_heap) : prop0 val lemma_same_domains (h:vale_heap) (m1:S.machine_heap) (m2:S.machine_heap) : Lemma (requires same_domain h m1 /\ Set.equal (Map.domain m1) (Map.domain m2)) (ensures same_domain h m2) val get_heap (h:vale_heap) : GTot (m:S.machine_heap{same_domain h m}) val upd_heap (h:vale_heap) (m:S.machine_heap{is_machine_heap_update (get_heap h) m}) : GTot vale_heap //val lemma_upd_get_heap (h:vale_heap) : Lemma (upd_heap h (get_heap h) == h) // [SMTPat (upd_heap h (get_heap h))] val lemma_get_upd_heap (h:vale_heap) (m:S.machine_heap) : Lemma (requires is_machine_heap_update (get_heap h) m) (ensures get_heap (upd_heap h m) == m) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x val lemma_heap_impl : squash (heap_impl == vale_full_heap) val lemma_heap_get_heap (h:vale_full_heap) : Lemma (heap_get (coerce h) == get_heap (get_vale_heap h)) [SMTPat (heap_get (coerce h))] val lemma_heap_taint (h:vale_full_heap) : Lemma (heap_taint (coerce h) == full_heap_taint h) [SMTPat (heap_taint (coerce h))]
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Memory_Sems.fsti" }
[ { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: Vale.PPC64LE.Memory.vale_heap -> h2: Vale.PPC64LE.Memory.vale_heap -> b: Vale.PPC64LE.Memory.buffer t -> i: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Memory.vale_heap", "Vale.PPC64LE.Memory.buffer", "Prims.int", "Prims.l_and", "Prims.eq2", "Vale.PPC64LE.Memory.buffer_addr", "Vale.PPC64LE.Memory.base_typ_as_vale_type", "Vale.PPC64LE.Memory.buffer_read", "Vale.PPC64LE.Memory.valid_buffer_read", "Prims.logical" ]
[]
false
false
false
false
true
let is_full_read (#t: base_typ) (h1 h2: vale_heap) (b: buffer t) (i: int) =
buffer_addr b h1 == buffer_addr b h2 /\ buffer_read b i h1 == buffer_read b i h2 /\ valid_buffer_read h1 b i
false
Vale.PPC64LE.Memory_Sems.fsti
Vale.PPC64LE.Memory_Sems.coerce
val coerce (#b #a: Type) (x: a{a == b}) : b
val coerce (#b #a: Type) (x: a{a == b}) : b
let coerce (#b #a:Type) (x:a{a == b}) : b = x
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Memory_Sems.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 33, "start_col": 7, "start_line": 33 }
module Vale.PPC64LE.Memory_Sems open FStar.Mul open Vale.Def.Prop_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.Lib.Seqs module S = Vale.PPC64LE.Semantics_s module Map16 = Vale.Lib.Map16 val same_domain (h:vale_heap) (m:S.machine_heap) : prop0 val lemma_same_domains (h:vale_heap) (m1:S.machine_heap) (m2:S.machine_heap) : Lemma (requires same_domain h m1 /\ Set.equal (Map.domain m1) (Map.domain m2)) (ensures same_domain h m2) val get_heap (h:vale_heap) : GTot (m:S.machine_heap{same_domain h m}) val upd_heap (h:vale_heap) (m:S.machine_heap{is_machine_heap_update (get_heap h) m}) : GTot vale_heap //val lemma_upd_get_heap (h:vale_heap) : Lemma (upd_heap h (get_heap h) == h) // [SMTPat (upd_heap h (get_heap h))] val lemma_get_upd_heap (h:vale_heap) (m:S.machine_heap) : Lemma (requires is_machine_heap_update (get_heap h) m) (ensures get_heap (upd_heap h m) == m)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Memory_Sems.fsti" }
[ { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a{a == b} -> b
Prims.Tot
[ "total" ]
[]
[ "Prims.eq2" ]
[]
false
false
false
false
false
let coerce (#b #a: Type) (x: a{a == b}) : b =
x
false
Vale.PPC64LE.Memory_Sems.fsti
Vale.PPC64LE.Memory_Sems.is_full_update
val is_full_update : vfh: Vale.PPC64LE.Memory.vale_full_heap -> h': Vale.PPC64LE.Memory.vale_heap -> hid: Vale.PPC64LE.Memory.heaplet_id -> mh': Vale.Arch.MachineHeap_s.machine_heap -> mt': Vale.PPC64LE.Memory.memtaint -> Prims.logical
let is_full_update (vfh:vale_full_heap) (h':vale_heap) (hid:heaplet_id) (mh':machine_heap) (mt':memtaint) = is_machine_heap_update (heap_get (coerce vfh)) mh' /\ ( let vfh' = coerce (heap_upd (coerce vfh) mh' mt') in mem_inv vfh' /\ vfh'.vf_layout == vfh.vf_layout /\ vfh'.vf_heaplets == Map16.upd vfh.vf_heaplets hid h' )
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Memory_Sems.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 56, "start_col": 0, "start_line": 50 }
module Vale.PPC64LE.Memory_Sems open FStar.Mul open Vale.Def.Prop_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.Memory open Vale.Lib.Seqs module S = Vale.PPC64LE.Semantics_s module Map16 = Vale.Lib.Map16 val same_domain (h:vale_heap) (m:S.machine_heap) : prop0 val lemma_same_domains (h:vale_heap) (m1:S.machine_heap) (m2:S.machine_heap) : Lemma (requires same_domain h m1 /\ Set.equal (Map.domain m1) (Map.domain m2)) (ensures same_domain h m2) val get_heap (h:vale_heap) : GTot (m:S.machine_heap{same_domain h m}) val upd_heap (h:vale_heap) (m:S.machine_heap{is_machine_heap_update (get_heap h) m}) : GTot vale_heap //val lemma_upd_get_heap (h:vale_heap) : Lemma (upd_heap h (get_heap h) == h) // [SMTPat (upd_heap h (get_heap h))] val lemma_get_upd_heap (h:vale_heap) (m:S.machine_heap) : Lemma (requires is_machine_heap_update (get_heap h) m) (ensures get_heap (upd_heap h m) == m) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x val lemma_heap_impl : squash (heap_impl == vale_full_heap) val lemma_heap_get_heap (h:vale_full_heap) : Lemma (heap_get (coerce h) == get_heap (get_vale_heap h)) [SMTPat (heap_get (coerce h))] val lemma_heap_taint (h:vale_full_heap) : Lemma (heap_taint (coerce h) == full_heap_taint h) [SMTPat (heap_taint (coerce h))] let is_full_read (#t:base_typ) (h1 h2:vale_heap) (b:buffer t) (i:int) = buffer_addr b h1 == buffer_addr b h2 /\ buffer_read b i h1 == buffer_read b i h2 /\ valid_buffer_read h1 b i // needed to trigger "index = i" in valid_mem_operand64/valid_mem_operand128
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.Semantics_s.fst.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Memory_Sems.fsti" }
[ { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
vfh: Vale.PPC64LE.Memory.vale_full_heap -> h': Vale.PPC64LE.Memory.vale_heap -> hid: Vale.PPC64LE.Memory.heaplet_id -> mh': Vale.Arch.MachineHeap_s.machine_heap -> mt': Vale.PPC64LE.Memory.memtaint -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.vale_full_heap", "Vale.PPC64LE.Memory.vale_heap", "Vale.PPC64LE.Memory.heaplet_id", "Vale.Arch.MachineHeap_s.machine_heap", "Vale.PPC64LE.Memory.memtaint", "Prims.l_and", "Vale.Arch.MachineHeap_s.is_machine_heap_update", "Vale.Arch.Heap.heap_get", "Vale.PPC64LE.Memory_Sems.coerce", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Memory.mem_inv", "Prims.eq2", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.Lib.Map16.map16", "Vale.Arch.HeapImpl.vale_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_heaplets", "Vale.Lib.Map16.upd", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_upd", "Prims.logical" ]
[]
false
false
false
true
true
let is_full_update (vfh: vale_full_heap) (h': vale_heap) (hid: heaplet_id) (mh': machine_heap) (mt': memtaint) =
is_machine_heap_update (heap_get (coerce vfh)) mh' /\ (let vfh' = coerce (heap_upd (coerce vfh) mh' mt') in mem_inv vfh' /\ vfh'.vf_layout == vfh.vf_layout /\ vfh'.vf_heaplets == Map16.upd vfh.vf_heaplets hid h')
false
Rewrite.Monoid.fst
Rewrite.Monoid.is_reifiable
val is_reifiable (m_mult m_unit me: term) : Tac bool
val is_reifiable (m_mult m_unit me: term) : Tac bool
let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 32, "start_col": 0, "start_line": 24 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m_mult: FStar.Tactics.NamedView.term -> m_unit: FStar.Tactics.NamedView.term -> me: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac Prims.bool
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.term", "FStar.Stubs.Reflection.Types.term", "Prims.l_or", "Prims.eq2", "Prims.precedes", "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Pervasives.Native.fst", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.Types.fv", "FStar.Stubs.Reflection.V2.Builtins.term_eq", "Prims.bool", "FStar.Tactics.V2.Derived.norm_term", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "Prims.Nil", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_FVar", "FStar.Tactics.NamedView.named_term_view", "FStar.Tactics.NamedView.inspect", "FStar.Pervasives.Native.tuple2", "FStar.Reflection.V2.Derived.Lemmas.collect_app_ref" ]
[]
false
true
false
false
false
let is_reifiable (m_mult m_unit me: term) : Tac bool =
let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> let t1 = norm_term [delta; zeta; iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta; zeta; iota] me) m_unit
false
Rewrite.Monoid.fst
Rewrite.Monoid.replace_point
val replace_point : m: FStar.Algebra.Monoid.monoid a -> rhs: FStar.Tactics.CanonMonoid.exp a -> FStar.Tactics.Effect.Tac Prims.unit
let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ())
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 53, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Algebra.Monoid.monoid a -> rhs: FStar.Tactics.CanonMonoid.exp a -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Algebra.Monoid.monoid", "FStar.Tactics.CanonMonoid.exp", "FStar.Tactics.V2.Derived.focus", "Prims.unit", "FStar.Tactics.V2.Derived.trefl", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta", "FStar.Pervasives.primops", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "Prims.Nil", "FStar.Tactics.V2.Derived.apply_lemma", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.V2.Derived.mk_app", "Prims.list", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Data.Q_Explicit" ]
[]
false
true
false
false
false
let replace_point (#a: Type) (m: monoid a) (rhs: exp a) =
focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [((quote a), Q_Explicit); ((quote m), Q_Explicit); ((quote rhs), Q_Explicit)] in apply_lemma t; norm [delta; primops; zeta; iota]; trefl ())
false
Rewrite.Monoid.fst
Rewrite.Monoid.rewrite_int
val rewrite_int : everywhere: Prims.bool -> FStar.Tactics.Effect.Tac Prims.unit
let rewrite_int (everywhere:bool) = topdown_rewrite (should_rewrite int_plus_monoid everywhere) (rewrite_monoid int_plus_monoid)
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 82, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ()) let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0 let rewrite_monoid (#a:Type) (m:monoid a) () : Tac unit = norm [zeta;iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then // let _ = dump "Trying canon ... " in let lhs_exp : exp a = reification m lhs in replace_point m lhs_exp // dump "change" else trefl () | _ -> fail "Unexpected goal to rewriter"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
everywhere: Prims.bool -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "Prims.bool", "FStar.Tactics.V2.Derived.topdown_rewrite", "Rewrite.Monoid.should_rewrite", "Prims.int", "FStar.Algebra.Monoid.int_plus_monoid", "Rewrite.Monoid.rewrite_monoid", "Prims.unit" ]
[]
false
true
false
false
false
let rewrite_int (everywhere: bool) =
topdown_rewrite (should_rewrite int_plus_monoid everywhere) (rewrite_monoid int_plus_monoid)
false
Rewrite.Monoid.fst
Rewrite.Monoid.should_rewrite
val should_rewrite (#a: Type) (m: monoid a) (everywhere: bool) (t: term) : Tac (bool * int)
val should_rewrite (#a: Type) (m: monoid a) (everywhere: bool) (t: term) : Tac (bool * int)
let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 62, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Algebra.Monoid.monoid a -> everywhere: Prims.bool -> t: FStar.Tactics.NamedView.term -> FStar.Tactics.Effect.Tac (Prims.bool * Prims.int)
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Algebra.Monoid.monoid", "Prims.bool", "FStar.Tactics.NamedView.term", "FStar.Pervasives.Native.Mktuple2", "Prims.int", "FStar.Pervasives.Native.tuple2", "Rewrite.Monoid.is_reifiable", "FStar.Tactics.V2.Derived.norm_term", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "Prims.Nil", "FStar.Algebra.Monoid.__proj__Monoid__item__unit", "FStar.Stubs.Reflection.Types.term", "FStar.Algebra.Monoid.__proj__Monoid__item__mult" ]
[]
false
true
false
false
false
let should_rewrite (#a: Type) (m: monoid a) (everywhere: bool) (t: term) : Tac (bool * int) =
let m_mult = norm_term [delta; zeta; iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta; zeta; iota] (quote (Monoid?.unit m)) in if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_plus
val divides_plus (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a + b))
val divides_plus (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a + b))
let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2)))
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 69, "end_line": 81, "start_col": 0, "start_line": 74 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides d a /\ FStar.Math.Euclid.divides d b) (ensures FStar.Math.Euclid.divides d (a + b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_elim", "FStar.Math.Euclid.divides", "Prims.op_Addition", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "FStar.Squash.get_proof", "Prims.l_Exists", "FStar.Classical.exists_intro", "Prims.unit", "FStar.Math.Lemmas.distributivity_add_left", "Prims._assert", "Prims.squash" ]
[]
false
false
true
false
false
let divides_plus a b d =
Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2)))
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_0
val divides_0 (a:int) : Lemma (a `divides` 0)
val divides_0 (a:int) : Lemma (a `divides` 0)
let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 60, "start_col": 0, "start_line": 59 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.Math.Euclid.divides a 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_intro", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "Prims.unit" ]
[]
false
false
true
false
false
let divides_0 a =
Classical.exists_intro (fun q -> 0 = q * a) 0
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.is_gcd_unique
val is_gcd_unique (a b c d:int) : Lemma (requires is_gcd a b c /\ is_gcd a b d) (ensures c = d \/ c = -d)
val is_gcd_unique (a b c d:int) : Lemma (requires is_gcd a b c /\ is_gcd a b d) (ensures c = d \/ c = -d)
let is_gcd_unique a b c d = divide_antisym c d
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 20, "end_line": 105, "start_col": 0, "start_line": 104 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.is_gcd a b c /\ FStar.Math.Euclid.is_gcd a b d) (ensures c = d \/ c = - d)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.divide_antisym", "Prims.unit" ]
[]
true
false
true
false
false
let is_gcd_unique a b c d =
divide_antisym c d
false
Rewrite.Monoid.fst
Rewrite.Monoid.rewrite_monoid
val rewrite_monoid: #a: Type -> m: monoid a -> Prims.unit -> Tac unit
val rewrite_monoid: #a: Type -> m: monoid a -> Prims.unit -> Tac unit
let rewrite_monoid (#a:Type) (m:monoid a) () : Tac unit = norm [zeta;iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then // let _ = dump "Trying canon ... " in let lhs_exp : exp a = reification m lhs in replace_point m lhs_exp // dump "change" else trefl () | _ -> fail "Unexpected goal to rewriter"
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 77, "start_col": 0, "start_line": 64 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ()) let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Algebra.Monoid.monoid a -> _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Algebra.Monoid.monoid", "Prims.unit", "FStar.Stubs.Reflection.Types.typ", "FStar.Tactics.NamedView.term", "Rewrite.Monoid.replace_point", "FStar.Tactics.CanonMonoid.exp", "FStar.Tactics.CanonMonoid.reification", "Prims.bool", "FStar.Tactics.V2.Derived.trefl", "FStar.Stubs.Reflection.V2.Builtins.term_eq", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.V2.Derived.debug", "Prims.string", "FStar.Stubs.Tactics.V2.Builtins.term_to_string", "FStar.Reflection.V2.Formula.formula", "FStar.Tactics.V2.Derived.fail", "FStar.Reflection.V2.Formula.term_as_formula", "FStar.Tactics.V2.Derived.cur_goal", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "Prims.Nil" ]
[]
false
true
false
false
false
let rewrite_monoid (#a: Type) (m: monoid a) () : Tac unit =
norm [zeta; iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then let lhs_exp:exp a = reification m lhs in replace_point m lhs_exp else trefl () | _ -> fail "Unexpected goal to rewriter"
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_reflexive
val divides_reflexive (a:int) : Lemma (a `divides` a) [SMTPat (a `divides` a)]
val divides_reflexive (a:int) : Lemma (a `divides` a) [SMTPat (a `divides` a)]
let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 32, "start_col": 0, "start_line": 31 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> FStar.Pervasives.Lemma (ensures FStar.Math.Euclid.divides a a) [SMTPat (FStar.Math.Euclid.divides a a)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_intro", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "Prims.unit" ]
[]
false
false
true
false
false
let divides_reflexive a =
Classical.exists_intro (fun q -> a = q * a) 1
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_mod
val divides_mod (a:int) (b:nonzero) : Lemma (requires b `divides` a) (ensures a % b = 0)
val divides_mod (a:int) (b:nonzero) : Lemma (requires b `divides` a) (ensures a % b = 0)
let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b)
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 102, "start_col": 0, "start_line": 100 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.nonzero -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides b a) (ensures a % b = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.nonzero", "FStar.Classical.exists_elim", "Prims.b2t", "Prims.op_Equality", "Prims.op_Modulus", "FStar.Mul.op_Star", "FStar.Squash.get_proof", "FStar.Math.Euclid.divides", "FStar.Math.Lemmas.cancel_mul_div", "Prims.squash", "Prims.unit" ]
[]
false
false
true
false
false
let divides_mod a b =
Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b)
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.is_gcd_opp
val is_gcd_opp (a b d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd b a (-d))
val is_gcd_opp (a b d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd b a (-d))
let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 17, "end_line": 122, "start_col": 0, "start_line": 119 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.is_gcd a b d) (ensures FStar.Math.Euclid.is_gcd b a (- d))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.divides_opp", "Prims.unit", "FStar.Classical.forall_intro_2", "Prims.l_imp", "FStar.Math.Euclid.divides", "Prims.op_Minus", "FStar.Classical.move_requires_2", "FStar.Math.Euclid.divides_minus" ]
[]
false
false
true
false
false
let is_gcd_opp a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.is_gcd_minus
val is_gcd_minus (a b d:int) : Lemma (requires is_gcd a (-b) d) (ensures is_gcd b a d)
val is_gcd_minus (a b d:int) : Lemma (requires is_gcd a (-b) d) (ensures is_gcd b a d)
let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 18, "end_line": 117, "start_col": 0, "start_line": 115 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.is_gcd a (- b) d) (ensures FStar.Math.Euclid.is_gcd b a d)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.opp_idempotent", "Prims.unit", "FStar.Classical.forall_intro_2", "Prims.l_imp", "FStar.Math.Euclid.divides", "Prims.op_Minus", "FStar.Classical.move_requires_2", "FStar.Math.Euclid.divides_minus" ]
[]
false
false
true
false
false
let is_gcd_minus a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.is_gcd_for_euclid
val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d) (ensures is_gcd a b d)
val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d) (ensures is_gcd a b d)
let is_gcd_for_euclid a b q d = add_sub_l a (q * b); is_gcd_plus b (a - q * b) q d
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 139, "start_col": 0, "start_line": 137 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b let is_gcd_plus a b q d = add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub) /// /// Extended Euclidean algorithm /// val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> q: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.is_gcd b (a - q * b) d) (ensures FStar.Math.Euclid.is_gcd a b d)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_gcd_plus", "Prims.op_Subtraction", "FStar.Mul.op_Star", "Prims.unit", "FStar.Math.Euclid.add_sub_l" ]
[]
true
false
true
false
false
let is_gcd_for_euclid a b q d =
add_sub_l a (q * b); is_gcd_plus b (a - q * b) q d
false
Spec.Blake2.Definitions.fst
Spec.Blake2.Definitions.nat_to_limb
val nat_to_limb (a: alg) (x: nat{x <= max_limb a}) : xl: limb_t a {uint_v xl == x}
val nat_to_limb (a: alg) (x: nat{x <= max_limb a}) : xl: limb_t a {uint_v xl == x}
let nat_to_limb (a:alg) (x:nat{x <= max_limb a}) : xl:limb_t a{uint_v xl == x} = match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l
{ "file_name": "specs/Spec.Blake2.Definitions.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 237, "start_col": 0, "start_line": 232 }
module Spec.Blake2.Definitions open FStar.Mul open Lib.IntTypes open Lib.RawIntTypes open Lib.Sequence open Lib.ByteSequence #set-options "--z3rlimit 50" type alg = | Blake2S | Blake2B let alg_inversion_lemma (a:alg) : Lemma (a == Blake2S \/ a == Blake2B) = () inline_for_extraction let wt (a:alg) : t:inttype{unsigned t} = match a with | Blake2S -> U32 | Blake2B -> U64 inline_for_extraction let rounds (a:alg) = match a with | Blake2S -> 10 | Blake2B -> 12 (* Algorithm parameters *) inline_for_extraction let size_hash_w : size_nat = 8 inline_for_extraction let size_block_w : size_nat = 16 inline_for_extraction let size_word (a:alg) : size_nat = numbytes (wt a) inline_for_extraction let size_block (a:alg) : size_nat = size_block_w * (size_word a) inline_for_extraction let size_ivTable : size_nat = 8 inline_for_extraction let size_sigmaTable : size_nat = 160 inline_for_extraction let max_key (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 inline_for_extraction let max_output (a:alg) = match a with | Blake2S -> 32 | Blake2B -> 64 (* Definition of base types *) inline_for_extraction unfold let limb_inttype (a:alg) = match (wt a) with | U32 -> U64 | U64 -> U128 inline_for_extraction unfold type word_t (a:alg) = uint_t (wt a) SEC inline_for_extraction let zero (a:alg) : word_t a= match a with | Blake2S -> u32 0 | Blake2B -> u64 0 inline_for_extraction unfold let row (a:alg) = lseq (word_t a) 4 inline_for_extraction let zero_row (a:alg) : row a = create 4 (zero a) inline_for_extraction let load_row (#a:alg) (s:lseq (word_t a) 4) : row a = createL [s.[0]; s.[1]; s.[2]; s.[3]] inline_for_extraction let create_row (#a:alg) x0 x1 x2 x3 : row a = createL [x0;x1;x2;x3] inline_for_extraction unfold let state (a:alg) = lseq (row a) 4 inline_for_extraction let salt_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 inline_for_extraction let personal_length (a:alg) : size_nat = match a with | Blake2S -> 8 | Blake2B -> 16 noeq type blake2s_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint16; node_depth: uint8; inner_length: uint8; salt: lseq uint8 (salt_length Blake2S); personal: lseq uint8 (personal_length Blake2S); } (* Need these helpers to cleanly work around field shadowing *) inline_for_extraction let set_blake2s_digest_length (p: blake2s_params) (nn: size_nat{1 <= nn /\ nn <= max_output Blake2S}) : blake2s_params = {p with digest_length = u8 nn} inline_for_extraction let set_blake2s_key_length (p: blake2s_params) (kk: size_nat{kk <= max_key Blake2S}) : blake2s_params = {p with key_length = u8 kk} inline_for_extraction let get_blake2s_salt (p:blake2s_params) = p.salt inline_for_extraction let get_blake2s_personal (p:blake2s_params) = p.personal noeq type blake2b_params = { digest_length: uint8; key_length: uint8; fanout: uint8; depth: uint8; leaf_length: uint32; node_offset: uint32; xof_length: uint32; node_depth: uint8; inner_length: uint8; // Blake2b also contains 14 reserved bytes here, but they seem // unused and to only contain zeros, hence we do not expose them salt: lseq uint8 (salt_length Blake2B); personal: lseq uint8 (personal_length Blake2B); } inline_for_extraction let blake2_params (a: alg) = match a with | Blake2S -> blake2s_params | Blake2B -> blake2b_params inline_for_extraction let set_digest_length (#a: alg) (p: blake2_params a) (nn: size_nat{1 <= nn /\ nn <= max_output a}) : blake2_params a = match a with | Blake2S -> set_blake2s_digest_length p nn | Blake2B -> {p with digest_length = u8 nn} inline_for_extraction let set_key_length (#a: alg) (p: blake2_params a) (kk: size_nat{kk <= max_key a}) : blake2_params a = match a with | Blake2S -> set_blake2s_key_length p kk | Blake2B -> {p with key_length = u8 kk} inline_for_extraction let get_salt (#a: alg) (p: blake2_params a) : lseq uint8 (salt_length a) = match a with | Blake2S -> get_blake2s_salt p | Blake2B -> p.salt inline_for_extraction let get_personal (#a: alg) (p: blake2_params a) : lseq uint8 (personal_length a) = match a with | Blake2S -> get_blake2s_personal p | Blake2B -> p.personal let blake2s_default_params: blake2s_params = { digest_length = u8 32; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u16 0; node_depth = u8 0; inner_length = u8 0; salt = create 8 (u8 0); personal = create 8 (u8 0); } let blake2b_default_params: blake2b_params = { digest_length = u8 64; key_length = u8 0; fanout = u8 1; depth = u8 1; leaf_length = u32 0; node_offset = u32 0; xof_length = u32 0; node_depth = u8 0; inner_length = u8 0; salt = create 16 (u8 0); personal = create 16 (u8 0); } inline_for_extraction let blake2_default_params (a: alg) : blake2_params a = match a with | Blake2S -> blake2s_default_params | Blake2B -> blake2b_default_params inline_for_extraction type pub_word_t (a:alg) = uint_t (wt a) PUB inline_for_extraction type limb_t (a:alg) : Type0 = uint_t (limb_inttype a) SEC inline_for_extraction let max_limb (a:alg) = maxint (limb_inttype a) inline_for_extraction let nat_to_word (a:alg) (x:size_nat) : word_t a = match (wt a) with | U32 -> u32 x | U64 -> u64 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.RawIntTypes.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Blake2.Definitions.fst" }
[ { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.RawIntTypes", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "Spec.Blake2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Blake2.Definitions.alg -> x: Prims.nat{x <= Spec.Blake2.Definitions.max_limb a} -> xl: Spec.Blake2.Definitions.limb_t a {Lib.IntTypes.uint_v xl == x}
Prims.Tot
[ "total" ]
[]
[ "Spec.Blake2.Definitions.alg", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Spec.Blake2.Definitions.max_limb", "Spec.Blake2.Definitions.wt", "Lib.IntTypes.u64", "Lib.IntTypes.op_Plus_Bang", "Lib.IntTypes.U128", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.to_u128", "Lib.IntTypes.U64", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.int_t", "Prims.eq2", "Prims.int", "Lib.IntTypes.range", "Lib.IntTypes.v", "Prims.op_Modulus", "Prims.pow2", "Prims.op_Division", "Spec.Blake2.Definitions.limb_t", "Prims.l_or", "Spec.Blake2.Definitions.limb_inttype", "Prims.l_and", "Prims.op_GreaterThanOrEqual", "Lib.IntTypes.uint_v" ]
[]
false
false
false
false
false
let nat_to_limb (a: alg) (x: nat{x <= max_limb a}) : xl: limb_t a {uint_v xl == x} =
match (wt a) with | U32 -> u64 x | U64 -> let h = u64 (x / pow2 64) in let l = u64 (x % pow2 64) in (to_u128 h <<. 64ul) +! to_u128 l
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_mult_right
val divides_mult_right (a b d:int) : Lemma (requires d `divides` b) (ensures d `divides` (a * b))
val divides_mult_right (a b d:int) : Lemma (requires d `divides` b) (ensures d `divides` (a * b))
let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q))
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 91, "start_col": 0, "start_line": 87 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides d b) (ensures FStar.Math.Euclid.divides d (a * b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_elim", "FStar.Math.Euclid.divides", "FStar.Mul.op_Star", "Prims.b2t", "Prims.op_Equality", "FStar.Squash.get_proof", "FStar.Classical.exists_intro", "Prims.unit", "FStar.Math.Lemmas.paren_mul_right", "Prims.squash" ]
[]
false
false
true
false
false
let divides_mult_right a b d =
Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q))
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divide_antisym
val divide_antisym (a b:int) : Lemma (requires a `divides` b /\ b `divides` a) (ensures a = b \/ a = -b)
val divide_antisym (a b:int) : Lemma (requires a `divides` b /\ b `divides` a) (ensures a = b \/ a = -b)
let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2))
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 57, "start_col": 0, "start_line": 46 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides a b /\ FStar.Math.Euclid.divides b a) (ensures a = b \/ a = - b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.op_disEquality", "FStar.Classical.exists_elim", "Prims.l_or", "Prims.b2t", "Prims.op_Equality", "Prims.op_Minus", "FStar.Mul.op_Star", "FStar.Squash.get_proof", "Prims.l_Exists", "FStar.Math.Euclid.eq_mult_one", "Prims.unit", "FStar.Math.Euclid.eq_mult_left", "FStar.Math.Lemmas.paren_mul_right", "Prims._assert", "Prims.squash", "Prims.bool" ]
[]
false
false
true
false
false
let divide_antisym a b =
if a <> 0 then Classical.exists_elim (a = b \/ a = - b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = - b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2))
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_map
val four_map (#a #b: Type) (f: (a -> b)) (x: four a) : four b
val four_map (#a #b: Type) (f: (a -> b)) (x: four a) : four b
let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3)
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 7, "start_col": 7, "start_line": 5 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> b) -> x: Vale.Def.Words_s.four a -> Vale.Def.Words_s.four b
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mkfour" ]
[]
false
false
false
true
false
let four_map (#a #b: Type) (f: (a -> b)) (x: four a) : four b =
let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3)
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_transitive
val divides_transitive (a b c:int) : Lemma (requires a `divides` b /\ b `divides` c) (ensures a `divides` c)
val divides_transitive (a b c:int) : Lemma (requires a `divides` b /\ b `divides` c) (ensures a `divides` c)
let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and ()
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 43, "start_col": 0, "start_line": 34 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> c: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides a b /\ FStar.Math.Euclid.divides b c) (ensures FStar.Math.Euclid.divides a c)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.Sugar.exists_elim", "Prims.eq2", "FStar.Mul.op_Star", "FStar.Math.Euclid.divides", "Prims.squash", "Prims.l_Exists", "FStar.Classical.Sugar.exists_intro", "Prims.unit" ]
[]
false
false
true
false
false
let divides_transitive a b c =
eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q.c == q * a with (q1 * q2) and ()
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.is_gcd_plus
val is_gcd_plus (a b q d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd a (b + q * a) d)
val is_gcd_plus (a b q d:int) : Lemma (requires is_gcd a b d) (ensures is_gcd a (b + q * a) d)
let is_gcd_plus a b q d = add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub)
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 128, "start_col": 0, "start_line": 124 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> q: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.is_gcd a b d) (ensures FStar.Math.Euclid.is_gcd a (b + q * a) d)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.forall_intro_3", "Prims.l_imp", "Prims.l_and", "FStar.Math.Euclid.divides", "Prims.op_Subtraction", "FStar.Classical.move_requires_3", "FStar.Math.Euclid.divides_sub", "Prims.unit", "FStar.Mul.op_Star", "FStar.Math.Euclid.divides_mult_right", "Prims.op_Addition", "FStar.Math.Euclid.divides_plus", "FStar.Math.Euclid.add_sub_r" ]
[]
false
false
true
false
false
let is_gcd_plus a b q d =
add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub)
false
Rewrite.Monoid.fst
Rewrite.Monoid.apply_imp
val apply_imp : h: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
let apply_imp (h:binding) = mapply (mk_app (`elim_implies) [(pack (Tv_Var (binding_to_namedv h)), Q_Explicit)])
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 87, "end_line": 86, "start_col": 0, "start_line": 85 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ()) let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0 let rewrite_monoid (#a:Type) (m:monoid a) () : Tac unit = norm [zeta;iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then // let _ = dump "Trying canon ... " in let lhs_exp : exp a = reification m lhs in replace_point m lhs_exp // dump "change" else trefl () | _ -> fail "Unexpected goal to rewriter" let rewrite_int (everywhere:bool) = topdown_rewrite (should_rewrite int_plus_monoid everywhere) (rewrite_monoid int_plus_monoid)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Tactics.NamedView.binding -> FStar.Tactics.Effect.Tac Prims.unit
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Tactics.NamedView.binding", "FStar.Tactics.MApply.mapply", "FStar.Stubs.Reflection.Types.term", "FStar.Tactics.MApply.termable_term", "FStar.Reflection.V2.Derived.mk_app", "Prims.Cons", "FStar.Stubs.Reflection.V2.Data.argv", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Tactics.NamedView.pack", "FStar.Tactics.NamedView.Tv_Var", "FStar.Tactics.V2.SyntaxCoercions.binding_to_namedv", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "Prims.Nil", "Prims.unit" ]
[]
false
true
false
false
false
let apply_imp (h: binding) =
mapply (mk_app (`elim_implies) [(pack (Tv_Var (binding_to_namedv h)), Q_Explicit)])
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.two_two_to_four
val two_two_to_four (#a: Type) (x: two (two a)) : four a
val two_two_to_four (#a: Type) (x: two (two a)) : four a
let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 16, "start_col": 0, "start_line": 14 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.two (Vale.Def.Words_s.two a) -> Vale.Def.Words_s.four a
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.two", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.four" ]
[]
false
false
false
true
false
let two_two_to_four (#a: Type) (x: two (two a)) : four a =
let Mktwo (Mktwo x0 x1) (Mktwo x2 x3) = x in Mkfour x0 x1 x2 x3
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_map2
val four_map2 (#a #b: Type) (f: (a -> a -> b)) (x y: four a) : four b
val four_map2 (#a #b: Type) (f: (a -> a -> b)) (x y: four a) : four b
let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3)
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 12, "start_col": 7, "start_line": 9 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: a -> _: a -> b) -> x: Vale.Def.Words_s.four a -> y: Vale.Def.Words_s.four a -> Vale.Def.Words_s.four b
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mkfour" ]
[]
false
false
false
true
false
let four_map2 (#a #b: Type) (f: (a -> a -> b)) (x y: four a) : four b =
let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3)
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.mod_divides
val mod_divides (a:int) (b:nonzero) : Lemma (requires a % b = 0) (ensures b `divides` a)
val mod_divides (a:int) (b:nonzero) : Lemma (requires a % b = 0) (ensures b `divides` a)
let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b)
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 98, "start_col": 0, "start_line": 97 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.nonzero -> FStar.Pervasives.Lemma (requires a % b = 0) (ensures FStar.Math.Euclid.divides b a)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "Prims.nonzero", "FStar.Classical.exists_intro", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "Prims.op_Division", "Prims.unit" ]
[]
false
false
true
false
false
let mod_divides a b =
Classical.exists_intro (fun q -> a = q * b) (a / b)
false
Rewrite.Monoid.fst
Rewrite.Monoid.refl
val refl (#a: Type) (x: a) : (x == x)
val refl (#a: Type) (x: a) : (x == x)
let refl (#a:Type) (x:a) : (x==x) = FStar.Squash.return_squash Refl
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 87, "start_col": 0, "start_line": 87 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ()) let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0 let rewrite_monoid (#a:Type) (m:monoid a) () : Tac unit = norm [zeta;iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then // let _ = dump "Trying canon ... " in let lhs_exp : exp a = reification m lhs in replace_point m lhs_exp // dump "change" else trefl () | _ -> fail "Unexpected goal to rewriter" let rewrite_int (everywhere:bool) = topdown_rewrite (should_rewrite int_plus_monoid everywhere) (rewrite_monoid int_plus_monoid) let elim_implies #p #q (_:(p ==> q)) (_:p) : squash q = () let apply_imp (h:binding) =
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> x == x
Prims.Tot
[ "total" ]
[]
[ "FStar.Squash.return_squash", "Prims.equals", "Prims.Refl", "Prims.eq2" ]
[]
false
false
false
false
false
let refl (#a: Type) (x: a) : (x == x) =
FStar.Squash.return_squash Refl
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_sub
val divides_sub (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a - b))
val divides_sub (a b d:int) : Lemma (requires d `divides` a /\ d `divides` b) (ensures d `divides` (a - b))
let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 85, "start_col": 0, "start_line": 83 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> d: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides d a /\ FStar.Math.Euclid.divides d b) (ensures FStar.Math.Euclid.divides d (a - b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.divides_plus", "Prims.op_Minus", "Prims.unit", "FStar.Classical.forall_intro_2", "Prims.l_imp", "FStar.Math.Euclid.divides", "FStar.Classical.move_requires_2", "FStar.Math.Euclid.divides_minus" ]
[]
false
false
true
false
false
let divides_sub a b d =
Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (- b) d
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_minus
val divides_minus (a b:int) : Lemma (requires a `divides` b) (ensures a `divides` (-b))
val divides_minus (a b:int) : Lemma (requires a `divides` b) (ensures a `divides` (-b))
let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q))
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 67, "start_col": 0, "start_line": 64 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides a b) (ensures FStar.Math.Euclid.divides a (- b))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_elim", "FStar.Math.Euclid.divides", "Prims.op_Minus", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "FStar.Squash.get_proof", "FStar.Classical.exists_intro", "Prims.squash", "Prims.unit" ]
[]
false
false
true
false
false
let divides_minus a b =
Classical.exists_elim (a `divides` (- b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> - b = q' * a) (- q))
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_to_two_two
val four_to_two_two (#a: Type) (x: four a) : two (two a)
val four_to_two_two (#a: Type) (x: four a) : two (two a)
let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3)
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 20, "start_col": 0, "start_line": 18 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four a -> Vale.Def.Words_s.two (Vale.Def.Words_s.two a)
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mktwo", "Vale.Def.Words_s.two" ]
[]
false
false
false
true
false
let four_to_two_two (#a: Type) (x: four a) : two (two a) =
let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3)
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.divides_opp
val divides_opp (a b:int) : Lemma (requires a `divides` b) (ensures (-a) `divides` b)
val divides_opp (a b:int) : Lemma (requires a `divides` b) (ensures (-a) `divides` b)
let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q))
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 72, "start_col": 0, "start_line": 69 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (requires FStar.Math.Euclid.divides a b) (ensures FStar.Math.Euclid.divides (- a) b)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Classical.exists_elim", "FStar.Math.Euclid.divides", "Prims.op_Minus", "Prims.b2t", "Prims.op_Equality", "FStar.Mul.op_Star", "FStar.Squash.get_proof", "FStar.Classical.exists_intro", "Prims.squash", "Prims.unit" ]
[]
false
false
true
false
false
let divides_opp a b =
Classical.exists_elim ((- a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (- a)) (- q))
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_reverse
val four_reverse (#a: Type) (x: four a) : four a
val four_reverse (#a: Type) (x: four a) : four a
let four_reverse (#a:Type) (x:four a) : four a = let Mkfour x0 x1 x2 x3 = x in Mkfour x3 x2 x1 x0
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 63, "start_col": 0, "start_line": 61 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1) [@"opaque_to_smt"] let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n unfold let four_to_nat_unfold (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3) [@"opaque_to_smt"] let four_to_nat (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = four_to_nat_unfold size x let four_select (#a:Type) (x:four a) (selector:nat2) : a = match selector with | 0 -> x.lo0 | 1 -> x.lo1 | 2 -> x.hi2 | 3 -> x.hi3 let four_insert (#a:Type) (x:four a) (y:a) (selector:nat2) : four a = match selector with | 0 -> Mkfour y x.lo1 x.hi2 x.hi3 | 1 -> Mkfour x.lo0 y x.hi2 x.hi3 | 2 -> Mkfour x.lo0 x.lo1 y x.hi3 | 3 -> Mkfour x.lo0 x.lo1 x.hi2 y
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four a -> Vale.Def.Words_s.four a
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.Mkfour" ]
[]
false
false
false
true
false
let four_reverse (#a: Type) (x: four a) : four a =
let Mkfour x0 x1 x2 x3 = x in Mkfour x3 x2 x1 x0
false
Rewrite.Monoid.fst
Rewrite.Monoid.test
val test : a: Prims.int -> b: Prims.int -> p: Type0 -> Prims.unit
let test (a b : int) (p:Type) = assert ((((a + b + 0) == (a + b)) ==> p) ==> p) by (norm []; rewrite_int true; apply_imp (implies_intro()); norm [delta; zeta;iota; primops]; apply (`refl))
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 94, "start_col": 0, "start_line": 88 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = () let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs let replace_point (#a:Type) (m:monoid a) (rhs:exp a) = focus (fun () -> let t = mk_app (`monoid_reflect_rhs) [(quote a, Q_Explicit); (quote m, Q_Explicit); (quote rhs, Q_Explicit)] in (* dump "before replace point"; *) apply_lemma t; (* dump "after replace point"; *) norm [delta;primops;zeta;iota]; (* dump "after replace norm"; *) trefl ()) let should_rewrite (#a:Type) (m:monoid a) (everywhere:bool) (t:term) : Tac (bool * int) = let m_mult = norm_term [delta;zeta;iota] (quote (Monoid?.mult m)) in let m_unit = norm_term [delta;zeta;iota] (quote (Monoid?.unit m)) in // debug "should_rewrite: "; // debug (term_to_string t); if is_reifiable m_mult m_unit t then true, (if everywhere then 1 else 2) else false, 0 let rewrite_monoid (#a:Type) (m:monoid a) () : Tac unit = norm [zeta;iota]; let g = cur_goal () in match term_as_formula g with | Comp (Eq (Some t)) lhs _ -> debug (term_to_string g); if term_eq t (quote a) then // let _ = dump "Trying canon ... " in let lhs_exp : exp a = reification m lhs in replace_point m lhs_exp // dump "change" else trefl () | _ -> fail "Unexpected goal to rewriter" let rewrite_int (everywhere:bool) = topdown_rewrite (should_rewrite int_plus_monoid everywhere) (rewrite_monoid int_plus_monoid) let elim_implies #p #q (_:(p ==> q)) (_:p) : squash q = () let apply_imp (h:binding) = mapply (mk_app (`elim_implies) [(pack (Tv_Var (binding_to_namedv h)), Q_Explicit)])
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> p: Type0 -> Prims.unit
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "FStar.Tactics.Effect.assert_by_tactic", "Prims.l_imp", "Prims.eq2", "Prims.op_Addition", "Prims.unit", "FStar.Tactics.V2.Derived.apply", "FStar.Stubs.Tactics.V2.Builtins.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.delta", "FStar.Pervasives.zeta", "FStar.Pervasives.iota", "FStar.Pervasives.primops", "Prims.Nil", "Rewrite.Monoid.apply_imp", "FStar.Tactics.NamedView.binding", "FStar.Tactics.V2.Logic.implies_intro", "Rewrite.Monoid.rewrite_int" ]
[]
false
false
false
true
false
let test (a b: int) (p: Type) =
FStar.Tactics.Effect.assert_by_tactic ((((a + b + 0) == (a + b)) ==> p) ==> p) (fun _ -> (); (norm []; rewrite_int true; apply_imp (implies_intro ()); norm [delta; zeta; iota; primops]; apply (`refl)))
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.iget
val iget: Prims.unit -> int_store heap
val iget: Prims.unit -> int_store heap
let iget () : int_store heap = fun store -> store, store
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 28, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> FStar.DM4F.IntStoreFixed.int_store FStar.DM4F.Heap.IntStoreFixed.heap
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.IntStoreFixed.int_store" ]
[]
false
false
false
true
false
let iget () : int_store heap =
fun store -> store, store
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_to_nat_unfold
val four_to_nat_unfold (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size))
val four_to_nat_unfold (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size))
let four_to_nat_unfold (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 51, "end_line": 41, "start_col": 0, "start_line": 35 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1) [@"opaque_to_smt"] let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
size: Prims.nat -> x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Prims.pow2 size)) -> Vale.Def.Words_s.natN (Prims.pow2 (4 * size))
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words_s.int_to_natN", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pos", "Vale.Def.Words_s.pow2_norm" ]
[]
false
false
false
false
false
let four_to_nat_unfold (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size)) =
let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.return_is
val return_is (a: Type) (x: a) : int_store a
val return_is (a: Type) (x: a) : int_store a
let return_is (a:Type) (x:a) : int_store a = fun store -> x, store
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 66, "end_line": 22, "start_col": 0, "start_line": 22 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> x: a -> FStar.DM4F.IntStoreFixed.int_store a
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.Pervasives.Native.Mktuple2", "FStar.Pervasives.Native.tuple2", "FStar.DM4F.IntStoreFixed.int_store" ]
[]
false
false
false
true
false
let return_is (a: Type) (x: a) : int_store a =
fun store -> x, store
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_insert
val four_insert (#a: Type) (x: four a) (y: a) (selector: nat2) : four a
val four_insert (#a: Type) (x: four a) (y: a) (selector: nat2) : four a
let four_insert (#a:Type) (x:four a) (y:a) (selector:nat2) : four a = match selector with | 0 -> Mkfour y x.lo1 x.hi2 x.hi3 | 1 -> Mkfour x.lo0 y x.hi2 x.hi3 | 2 -> Mkfour x.lo0 x.lo1 y x.hi3 | 3 -> Mkfour x.lo0 x.lo1 x.hi2 y
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 59, "start_col": 0, "start_line": 54 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1) [@"opaque_to_smt"] let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n unfold let four_to_nat_unfold (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3) [@"opaque_to_smt"] let four_to_nat (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = four_to_nat_unfold size x let four_select (#a:Type) (x:four a) (selector:nat2) : a = match selector with | 0 -> x.lo0 | 1 -> x.lo1 | 2 -> x.hi2 | 3 -> x.hi3
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four a -> y: a -> selector: Vale.Def.Words_s.nat2 -> Vale.Def.Words_s.four a
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat2", "Vale.Def.Words_s.Mkfour", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3", "Vale.Def.Words_s.__proj__Mkfour__item__lo0" ]
[]
false
false
false
true
false
let four_insert (#a: Type) (x: four a) (y: a) (selector: nat2) : four a =
match selector with | 0 -> Mkfour y x.lo1 x.hi2 x.hi3 | 1 -> Mkfour x.lo0 y x.hi2 x.hi3 | 2 -> Mkfour x.lo0 x.lo1 y x.hi3 | 3 -> Mkfour x.lo0 x.lo1 x.hi2 y
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_to_nat
val four_to_nat (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size))
val four_to_nat (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size))
let four_to_nat (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = four_to_nat_unfold size x
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 45, "start_col": 0, "start_line": 44 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1) [@"opaque_to_smt"] let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n unfold let four_to_nat_unfold (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
size: Prims.nat -> x: Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Prims.pow2 size)) -> Vale.Def.Words_s.natN (Prims.pow2 (4 * size))
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Def.Words_s.four", "Vale.Def.Words_s.natN", "Prims.pow2", "Vale.Def.Words.Four_s.four_to_nat_unfold", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let four_to_nat (size: nat) (x: four (natN (pow2 size))) : natN (pow2 (4 * size)) =
four_to_nat_unfold size x
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.pre
val pre : Type
let pre = INT_STORE?.pre
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 54, "start_col": 0, "start_line": 54 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_pre" ]
[]
false
false
false
true
true
let pre =
INT_STORE?.pre
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.bind_is
val bind_is (a b: Type) (x: int_store a) (f: (a -> int_store b)) : int_store b
val bind_is (a b: Type) (x: int_store a) (f: (a -> int_store b)) : int_store b
let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store'
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 14, "end_line": 26, "start_col": 0, "start_line": 23 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> b: Type -> x: FStar.DM4F.IntStoreFixed.int_store a -> f: (_: a -> FStar.DM4F.IntStoreFixed.int_store b) -> FStar.DM4F.IntStoreFixed.int_store b
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixed.int_store", "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
false
let bind_is (a b: Type) (x: int_store a) (f: (a -> int_store b)) : int_store b =
fun store -> let z, store' = x store in f z store'
false
Rewrite.Monoid.fst
Rewrite.Monoid.monoid_reflect_rhs
val monoid_reflect_rhs: a: Type -> m: monoid a -> rhs: exp a -> lhs: a -> squash (lhs == mdenote m rhs) -> Lemma (lhs == mldenote m (flatten rhs))
val monoid_reflect_rhs: a: Type -> m: monoid a -> rhs: exp a -> lhs: a -> squash (lhs == mdenote m rhs) -> Lemma (lhs == mldenote m (flatten rhs))
let monoid_reflect_rhs (a:Type) (m:monoid a) (rhs:exp a) (lhs:a) (_ : squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) = flatten_correct m rhs
{ "file_name": "examples/tactics/Rewrite.Monoid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 39, "start_col": 0, "start_line": 36 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Rewrite.Monoid open FStar.Algebra.Monoid open FStar.List open FStar.Reflection.V2 open FStar.Tactics.V2 open FStar.Tactics.CanonMonoid let is_reifiable (m_mult:term) (m_unit:term) (me:term) : Tac bool = let hd, tl = collect_app_ref me in match inspect hd with | Tv_FVar fv -> // if unify (pack (Tv_FVar fv)) (quote (Monoid?.mult m)) then -- doesn't work let t1 = norm_term [delta;zeta;iota] (pack (Tv_FVar fv)) in term_eq t1 m_mult | _ -> term_eq (norm_term [delta;zeta;iota] me) m_unit let aux (#a:Type) (#rhs:a) (#lhs:a) (_:squash (lhs == rhs)) : Lemma (lhs == rhs) = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.CanonMonoid.fst.checked", "FStar.Squash.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.fst.checked", "FStar.Algebra.Monoid.fst.checked" ], "interface_file": false, "source_file": "Rewrite.Monoid.fst" }
[ { "abbrev": false, "full_module": "FStar.Tactics.CanonMonoid", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.Reflection.V2", "short_module": null }, { "abbrev": false, "full_module": "FStar.List", "short_module": null }, { "abbrev": false, "full_module": "FStar.Algebra.Monoid", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "Rewrite", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> m: FStar.Algebra.Monoid.monoid a -> rhs: FStar.Tactics.CanonMonoid.exp a -> lhs: a -> _: Prims.squash (lhs == FStar.Tactics.CanonMonoid.mdenote m rhs) -> FStar.Pervasives.Lemma (ensures lhs == FStar.Tactics.CanonMonoid.mldenote m (FStar.Tactics.CanonMonoid.flatten rhs))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Algebra.Monoid.monoid", "FStar.Tactics.CanonMonoid.exp", "Prims.squash", "Prims.eq2", "FStar.Tactics.CanonMonoid.mdenote", "FStar.Tactics.CanonMonoid.flatten_correct", "Prims.unit", "Prims.l_True", "FStar.Tactics.CanonMonoid.mldenote", "FStar.Tactics.CanonMonoid.flatten", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let monoid_reflect_rhs (a: Type) (m: monoid a) (rhs: exp a) (lhs: a) (_: squash (lhs == mdenote m rhs)) : Lemma (lhs == mldenote m (flatten rhs)) =
flatten_correct m rhs
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.nat_to_four
val nat_to_four (size: nat) (n: natN (pow2 (4 * size))) : four (natN (pow2 size))
val nat_to_four (size: nat) (n: natN (pow2 (4 * size))) : four (natN (pow2 size))
let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 32, "start_col": 0, "start_line": 31 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1)
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
size: Prims.nat -> n: Vale.Def.Words_s.natN (Prims.pow2 (4 * size)) -> Vale.Def.Words_s.four (Vale.Def.Words_s.natN (Prims.pow2 size))
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Vale.Def.Words_s.natN", "Prims.pow2", "FStar.Mul.op_Star", "Vale.Def.Words.Four_s.nat_to_four_unfold", "Vale.Def.Words_s.four" ]
[]
false
false
false
false
false
let nat_to_four (size: nat) (n: natN (pow2 (4 * size))) : four (natN (pow2 size)) =
nat_to_four_unfold size n
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.post
val post : a: Type -> Type
let post = INT_STORE?.post
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *) let wp = INT_STORE?.wp
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_post" ]
[]
false
false
false
true
true
let post =
INT_STORE?.post
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.wp
val wp : a: Type -> Type
let wp = INT_STORE?.wp
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 53, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_wp" ]
[]
false
false
false
true
true
let wp =
INT_STORE?.wp
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.bezout_prime
val bezout_prime (p:int) (a:pos{a < p}) : Pure (int & int) (requires is_prime p) (ensures fun (r, s) -> r * p + s * a = 1)
val bezout_prime (p:int) (a:pos{a < p}) : Pure (int & int) (requires is_prime p) (ensures fun (r, s) -> r * p + s * a = 1)
let bezout_prime p a = let r, s, d = euclid_gcd p a in assert (r * p + s * a = d); assert (is_gcd p a d); is_gcd_prime p a; is_gcd_unique p a 1 d; assert (d = 1 \/ d = -1); assert ((-r) * p + (-s) * a == -(r * p + s * a)) by (FStar.Tactics.Canon.canon()); if d = 1 then r, s else -r, -s
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 218, "start_col": 0, "start_line": 210 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b let is_gcd_plus a b q d = add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub) /// /// Extended Euclidean algorithm /// val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d) (ensures is_gcd a b d) let is_gcd_for_euclid a b q d = add_sub_l a (q * b); is_gcd_plus b (a - q * b) q d val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int) (requires v3 >= 0 /\ u1 * a + u2 * b = u3 /\ v1 * a + v2 * b = v3 /\ (forall d. is_gcd u3 v3 d ==> is_gcd a b d)) (ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d)) (decreases v3) let rec egcd a b u1 u2 u3 v1 v2 v3 = if v3 = 0 then begin divides_0 u3; (u1, u2, u3) end else begin let q = u3 / v3 in euclidean_division_definition u3 v3; assert (u3 - q * v3 = (q * v3 + u3 % v3) - q * v3); assert (q * v3 - q * v3 = 0); swap_add_plus_minus (q * v3) (u3 % v3) (q * v3); calc (==) { (u1 - q * v1) * a + (u2 - q * v2) * b; == { _ by (FStar.Tactics.Canon.canon()) } (u1 * a + u2 * b) - q * (v1 * a + v2 * b); == { } u3 - q * v3; == { lemma_div_mod u3 v3 } u3 % v3; }; let u1, v1 = v1, u1 - q * v1 in let u2, v2 = v2, u2 - q * v2 in let u3' = u3 in let v3' = v3 in let u3, v3 = v3, u3 - q * v3 in (* proving the implication in the precondition *) introduce forall d. is_gcd v3' (u3' - q * v3') d ==> is_gcd u3' v3' d with introduce _ ==> _ with _. is_gcd_for_euclid u3' v3' q d; let r = egcd a b u1 u2 u3 v1 v2 v3 in r end let euclid_gcd a b = if b >= 0 then egcd a b 1 0 a 0 1 b else ( introduce forall d. is_gcd a (-b) d ==> is_gcd a b d with introduce _ ==> _ with _pf. (is_gcd_minus a b d; is_gcd_symmetric b a d); let res = egcd a b 1 0 a 0 (-1) (-b) in let _, _, d = res in assert (is_gcd a b d); res ) val is_gcd_prime_aux (p:int) (a:pos{a < p}) (d:int) : Lemma (requires is_prime p /\ d `divides` p /\ d `divides` a) (ensures d = 1 \/ d = -1) let is_gcd_prime_aux p a d = () val is_gcd_prime (p:int{is_prime p}) (a:pos{a < p}) : Lemma (is_gcd p a 1) let is_gcd_prime p a = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); Classical.forall_intro (Classical.move_requires (is_gcd_prime_aux p a)); assert (forall x. x `divides` p /\ x `divides` a ==> x = 1 \/ x = -1 /\ x `divides` 1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int -> a: Prims.pos{a < p} -> Prims.Pure (Prims.int * Prims.int)
Prims.Pure
[]
[]
[ "Prims.int", "Prims.pos", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Equality", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Prims.op_Minus", "FStar.Pervasives.Native.tuple2", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Tactics.Canon.canon", "Prims._assert", "Prims.l_or", "FStar.Math.Euclid.is_gcd_unique", "FStar.Math.Euclid.is_gcd_prime", "FStar.Math.Euclid.is_gcd", "FStar.Pervasives.Native.tuple3", "FStar.Math.Euclid.euclid_gcd" ]
[]
false
false
false
false
false
let bezout_prime p a =
let r, s, d = euclid_gcd p a in assert (r * p + s * a = d); assert (is_gcd p a d); is_gcd_prime p a; is_gcd_unique p a 1 d; assert (d = 1 \/ d = - 1); FStar.Tactics.Effect.assert_by_tactic ((- r) * p + (- s) * a == - (r * p + s * a)) (fun _ -> (); (FStar.Tactics.Canon.canon ())); if d = 1 then r, s else - r, - s
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.repr
val repr : a: Type -> wp_a: ( _: FStar.DM4F.Heap.IntStoreFixed.heap -> _: (_: (a * FStar.DM4F.Heap.IntStoreFixed.heap) -> Type0) -> Type0) -> Type
let repr = INT_STORE?.repr
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 56, "start_col": 0, "start_line": 56 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *) let wp = INT_STORE?.wp let pre = INT_STORE?.pre
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp_a: ( _: FStar.DM4F.Heap.IntStoreFixed.heap -> _: (_: (a * FStar.DM4F.Heap.IntStoreFixed.heap) -> Type0) -> Type0) -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_repr" ]
[]
false
false
false
true
true
let repr =
INT_STORE?.repr
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.euclid_prime
val euclid_prime (p:int{is_prime p}) (a b:int) : Lemma (requires (a * b) % p = 0) (ensures a % p = 0 \/ b % p = 0)
val euclid_prime (p:int{is_prime p}) (a b:int) : Lemma (requires (a * b) % p = 0) (ensures a % p = 0 \/ b % p = 0)
let euclid_prime p a b = let ra, sa, da = euclid_gcd p a in let rb, sb, db = euclid_gcd p b in assert (is_gcd p a da); assert (is_gcd p b db); assert (da `divides` p); assert (da = 1 \/ da = -1 \/ da = p \/ da = -p); if da = 1 then euclid p a b ra sa else if da = -1 then begin assert ((-ra) * p + (-sa) * a == -(ra * p + sa * a)) by (FStar.Tactics.Canon.canon()); euclid p a b (-ra) (-sa) end else if da = p then divides_mod a p else begin opp_idempotent p; divides_opp (-p) a; divides_mod a p end
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 273, "start_col": 0, "start_line": 252 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b let is_gcd_plus a b q d = add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub) /// /// Extended Euclidean algorithm /// val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d) (ensures is_gcd a b d) let is_gcd_for_euclid a b q d = add_sub_l a (q * b); is_gcd_plus b (a - q * b) q d val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int) (requires v3 >= 0 /\ u1 * a + u2 * b = u3 /\ v1 * a + v2 * b = v3 /\ (forall d. is_gcd u3 v3 d ==> is_gcd a b d)) (ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d)) (decreases v3) let rec egcd a b u1 u2 u3 v1 v2 v3 = if v3 = 0 then begin divides_0 u3; (u1, u2, u3) end else begin let q = u3 / v3 in euclidean_division_definition u3 v3; assert (u3 - q * v3 = (q * v3 + u3 % v3) - q * v3); assert (q * v3 - q * v3 = 0); swap_add_plus_minus (q * v3) (u3 % v3) (q * v3); calc (==) { (u1 - q * v1) * a + (u2 - q * v2) * b; == { _ by (FStar.Tactics.Canon.canon()) } (u1 * a + u2 * b) - q * (v1 * a + v2 * b); == { } u3 - q * v3; == { lemma_div_mod u3 v3 } u3 % v3; }; let u1, v1 = v1, u1 - q * v1 in let u2, v2 = v2, u2 - q * v2 in let u3' = u3 in let v3' = v3 in let u3, v3 = v3, u3 - q * v3 in (* proving the implication in the precondition *) introduce forall d. is_gcd v3' (u3' - q * v3') d ==> is_gcd u3' v3' d with introduce _ ==> _ with _. is_gcd_for_euclid u3' v3' q d; let r = egcd a b u1 u2 u3 v1 v2 v3 in r end let euclid_gcd a b = if b >= 0 then egcd a b 1 0 a 0 1 b else ( introduce forall d. is_gcd a (-b) d ==> is_gcd a b d with introduce _ ==> _ with _pf. (is_gcd_minus a b d; is_gcd_symmetric b a d); let res = egcd a b 1 0 a 0 (-1) (-b) in let _, _, d = res in assert (is_gcd a b d); res ) val is_gcd_prime_aux (p:int) (a:pos{a < p}) (d:int) : Lemma (requires is_prime p /\ d `divides` p /\ d `divides` a) (ensures d = 1 \/ d = -1) let is_gcd_prime_aux p a d = () val is_gcd_prime (p:int{is_prime p}) (a:pos{a < p}) : Lemma (is_gcd p a 1) let is_gcd_prime p a = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); Classical.forall_intro (Classical.move_requires (is_gcd_prime_aux p a)); assert (forall x. x `divides` p /\ x `divides` a ==> x = 1 \/ x = -1 /\ x `divides` 1) let bezout_prime p a = let r, s, d = euclid_gcd p a in assert (r * p + s * a = d); assert (is_gcd p a d); is_gcd_prime p a; is_gcd_unique p a 1 d; assert (d = 1 \/ d = -1); assert ((-r) * p + (-s) * a == -(r * p + s * a)) by (FStar.Tactics.Canon.canon()); if d = 1 then r, s else -r, -s let euclid n a b r s = let open FStar.Math.Lemmas in calc (==) { b % n; == { distributivity_add_left (r * n) (s * a) b } (r * n * b + s * a * b) % n; == { paren_mul_right s a b } (r * n * b + s * (a * b)) % n; == { modulo_distributivity (r * n * b) (s * (a * b)) n } ((r * n * b) % n + s * (a * b) % n) % n; == { lemma_mod_mul_distr_r s (a * b) n } ((r * n * b) % n + s * ((a * b) % n) % n) % n; == { assert (a * b % n = 0) } ((r * n * b) % n + s * 0 % n) % n; == { assert (s * 0 == 0) } ((r * n * b) % n + 0 % n) % n; == { modulo_lemma 0 n } ((r * n * b) % n) % n; == { lemma_mod_twice (r * n * b) n } (r * n * b) % n; == { _ by (FStar.Tactics.Canon.canon ()) } (n * (r * b)) % n; == { lemma_mod_mul_distr_l n (r * b) n} n % n * (r * b) % n; == { assert (n % n = 0) } (0 * (r * b)) % n; == { assert (0 * (r * b) == 0) } 0 % n; == { small_mod 0 n } 0; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Prims.int{FStar.Math.Euclid.is_prime p} -> a: Prims.int -> b: Prims.int -> FStar.Pervasives.Lemma (requires a * b % p = 0) (ensures a % p = 0 \/ b % p = 0)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.int", "FStar.Math.Euclid.is_prime", "Prims.op_Equality", "FStar.Math.Euclid.euclid", "Prims.bool", "Prims.op_Minus", "Prims.unit", "FStar.Tactics.Effect.assert_by_tactic", "Prims.eq2", "Prims.op_Addition", "FStar.Mul.op_Star", "FStar.Tactics.Canon.canon", "FStar.Math.Euclid.divides_mod", "FStar.Math.Euclid.divides_opp", "FStar.Math.Euclid.opp_idempotent", "Prims._assert", "Prims.l_or", "Prims.b2t", "FStar.Math.Euclid.divides", "FStar.Math.Euclid.is_gcd", "FStar.Pervasives.Native.tuple3", "FStar.Math.Euclid.euclid_gcd" ]
[]
false
false
true
false
false
let euclid_prime p a b =
let ra, sa, da = euclid_gcd p a in let rb, sb, db = euclid_gcd p b in assert (is_gcd p a da); assert (is_gcd p b db); assert (da `divides` p); assert (da = 1 \/ da = - 1 \/ da = p \/ da = - p); if da = 1 then euclid p a b ra sa else if da = - 1 then (FStar.Tactics.Effect.assert_by_tactic ((- ra) * p + (- sa) * a == - (ra * p + sa * a)) (fun _ -> (); (FStar.Tactics.Canon.canon ())); euclid p a b (- ra) (- sa)) else if da = p then divides_mod a p else (opp_idempotent p; divides_opp (- p) a; divides_mod a p)
false
Vale.Wrapper.X64.Sha.fsti
Vale.Wrapper.X64.Sha.uint32_i
val uint32_i : Type0
let uint32_i = IB.ibuffer uint32
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Sha.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 32, "end_line": 17, "start_col": 0, "start_line": 17 }
module Vale.Wrapper.X64.Sha open Vale.X64.CPU_Features_s open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module BV = LowStar.BufferView module HS = FStar.HyperStack module BF = Vale.Arch.BufferFriend open FStar.Mul open Vale.SHA.SHA_helpers open Lib.IntTypes unfold let uint32_p = B.buffer uint32
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Vale.SHA.SHA_helpers.fsti.checked", "Vale.Arch.BufferFriend.fsti.checked", "Spec.SHA2.Constants.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.BufferView.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Sha.fsti" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Arch.BufferFriend", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.ImmutableBuffer.ibuffer", "Lib.IntTypes.uint32" ]
[]
false
false
false
true
true
let uint32_i =
IB.ibuffer uint32
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.op_Colon_equals
val op_Colon_equals : i: FStar.DM4F.Heap.IntStoreFixed.id -> x: Prims.int -> FStar.DM4F.IntStoreFixed.INT_STORE Prims.unit
let op_Colon_equals = write
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 83, "start_col": 0, "start_line": 83 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *) let wp = INT_STORE?.wp let pre = INT_STORE?.pre let post = INT_STORE?.post let repr = INT_STORE?.repr let read (i:id) : INT_STORE int (fun s0 p -> p (index s0 i, s0)) = let store = IS?.get () in index store i let write (i:id) (x:int) : INT_STORE unit (fun s0 p -> p ((), upd s0 i x)) = let store = IS?.get () in IS?.put (upd store i x) (* let read_does_not_write_lemma (h:heap) (x:id) *) (* : Lemma (requires True) *) (* (ensures (snd (reify (read x) h) == h)) *) (* [SMTPat (snd (reify (read x) h))] *) (* = () *) unfold let (!) = read
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
i: FStar.DM4F.Heap.IntStoreFixed.id -> x: Prims.int -> FStar.DM4F.IntStoreFixed.INT_STORE Prims.unit
FStar.DM4F.IntStoreFixed.INT_STORE
[]
[]
[ "FStar.DM4F.IntStoreFixed.write" ]
[]
false
true
false
false
false
let op_Colon_equals =
write
false
Vale.Wrapper.X64.Sha.fsti
Vale.Wrapper.X64.Sha.uint8_p
val uint8_p : Type0
let uint8_p = B.buffer uint8
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Sha.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 19, "start_col": 0, "start_line": 19 }
module Vale.Wrapper.X64.Sha open Vale.X64.CPU_Features_s open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module BV = LowStar.BufferView module HS = FStar.HyperStack module BF = Vale.Arch.BufferFriend open FStar.Mul open Vale.SHA.SHA_helpers open Lib.IntTypes unfold let uint32_p = B.buffer uint32 unfold let uint32_i = IB.ibuffer uint32
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Vale.SHA.SHA_helpers.fsti.checked", "Vale.Arch.BufferFriend.fsti.checked", "Spec.SHA2.Constants.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.BufferView.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Sha.fsti" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Arch.BufferFriend", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer", "Lib.IntTypes.uint8" ]
[]
false
false
false
true
true
let uint8_p =
B.buffer uint8
false
FStar.DM4F.IntStoreFixed.fst
FStar.DM4F.IntStoreFixed.lift_int_store_reader_int_store_wp
val lift_int_store_reader_int_store_wp (a: Type) (wp: INT_STORE_READER?.wp a) : INT_STORE?.wp a
val lift_int_store_reader_int_store_wp (a: Type) (wp: INT_STORE_READER?.wp a) : INT_STORE?.wp a
let lift_int_store_reader_int_store_wp (a:Type) (wp:INT_STORE_READER?.wp a) : INT_STORE?.wp a = fun (h0:heap) (p:INT_STORE?.post a) -> wp h0 (fun r -> p (r, h0))
{ "file_name": "examples/dm4free/FStar.DM4F.IntStoreFixed.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 110, "start_col": 0, "start_line": 109 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.DM4F.IntStoreFixed open FStar.DM4F.Heap.IntStoreFixed (* TODO : Try to use [either a exn] instead of [option] *) type int_store (a:Type) = heap -> M (a * heap) let return_is (a:Type) (x:a) : int_store a = fun store -> x, store let bind_is (a b : Type) (x:int_store a) (f: a -> int_store b) : int_store b = fun store -> let (z, store') = x store in f z store' let iget () : int_store heap = fun store -> store, store let iput s : int_store unit = fun _ -> (), s total reifiable reflectable new_effect { INT_STORE : a:Type -> Effect with repr = int_store ; bind = bind_is ; return = return_is ; get = iget ; put = iput } let get = INT_STORE?.get let put = INT_STORE?.put effect IntStore (a:Type) (pre:INT_STORE?.pre) (post: heap -> a -> heap -> GTot Type0) = INT_STORE a (fun l0 p -> pre l0 /\ (forall x l1. pre l0 /\ post l0 x l1 ==> p (x, l1))) effect IS (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a). p (x, l0)) effect ISNull (a:Type) = INT_STORE a (fun (l0:heap) (p:((a * heap) -> Type0)) -> forall (x:a * heap). p x) (* TODO : having a in Type *and* induces a Failure("Universe variable not found") *) (* whenever we try to normalize-reify it (see below in xxx for instance) *) let wp = INT_STORE?.wp let pre = INT_STORE?.pre let post = INT_STORE?.post let repr = INT_STORE?.repr let read (i:id) : INT_STORE int (fun s0 p -> p (index s0 i, s0)) = let store = IS?.get () in index store i let write (i:id) (x:int) : INT_STORE unit (fun s0 p -> p ((), upd s0 i x)) = let store = IS?.get () in IS?.put (upd store i x) (* let read_does_not_write_lemma (h:heap) (x:id) *) (* : Lemma (requires True) *) (* (ensures (snd (reify (read x) h) == h)) *) (* [SMTPat (snd (reify (read x) h))] *) (* = () *) unfold let (!) = read unfold let op_Colon_equals = write assume val refine_st (#a:Type) (#b:Type) (#pre : a -> Tot INT_STORE?.pre) (#post : a -> Tot (heap -> b -> heap -> Tot Type0)) ($f :(x:a -> IntStore b (pre x) (post x))) (x:a) : IntStore b (pre x) (fun h0 z h1 -> pre x h0 /\ reify (f x) h0 == (z, h1) /\ post x h0 z h1) // = let g (h0:heap) // : Pure (b * heap) // (pre x h0) // (fun (z,h1) -> pre x h0 /\ // reify (f x) h0 == (z, h1) /\ // post x h0 z h1) // = reify (f x) h0 // in // IntStore?.reflect g open FStar.DM4F.IntStoreFixedReader
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.DM4F.IntStoreFixedReader.fst.checked", "FStar.DM4F.Heap.IntStoreFixed.fsti.checked" ], "interface_file": false, "source_file": "FStar.DM4F.IntStoreFixed.fst" }
[ { "abbrev": false, "full_module": "FStar.DM4F.IntStoreFixedReader", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F.Heap.IntStoreFixed", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.DM4F", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: FStar.DM4F.IntStoreFixedReader._dm4f_INT_STORE_READER_wp a -> FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_wp a
Prims.Tot
[ "total" ]
[]
[ "FStar.DM4F.IntStoreFixedReader._dm4f_INT_STORE_READER_wp", "FStar.DM4F.Heap.IntStoreFixed.heap", "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_post", "FStar.Pervasives.Native.Mktuple2", "FStar.DM4F.IntStoreFixed._dm4f_INT_STORE_wp" ]
[]
false
false
false
true
false
let lift_int_store_reader_int_store_wp (a: Type) (wp: INT_STORE_READER?.wp a) : INT_STORE?.wp a =
fun (h0: heap) (p: INT_STORE?.post a) -> wp h0 (fun r -> p (r, h0))
false
Vale.Def.Words.Four_s.fsti
Vale.Def.Words.Four_s.four_select
val four_select (#a: Type) (x: four a) (selector: nat2) : a
val four_select (#a: Type) (x: four a) (selector: nat2) : a
let four_select (#a:Type) (x:four a) (selector:nat2) : a = match selector with | 0 -> x.lo0 | 1 -> x.lo1 | 2 -> x.hi2 | 3 -> x.hi3
{ "file_name": "vale/specs/defs/Vale.Def.Words.Four_s.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 14, "end_line": 52, "start_col": 0, "start_line": 47 }
module Vale.Def.Words.Four_s open Vale.Def.Words_s open FStar.Mul unfold let four_map (#a #b:Type) (f:a -> b) (x:four a) : four b = let Mkfour x0 x1 x2 x3 = x in Mkfour (f x0) (f x1) (f x2) (f x3) unfold let four_map2 (#a #b:Type) (f:a -> a -> b) (x y:four a) : four b = let Mkfour x0 x1 x2 x3 = x in let Mkfour y0 y1 y2 y3 = y in Mkfour (f x0 y0) (f x1 y1) (f x2 y2) (f x3 y3) let two_two_to_four (#a:Type) (x:two (two a)) : four a = let (Mktwo (Mktwo x0 x1) (Mktwo x2 x3)) = x in Mkfour x0 x1 x2 x3 let four_to_two_two (#a:Type) (x:four a) : two (two a) = let Mkfour x0 x1 x2 x3 = x in Mktwo (Mktwo x0 x1) (Mktwo x2 x3) unfold let nat_to_four_unfold (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in Mkfour (n % n1) ((n / n1) % n1) ((n / n2) % n1) ((n / n3) % n1) [@"opaque_to_smt"] let nat_to_four (size:nat) (n:natN (pow2 (4 * size))) : four (natN (pow2 size)) = nat_to_four_unfold size n unfold let four_to_nat_unfold (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = let n1 = pow2_norm size in let n2 = pow2_norm (2 * size) in let n3 = pow2_norm (3 * size) in let n4 = pow2_norm (4 * size) in let Mkfour x0 x1 x2 x3 = x in int_to_natN n4 (x0 + x1 * n1 + x2 * n2 + x3 * n3) [@"opaque_to_smt"] let four_to_nat (size:nat) (x:four (natN (pow2 size))) : natN (pow2 (4 * size)) = four_to_nat_unfold size x
{ "checked_file": "/", "dependencies": [ "Vale.Def.Words_s.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Vale.Def.Words.Four_s.fsti" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.Def.Words_s.four a -> selector: Vale.Def.Words_s.nat2 -> a
Prims.Tot
[ "total" ]
[]
[ "Vale.Def.Words_s.four", "Vale.Def.Words_s.nat2", "Vale.Def.Words_s.__proj__Mkfour__item__lo0", "Vale.Def.Words_s.__proj__Mkfour__item__lo1", "Vale.Def.Words_s.__proj__Mkfour__item__hi2", "Vale.Def.Words_s.__proj__Mkfour__item__hi3" ]
[]
false
false
false
true
false
let four_select (#a: Type) (x: four a) (selector: nat2) : a =
match selector with | 0 -> x.lo0 | 1 -> x.lo1 | 2 -> x.hi2 | 3 -> x.hi3
false
Vale.Wrapper.X64.Sha.fsti
Vale.Wrapper.X64.Sha.uint32_p
val uint32_p : Type0
let uint32_p = B.buffer uint32
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Sha.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 15, "start_col": 0, "start_line": 15 }
module Vale.Wrapper.X64.Sha open Vale.X64.CPU_Features_s open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module BV = LowStar.BufferView module HS = FStar.HyperStack module BF = Vale.Arch.BufferFriend open FStar.Mul open Vale.SHA.SHA_helpers open Lib.IntTypes
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Vale.SHA.SHA_helpers.fsti.checked", "Vale.Arch.BufferFriend.fsti.checked", "Spec.SHA2.Constants.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.BufferView.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Sha.fsti" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Arch.BufferFriend", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "LowStar.Buffer.buffer", "Lib.IntTypes.uint32" ]
[]
false
false
false
true
true
let uint32_p =
B.buffer uint32
false
FStar.Math.Euclid.fst
FStar.Math.Euclid.egcd
val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int) (requires v3 >= 0 /\ u1 * a + u2 * b = u3 /\ v1 * a + v2 * b = v3 /\ (forall d. is_gcd u3 v3 d ==> is_gcd a b d)) (ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d)) (decreases v3)
val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int) (requires v3 >= 0 /\ u1 * a + u2 * b = u3 /\ v1 * a + v2 * b = v3 /\ (forall d. is_gcd u3 v3 d ==> is_gcd a b d)) (ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d)) (decreases v3)
let rec egcd a b u1 u2 u3 v1 v2 v3 = if v3 = 0 then begin divides_0 u3; (u1, u2, u3) end else begin let q = u3 / v3 in euclidean_division_definition u3 v3; assert (u3 - q * v3 = (q * v3 + u3 % v3) - q * v3); assert (q * v3 - q * v3 = 0); swap_add_plus_minus (q * v3) (u3 % v3) (q * v3); calc (==) { (u1 - q * v1) * a + (u2 - q * v2) * b; == { _ by (FStar.Tactics.Canon.canon()) } (u1 * a + u2 * b) - q * (v1 * a + v2 * b); == { } u3 - q * v3; == { lemma_div_mod u3 v3 } u3 % v3; }; let u1, v1 = v1, u1 - q * v1 in let u2, v2 = v2, u2 - q * v2 in let u3' = u3 in let v3' = v3 in let u3, v3 = v3, u3 - q * v3 in (* proving the implication in the precondition *) introduce forall d. is_gcd v3' (u3' - q * v3') d ==> is_gcd u3' v3' d with introduce _ ==> _ with _. is_gcd_for_euclid u3' v3' q d; let r = egcd a b u1 u2 u3 v1 v2 v3 in r end
{ "file_name": "ulib/FStar.Math.Euclid.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 182, "start_col": 0, "start_line": 149 }
module FStar.Math.Euclid open FStar.Mul open FStar.Math.Lemmas /// /// Auxiliary lemmas /// val eq_mult_left (a b:int) : Lemma (requires a = b * a) (ensures a = 0 \/ b = 1) let eq_mult_left a b = () val eq_mult_one (a b:int) : Lemma (requires a * b = 1) (ensures (a = 1 /\ b = 1) \/ (a = -1 /\ b = -1)) let eq_mult_one a b = () val opp_idempotent (a:int) : Lemma (-(-a) == a) let opp_idempotent a = () val add_sub_l (a b:int) : Lemma (a - b + b = a) let add_sub_l a b = () val add_sub_r (a b:int) : Lemma (a + b - b = a) let add_sub_r a b = () /// /// Divides relation /// let divides_reflexive a = Classical.exists_intro (fun q -> a = q * a) 1 let divides_transitive a b c = eliminate exists q1. b == q1 * a returns a `divides` c with _pf. eliminate exists q2. c == q2 * b returns _ with _pf2. introduce exists q. c == q * a with (q1 * q2) and () let divide_antisym a b = if a <> 0 then Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q1. b = q1 * a)) (fun q1 -> Classical.exists_elim (a = b \/ a = -b) (Squash.get_proof (exists q2. a = q2 * b)) (fun q2 -> assert (b = q1 * a); assert (a = q2 * b); assert (b = q1 * (q2 * b)); paren_mul_right q1 q2 b; eq_mult_left b (q1 * q2); eq_mult_one q1 q2)) let divides_0 a = Classical.exists_intro (fun q -> 0 = q * a) 0 let divides_1 a = () let divides_minus a b = Classical.exists_elim (a `divides` (-b)) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> -b = q' * a) (-q)) let divides_opp a b = Classical.exists_elim ((-a) `divides` b) (Squash.get_proof (a `divides` b)) (fun q -> Classical.exists_intro (fun q' -> b = q' * (-a)) (-q)) let divides_plus a b d = Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q1. a = q1 * d)) (fun q1 -> Classical.exists_elim (d `divides` (a + b)) (Squash.get_proof (exists q2. b = q2 * d)) (fun q2 -> assert (a + b = q1 * d + q2 * d); distributivity_add_left q1 q2 d; Classical.exists_intro (fun q -> a + b = q * d) (q1 + q2))) let divides_sub a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_plus a (-b) d let divides_mult_right a b d = Classical.exists_elim (d `divides` (a * b)) (Squash.get_proof (d `divides` b)) (fun q -> paren_mul_right a q d; Classical.exists_intro (fun r -> a * b = r * d) (a * q)) /// /// GCD /// let mod_divides a b = Classical.exists_intro (fun q -> a = q * b) (a / b) let divides_mod a b = Classical.exists_elim (a % b = 0) (Squash.get_proof (b `divides` a)) (fun q -> cancel_mul_div q b) let is_gcd_unique a b c d = divide_antisym c d let is_gcd_reflexive a = () let is_gcd_symmetric a b d = () let is_gcd_0 a = () let is_gcd_1 a = () let is_gcd_minus a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); opp_idempotent b let is_gcd_opp a b d = Classical.forall_intro_2 (Classical.move_requires_2 divides_minus); divides_opp d a; divides_opp d b let is_gcd_plus a b q d = add_sub_r b (q * a); Classical.forall_intro_3 (Classical.move_requires_3 divides_plus); Classical.forall_intro_3 (Classical.move_requires_3 divides_mult_right); Classical.forall_intro_3 (Classical.move_requires_3 divides_sub) /// /// Extended Euclidean algorithm /// val is_gcd_for_euclid (a b q d:int) : Lemma (requires is_gcd b (a - q * b) d) (ensures is_gcd a b d) let is_gcd_for_euclid a b q d = add_sub_l a (q * b); is_gcd_plus b (a - q * b) q d val egcd (a b u1 u2 u3 v1 v2 v3:int) : Pure (int & int & int) (requires v3 >= 0 /\ u1 * a + u2 * b = u3 /\ v1 * a + v2 * b = v3 /\ (forall d. is_gcd u3 v3 d ==> is_gcd a b d)) (ensures (fun (u, v, d) -> u * a + v * b = d /\ is_gcd a b d)) (decreases v3)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Tactics.Canon.fst.checked", "FStar.Squash.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Classical.Sugar.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": true, "source_file": "FStar.Math.Euclid.fst" }
[ { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Prims.int -> b: Prims.int -> u1: Prims.int -> u2: Prims.int -> u3: Prims.int -> v1: Prims.int -> v2: Prims.int -> v3: Prims.int -> Prims.Pure ((Prims.int * Prims.int) * Prims.int)
Prims.Pure
[ "" ]
[]
[ "Prims.int", "Prims.op_Equality", "FStar.Pervasives.Native.Mktuple3", "Prims.unit", "FStar.Math.Euclid.divides_0", "Prims.bool", "Prims.precedes", "FStar.Pervasives.Native.tuple3", "FStar.Math.Euclid.egcd", "FStar.Classical.Sugar.forall_intro", "Prims.l_imp", "FStar.Math.Euclid.is_gcd", "Prims.op_Subtraction", "FStar.Mul.op_Star", "FStar.Classical.Sugar.implies_intro", "Prims.squash", "FStar.Math.Euclid.is_gcd_for_euclid", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "FStar.Calc.calc_finish", "Prims.eq2", "Prims.op_Addition", "Prims.op_Modulus", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Math.Lemmas.lemma_div_mod", "FStar.Math.Lemmas.swap_add_plus_minus", "Prims._assert", "Prims.b2t", "FStar.Math.Lemmas.euclidean_division_definition", "Prims.op_Division" ]
[ "recursion" ]
false
false
false
false
false
let rec egcd a b u1 u2 u3 v1 v2 v3 =
if v3 = 0 then (divides_0 u3; (u1, u2, u3)) else let q = u3 / v3 in euclidean_division_definition u3 v3; assert (u3 - q * v3 = (q * v3 + u3 % v3) - q * v3); assert (q * v3 - q * v3 = 0); swap_add_plus_minus (q * v3) (u3 % v3) (q * v3); calc ( == ) { (u1 - q * v1) * a + (u2 - q * v2) * b; ( == ) { FStar.Tactics.Effect.synth_by_tactic (fun _ -> (FStar.Tactics.Canon.canon ())) } (u1 * a + u2 * b) - q * (v1 * a + v2 * b); ( == ) { () } u3 - q * v3; ( == ) { lemma_div_mod u3 v3 } u3 % v3; }; let u1, v1 = v1, u1 - q * v1 in let u2, v2 = v2, u2 - q * v2 in let u3' = u3 in let v3' = v3 in let u3, v3 = v3, u3 - q * v3 in introduce forall d . is_gcd v3' (u3' - q * v3') d ==> is_gcd u3' v3' d with introduce _ ==> _ with _. is_gcd_for_euclid u3' v3' q d; let r = egcd a b u1 u2 u3 v1 v2 v3 in r
false
Vale.Wrapper.X64.Sha.fsti
Vale.Wrapper.X64.Sha.uint64
val uint64 : Type0
let uint64 = uint_t U64 PUB
{ "file_name": "vale/code/arch/x64/interop/Vale.Wrapper.X64.Sha.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 21, "start_col": 0, "start_line": 21 }
module Vale.Wrapper.X64.Sha open Vale.X64.CPU_Features_s open FStar.HyperStack.ST module B = LowStar.Buffer module IB = LowStar.ImmutableBuffer module BV = LowStar.BufferView module HS = FStar.HyperStack module BF = Vale.Arch.BufferFriend open FStar.Mul open Vale.SHA.SHA_helpers open Lib.IntTypes unfold let uint32_p = B.buffer uint32 unfold let uint32_i = IB.ibuffer uint32 unfold let uint8_p = B.buffer uint8
{ "checked_file": "/", "dependencies": [ "Vale.X64.CPU_Features_s.fst.checked", "Vale.SHA.SHA_helpers.fsti.checked", "Vale.Arch.BufferFriend.fsti.checked", "Spec.SHA2.Constants.fst.checked", "prims.fst.checked", "LowStar.ImmutableBuffer.fst.checked", "LowStar.BufferView.fsti.checked", "LowStar.Buffer.fst.checked", "Lib.IntTypes.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Vale.Wrapper.X64.Sha.fsti" }
[ { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "Vale.SHA.SHA_helpers", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": true, "full_module": "Vale.Arch.BufferFriend", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "LowStar.BufferView", "short_module": "BV" }, { "abbrev": true, "full_module": "LowStar.ImmutableBuffer", "short_module": "IB" }, { "abbrev": true, "full_module": "LowStar.Buffer", "short_module": "B" }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.Wrapper.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.uint_t", "Lib.IntTypes.U64", "Lib.IntTypes.PUB" ]
[]
false
false
false
true
true
let uint64 =
uint_t U64 PUB
false