file_name
stringlengths 5
52
| name
stringlengths 4
95
| original_source_type
stringlengths 0
23k
| source_type
stringlengths 9
23k
| source_definition
stringlengths 9
57.9k
| source
dict | source_range
dict | file_context
stringlengths 0
721k
| dependencies
dict | opens_and_abbrevs
listlengths 2
94
| vconfig
dict | interleaved
bool 1
class | verbose_type
stringlengths 1
7.42k
| effect
stringclasses 118
values | effect_flags
sequencelengths 0
2
| mutual_with
sequencelengths 0
11
| ideal_premises
sequencelengths 0
236
| proof_features
sequencelengths 0
1
| is_simple_lemma
bool 2
classes | is_div
bool 2
classes | is_proof
bool 2
classes | is_simply_typed
bool 2
classes | is_type
bool 2
classes | partial_definition
stringlengths 5
3.99k
| completed_definiton
stringlengths 1
1.63M
| isa_cross_project_example
bool 1
class |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LowStar.BufferOps.fst | LowStar.BufferOps.blit | val blit : src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rrel2 ->
idx_src: FStar.UInt32.t ->
dst: LowStar.Monotonic.Buffer.mbuffer a rel1 rel2 ->
idx_dst: FStar.UInt32.t ->
len: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack Prims.unit | let blit (#a:Type0) (#rrel1 #rel1 #rrel2 #rel2:B.srel a) = B.blit #a #rrel1 #rel1 #rrel2 #rel2 | {
"file_name": "ulib/LowStar.BufferOps.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 94,
"end_line": 63,
"start_col": 0,
"start_line": 63
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module LowStar.BufferOps
(* Handy notations for LowStar.Buffer, so users can open this module
instead of the whole LowStar.Buffer, to just bring these operators
and notations into the scope without bringing any definition from
LowStar.Buffer into the scope. *)
module HS = FStar.HyperStack
module HST = FStar.HyperStack.ST
module U32 = FStar.UInt32
module G = FStar.Ghost
module Seq = FStar.Seq
module B = LowStar.Buffer
module L = FStar.List.Tot
inline_for_extraction
unfold
let op_Array_Access (#a:Type0) (#rrel #rel:B.srel a) = B.index #a #rrel #rel
inline_for_extraction
unfold
let op_Array_Assignment (#a:Type0) (#rrel #rel:B.srel a) = B.upd #a #rrel #rel
(* NOTE: DO NOT mark ( !* ) as inline_for_extraction,
because it is specially treated by KaRaMeL to extract as *p instead
of p[0] *)
let ( !* ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel):
HST.Stack a
(requires (fun h -> B.live h p))
(ensures (fun h0 x h1 -> B.live h1 p /\ x == B.get h0 p 0 /\ h1 == h0)) =
B.index p 0ul
(* NOTE: DO NOT mark ( *= ) as inline_for_extraction,
because it is specially treated by KaRaMeL to extract as *p = v instead
of p[0] = v *)
let ( *= ) (#a:Type0) (#rrel #rel:B.srel a) (p:B.mpointer a rrel rel) (v:a) : HST.Stack unit
(requires (fun h -> B.live h p /\ rel (B.as_seq h p) (Seq.upd (B.as_seq h p) 0 v)))
(ensures (fun h0 _ h1 ->
B.live h1 p /\
B.as_seq h1 p `Seq.equal` Seq.create 1 v /\
B.modifies (B.loc_buffer p) h0 h1
))
= B.upd p 0ul v
// TODO: remove | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked",
"FStar.Ghost.fsti.checked"
],
"interface_file": false,
"source_file": "LowStar.BufferOps.fst"
} | [
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": true,
"full_module": "LowStar.Buffer",
"short_module": "B"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "Seq"
},
{
"abbrev": true,
"full_module": "FStar.Ghost",
"short_module": "G"
},
{
"abbrev": true,
"full_module": "FStar.UInt32",
"short_module": "U32"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "HST"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack",
"short_module": "HS"
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
src: LowStar.Monotonic.Buffer.mbuffer a rrel1 rrel2 ->
idx_src: FStar.UInt32.t ->
dst: LowStar.Monotonic.Buffer.mbuffer a rel1 rel2 ->
idx_dst: FStar.UInt32.t ->
len: FStar.UInt32.t
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"LowStar.Monotonic.Buffer.srel",
"LowStar.Monotonic.Buffer.blit",
"LowStar.Monotonic.Buffer.mbuffer",
"FStar.UInt32.t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Addition",
"FStar.UInt32.v",
"LowStar.Monotonic.Buffer.length",
"Prims.l_or",
"LowStar.Monotonic.Buffer.loc_disjoint",
"LowStar.Monotonic.Buffer.loc_buffer_from_to",
"FStar.UInt32.add",
"LowStar.Monotonic.Buffer.disjoint",
"LowStar.Monotonic.Buffer.as_seq",
"FStar.Seq.Properties.replace_subseq",
"FStar.Seq.Base.slice",
"LowStar.Monotonic.Buffer.modifies",
"LowStar.Monotonic.Buffer.loc_buffer",
"Prims.eq2",
"FStar.Seq.Base.seq"
] | [] | false | true | false | false | false | let blit (#a: Type0) (#rrel1 #rel1 #rrel2 #rel2: B.srel a) =
| B.blit #a #rrel1 #rel1 #rrel2 #rel2 | false |
|
Spec.K256.PointOps.fst | Spec.K256.PointOps.aff_point_store | val aff_point_store (p: aff_point) : BSeq.lbytes 64 | val aff_point_store (p: aff_point) : BSeq.lbytes 64 | let aff_point_store (p:aff_point) : BSeq.lbytes 64 =
let (px, py) = p in
let pxb = BSeq.nat_to_bytes_be 32 px in
let pxy = BSeq.nat_to_bytes_be 32 py in
concat #uint8 #32 #32 pxb pxy | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 200,
"start_col": 0,
"start_line": 196
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None
let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None
let point_inv_bytes (b:BSeq.lbytes 64) =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py)
let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
to_proj_point (px, py) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.aff_point -> Lib.ByteSequence.lbytes 64 | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.aff_point",
"Spec.K256.PointOps.felem",
"Lib.Sequence.concat",
"Lib.IntTypes.uint8",
"Lib.Sequence.seq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"Lib.Sequence.length",
"Prims.l_or",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.ByteSequence.nat_from_intseq_be",
"Lib.ByteSequence.nat_to_bytes_be",
"Lib.ByteSequence.lbytes"
] | [] | false | false | false | false | false | let aff_point_store (p: aff_point) : BSeq.lbytes 64 =
| let px, py = p in
let pxb = BSeq.nat_to_bytes_be 32 px in
let pxy = BSeq.nat_to_bytes_be 32 py in
concat #uint8 #32 #32 pxb pxy | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.load_point | val load_point (b: BSeq.lbytes 64) : option proj_point | val load_point (b: BSeq.lbytes 64) : option proj_point | let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 182,
"start_col": 0,
"start_line": 179
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes 64 -> FStar.Pervasives.Native.option Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"Spec.K256.PointOps.aff_point_load",
"Spec.K256.PointOps.aff_point",
"FStar.Pervasives.Native.Some",
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.to_proj_point",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option"
] | [] | false | false | false | false | false | let load_point (b: BSeq.lbytes 64) : option proj_point =
| match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.point_add | val point_add (p q: proj_point) : proj_point | val point_add (p q: proj_point) : proj_point | let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3 | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 12,
"end_line": 146,
"start_col": 0,
"start_line": 128
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point -> q: Spec.K256.PointOps.proj_point
-> Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple3",
"Spec.K256.PointOps.op_Plus_Percent",
"Spec.K256.PointOps.op_Star_Percent",
"Spec.K256.PointOps.op_Subtraction_Percent",
"Spec.K256.PointOps.b"
] | [] | false | false | false | true | false | let point_add (p q: proj_point) : proj_point =
| let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3 | false |
Hacl.Spec.PrecompBaseTable256.fst | Hacl.Spec.PrecompBaseTable256.lemma_decompose_nat256_as_four_u64 | val lemma_decompose_nat256_as_four_u64: x:nat{x < pow2 256} ->
Lemma (let (x0, x1, x2, x3) = decompose_nat256_as_four_u64 x in
x0 + x1 * pow2 64 + x2 * pow2 128 + x3 * pow2 192 == x) | val lemma_decompose_nat256_as_four_u64: x:nat{x < pow2 256} ->
Lemma (let (x0, x1, x2, x3) = decompose_nat256_as_four_u64 x in
x0 + x1 * pow2 64 + x2 * pow2 128 + x3 * pow2 192 == x) | let lemma_decompose_nat256_as_four_u64 x =
let x0 = x % pow2 64 in
let x1 = x / pow2 64 % pow2 64 in
let x2 = x / pow2 128 % pow2 64 in
let x3' = x / pow2 192 % pow2 64 in
Math.Lemmas.lemma_div_lt x 256 192;
Math.Lemmas.small_mod (x / pow2 192) (pow2 64);
let x3 = x / pow2 192 in
assert (x3 == x3');
calc (==) {
x0 + x1 * pow2 64 + x2 * pow2 128 + x3 * pow2 192;
(==) { }
x0 + x1 * pow2 64 + (x / pow2 128 % pow2 64) * pow2 128 + x / pow2 192 * pow2 192;
(==) { lemma_mod_pow2_sub x 128 64 }
x0 + x1 * pow2 64 + x % pow2 192 - x % pow2 128 + x / pow2 192 * pow2 192;
(==) { Math.Lemmas.euclidean_division_definition x (pow2 192) }
x0 + x1 * pow2 64 - x % pow2 128 + x;
(==) { lemma_mod_pow2_sub x 64 64 }
x;
} | {
"file_name": "code/bignum/Hacl.Spec.PrecompBaseTable256.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 45,
"start_col": 0,
"start_line": 26
} | module Hacl.Spec.PrecompBaseTable256
open FStar.Mul
open Lib.IntTypes
module LSeq = Lib.Sequence
module Loops = Lib.LoopCombinators
module LE = Lib.Exponentiation
module SE = Spec.Exponentiation
module BD = Hacl.Spec.Bignum.Definitions
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
let lemma_mod_pow2_sub x a b =
calc (==) {
x / pow2 a % pow2 b * pow2 a;
(==) { Math.Lemmas.pow2_modulo_division_lemma_1 x a (a + b) }
x % pow2 (a + b) / pow2 a * pow2 a;
(==) { Math.Lemmas.euclidean_division_definition (x % pow2 (a + b)) (pow2 a) }
x % pow2 (a + b) - x % pow2 (a + b) % pow2 a;
(==) { Math.Lemmas.pow2_modulo_modulo_lemma_1 x a (a + b) }
x % pow2 (a + b) - x % pow2 a;
} | {
"checked_file": "/",
"dependencies": [
"Spec.Exponentiation.fsti.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Exponentiation.fsti.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": true,
"source_file": "Hacl.Spec.PrecompBaseTable256.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "BD"
},
{
"abbrev": true,
"full_module": "Spec.Exponentiation",
"short_module": "SE"
},
{
"abbrev": true,
"full_module": "Lib.Exponentiation",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.nat{x < Prims.pow2 256}
-> FStar.Pervasives.Lemma
(ensures
(let _ = Hacl.Spec.PrecompBaseTable256.decompose_nat256_as_four_u64 x in
(let FStar.Pervasives.Native.Mktuple4 #_ #_ #_ #_ x0 x1 x2 x3 = _ in
x0 + x1 * Prims.pow2 64 + x2 * Prims.pow2 128 + x3 * Prims.pow2 192 == x)
<:
Type0)) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan",
"Prims.pow2",
"FStar.Calc.calc_finish",
"Prims.int",
"Prims.eq2",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.Cons",
"FStar.Preorder.relation",
"Prims.Nil",
"Prims.unit",
"FStar.Calc.calc_step",
"Prims.op_Subtraction",
"Prims.op_Modulus",
"Prims.op_Division",
"FStar.Calc.calc_init",
"FStar.Calc.calc_pack",
"Prims.squash",
"Hacl.Spec.PrecompBaseTable256.lemma_mod_pow2_sub",
"FStar.Math.Lemmas.euclidean_division_definition",
"Prims._assert",
"FStar.Math.Lemmas.small_mod",
"FStar.Math.Lemmas.lemma_div_lt"
] | [] | false | false | true | false | false | let lemma_decompose_nat256_as_four_u64 x =
| let x0 = x % pow2 64 in
let x1 = x / pow2 64 % pow2 64 in
let x2 = x / pow2 128 % pow2 64 in
let x3' = x / pow2 192 % pow2 64 in
Math.Lemmas.lemma_div_lt x 256 192;
Math.Lemmas.small_mod (x / pow2 192) (pow2 64);
let x3 = x / pow2 192 in
assert (x3 == x3');
calc ( == ) {
x0 + x1 * pow2 64 + x2 * pow2 128 + x3 * pow2 192;
( == ) { () }
x0 + x1 * pow2 64 + (x / pow2 128 % pow2 64) * pow2 128 + (x / pow2 192) * pow2 192;
( == ) { lemma_mod_pow2_sub x 128 64 }
x0 + x1 * pow2 64 + x % pow2 192 - x % pow2 128 + (x / pow2 192) * pow2 192;
( == ) { Math.Lemmas.euclidean_division_definition x (pow2 192) }
x0 + x1 * pow2 64 - x % pow2 128 + x;
( == ) { lemma_mod_pow2_sub x 64 64 }
x;
} | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.point_double | val point_double (p: proj_point) : proj_point | val point_double (p: proj_point) : proj_point | let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3 | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 12,
"end_line": 162,
"start_col": 0,
"start_line": 148
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point -> Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Mktuple3",
"Spec.K256.PointOps.op_Star_Percent",
"Spec.K256.PointOps.op_Plus_Percent",
"Spec.K256.PointOps.b",
"Spec.K256.PointOps.op_Subtraction_Percent"
] | [] | false | false | false | true | false | let point_double (p: proj_point) : proj_point =
| let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3 | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.point_store | val point_store (p: proj_point) : BSeq.lbytes 64 | val point_store (p: proj_point) : BSeq.lbytes 64 | let point_store (p:proj_point) : BSeq.lbytes 64 =
aff_point_store (to_aff_point p) | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 203,
"start_col": 0,
"start_line": 202
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None
let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None
let point_inv_bytes (b:BSeq.lbytes 64) =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py)
let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
to_proj_point (px, py)
let aff_point_store (p:aff_point) : BSeq.lbytes 64 =
let (px, py) = p in
let pxb = BSeq.nat_to_bytes_be 32 px in
let pxy = BSeq.nat_to_bytes_be 32 py in
concat #uint8 #32 #32 pxb pxy | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Spec.K256.PointOps.proj_point -> Lib.ByteSequence.lbytes 64 | Prims.Tot | [
"total"
] | [] | [
"Spec.K256.PointOps.proj_point",
"Spec.K256.PointOps.aff_point_store",
"Spec.K256.PointOps.to_aff_point",
"Lib.ByteSequence.lbytes"
] | [] | false | false | false | false | false | let point_store (p: proj_point) : BSeq.lbytes 64 =
| aff_point_store (to_aff_point p) | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.load_point_nocheck | val load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point | val load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point | let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
to_proj_point (px, py) | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 193,
"start_col": 0,
"start_line": 190
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None
let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None
let point_inv_bytes (b:BSeq.lbytes 64) =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes 64 {Spec.K256.PointOps.point_inv_bytes b}
-> Spec.K256.PointOps.proj_point | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"Prims.b2t",
"Spec.K256.PointOps.point_inv_bytes",
"Spec.K256.PointOps.to_proj_point",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.felem",
"Prims.nat",
"Prims.op_LessThan",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Sequence.sub",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.uint_t",
"Spec.K256.PointOps.proj_point"
] | [] | false | false | false | false | false | let load_point_nocheck (b: BSeq.lbytes 64 {point_inv_bytes b}) : proj_point =
| let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
to_proj_point (px, py) | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.point_inv_bytes | val point_inv_bytes : b: Lib.ByteSequence.lbytes 64 -> Prims.bool | let point_inv_bytes (b:BSeq.lbytes 64) =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py) | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 50,
"end_line": 188,
"start_col": 0,
"start_line": 185
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None
let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes 64 -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"Prims.op_AmpAmp",
"Prims.op_LessThan",
"Spec.K256.PointOps.prime",
"Spec.K256.PointOps.is_on_curve",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.felem",
"Prims.nat",
"Prims.b2t",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Sequence.sub",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.uint_t",
"Prims.bool"
] | [] | false | false | false | false | false | let point_inv_bytes (b: BSeq.lbytes 64) =
| let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py) | false |
|
Spec.K256.PointOps.fst | Spec.K256.PointOps.aff_point_load | val aff_point_load (b: BSeq.lbytes 64) : option aff_point | val aff_point_load (b: BSeq.lbytes 64) : option aff_point | let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 52,
"end_line": 177,
"start_col": 0,
"start_line": 170
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.ByteSequence.lbytes 64 -> FStar.Pervasives.Native.option Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"FStar.Pervasives.Native.Some",
"Spec.K256.PointOps.aff_point",
"FStar.Pervasives.Native.Mktuple2",
"Spec.K256.PointOps.felem",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Prims.op_AmpAmp",
"Spec.K256.PointOps.is_on_curve",
"Prims.op_LessThan",
"Spec.K256.PointOps.prime",
"Prims.nat",
"Prims.b2t",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Sequence.sub",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.uint_t"
] | [] | false | false | false | false | false | let aff_point_load (b: BSeq.lbytes 64) : option aff_point =
| let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve = if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None | false |
Spec.K256.PointOps.fst | Spec.K256.PointOps.aff_point_decompress | val aff_point_decompress (s: BSeq.lbytes 33) : option aff_point | val aff_point_decompress (s: BSeq.lbytes 33) : option aff_point | let aff_point_decompress (s:BSeq.lbytes 33) : option aff_point =
let s0 = Lib.RawIntTypes.u8_to_UInt8 s.[0] in
if not (s0 = 0x02uy || s0 = 0x03uy) then None
else begin
let x = BSeq.nat_from_bytes_be (sub s 1 32) in
let is_x_valid = x < prime in
let is_y_odd = s0 = 0x03uy in
if not is_x_valid then None
else
match (recover_y x is_y_odd) with
| Some y -> Some (x, y)
| None -> None end | {
"file_name": "specs/Spec.K256.PointOps.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 227,
"start_col": 0,
"start_line": 215
} | module Spec.K256.PointOps
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
module M = Lib.NatMod
module BSeq = Lib.ByteSequence
#set-options "--z3rlimit 30 --fuel 0 --ifuel 0"
/// Finite field
let prime : (p:pos{p = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F}) =
assert_norm (24 < pow2 256 - 0x1000003D1);
assert_norm (pow2 256 - 0x1000003D1 = pow2 256 - pow2 32 - pow2 9 - pow2 8 - pow2 7 - pow2 6 - pow2 4 - 1);
assert_norm (pow2 256 - 0x1000003D1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F);
pow2 256 - 0x1000003D1
let felem = x:nat{x < prime}
let zero : felem = 0
let one : felem = 1
let fadd (x y:felem) : felem = (x + y) % prime
let fsub (x y:felem) : felem = (x - y) % prime
let fmul (x y:felem) : felem = (x * y) % prime
let finv (x:felem) : felem = M.pow_mod #prime x (prime - 2)
let fsqrt (x:felem) : felem = M.pow_mod #prime x ((prime + 1) / 4)
let is_fodd (x:nat) : bool = x % 2 = 1
let ( +% ) = fadd
let ( -% ) = fsub
let ( *% ) = fmul
let ( /% ) (x y:felem) = x *% finv y
/// Scalar field
// Group order
let q : q:pos{q < pow2 256} =
assert_norm (0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141 < pow2 256);
0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
let qelem = x:nat{x < q}
let qadd (x y:qelem) : qelem = (x + y) % q
let qmul (x y:qelem) : qelem = (x * y) % q
let qinv (x:qelem) : qelem = M.pow_mod #q x (q - 2)
let qnegate (x:qelem) : qelem = (- x) % q
let scalar_is_high (x:qelem) : bool = x > q / 2
let ( +^ ) = qadd
let ( *^ ) = qmul
/// Elliptic curve
let aff_point = felem & felem // Affine point
let proj_point = felem & felem & felem // Projective coordinates
// y * y = x * x * x + b
let b : felem = 7
let is_on_curve (p:aff_point) =
let x, y = p in y *% y = x *% x *% x +% b
let aff_point_at_inf : aff_point = (zero, zero) // not on the curve!
let point_at_inf : proj_point = (zero, one, zero)
let is_aff_point_at_inf (p:aff_point) : bool =
let (x, y) = p in x = zero && y = zero
let is_proj_point_at_inf (p:proj_point) : bool =
let (_, _, z) = p in z = zero
let to_aff_point (p:proj_point) : aff_point =
// if is_proj_point_at_inf p then aff_point_at_inf
let (px, py, pz) = p in
let zinv = finv pz in
let x = px *% zinv in
let y = py *% zinv in
(x, y)
let to_proj_point (p:aff_point) : proj_point =
let (x, y) = p in (x, y, one)
// Base point
let g_x : felem = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
let g_y : felem = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
let g : proj_point = (g_x, g_y, one)
/// Point addition in affine coordinates
let aff_point_double (p:aff_point) : aff_point =
let (px, py) = p in
if is_aff_point_at_inf p then p
else begin
if py = 0 then aff_point_at_inf
else begin
let lambda = 3 *% px *% px /% (2 *% py) in
let rx = lambda *% lambda -% px -% px in
let ry = lambda *% (px -% rx) -% py in
(rx, ry) end
end
let aff_point_add (p:aff_point) (q:aff_point) : aff_point =
let (px, py) = p in let (qx, qy) = q in
if is_aff_point_at_inf p then q
else begin
if is_aff_point_at_inf q then p
else begin
if p = q then aff_point_double p
else begin
if qx = px then aff_point_at_inf
else begin
let lambda = (qy -% py) /% (qx -% px) in
let rx = lambda *% lambda -% px -% qx in
let ry = lambda *% (px -% rx) -% py in
(rx, ry)
end
end
end
end
let aff_point_negate (p:aff_point) : aff_point =
let x, y = p in x, (-y) % prime
/// Point addition and doubling in projective coordinates
let point_add (p:proj_point) (q:proj_point) : proj_point =
let x1, y1, z1 = p in
let x2, y2, z2 = q in
let xx = x1 *% x2 in
let yy = y1 *% y2 in
let zz = z1 *% z2 in
let xy_pairs = (x1 +% y1) *% (x2 +% y2) -% (xx +% yy) in
let yz_pairs = (y1 +% z1) *% (y2 +% z2) -% (yy +% zz) in
let xz_pairs = (x1 +% z1) *% (x2 +% z2) -% (xx +% zz) in
let bzz3 = 3 *% b *% zz in
let yy_m_bzz3 = yy -% bzz3 in
let yy_p_bzz3 = yy +% bzz3 in
let byz3 = 3 *% b *% yz_pairs in
let xx3 = 3 *% xx in
let bxx9 = 3 *% b *% xx3 in
let x3 = xy_pairs *% yy_m_bzz3 -% byz3 *% xz_pairs in
let y3 = yy_p_bzz3 *% yy_m_bzz3 +% bxx9 *% xz_pairs in
let z3 = yz_pairs *% yy_p_bzz3 +% xx3 *% xy_pairs in
x3, y3, z3
let point_double (p:proj_point) : proj_point =
let x, y, z = p in
let yy = y *% y in
let zz = z *% z in
let xy2 = 2 *% x *% y in
let bzz3 = 3 *% b *% zz in
let bzz9 = 3 *% bzz3 in
let yy_m_bzz9 = yy -% bzz9 in
let yy_p_bzz3 = yy +% bzz3 in
let yy_zz = yy *% zz in
let t = 24 *% b *% yy_zz in
let x3 = xy2 *% yy_m_bzz9 in
let y3 = yy_m_bzz9 *% yy_p_bzz3 +% t in
let z3 = yy *% y *% z *% 8 in
x3, y3, z3
let point_negate (p:proj_point) : proj_point =
let x, y, z = p in
x, (-y) % prime, z
/// Point conversion between affine, projective and bytes representation
let aff_point_load (b:BSeq.lbytes 64) : option aff_point =
let pk_x = BSeq.nat_from_bytes_be (sub b 0 32) in
let pk_y = BSeq.nat_from_bytes_be (sub b 32 32) in
let is_x_valid = pk_x < prime in
let is_y_valid = pk_y < prime in
let is_xy_on_curve =
if is_x_valid && is_y_valid then is_on_curve (pk_x, pk_y) else false in
if is_xy_on_curve then Some (pk_x, pk_y) else None
let load_point (b:BSeq.lbytes 64) : option proj_point =
match (aff_point_load b) with
| Some p -> Some (to_proj_point p)
| None -> None
let point_inv_bytes (b:BSeq.lbytes 64) =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
px < prime && py < prime && is_on_curve (px, py)
let load_point_nocheck (b:BSeq.lbytes 64{point_inv_bytes b}) : proj_point =
let px = BSeq.nat_from_bytes_be (sub b 0 32) in
let py = BSeq.nat_from_bytes_be (sub b 32 32) in
to_proj_point (px, py)
let aff_point_store (p:aff_point) : BSeq.lbytes 64 =
let (px, py) = p in
let pxb = BSeq.nat_to_bytes_be 32 px in
let pxy = BSeq.nat_to_bytes_be 32 py in
concat #uint8 #32 #32 pxb pxy
let point_store (p:proj_point) : BSeq.lbytes 64 =
aff_point_store (to_aff_point p)
let recover_y (x:felem) (is_odd:bool) : option felem =
let y2 = x *% x *% x +% b in
let y = fsqrt y2 in
if y *% y <> y2 then None
else begin
let y = if is_fodd y <> is_odd then (prime - y) % prime else y in
Some y end | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.RawIntTypes.fsti.checked",
"Lib.NatMod.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.K256.PointOps.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.ByteSequence",
"short_module": "BSeq"
},
{
"abbrev": true,
"full_module": "Lib.NatMod",
"short_module": "M"
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.K256",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Lib.ByteSequence.lbytes 33 -> FStar.Pervasives.Native.option Spec.K256.PointOps.aff_point | Prims.Tot | [
"total"
] | [] | [
"Lib.ByteSequence.lbytes",
"Prims.op_Negation",
"Prims.op_BarBar",
"Prims.op_Equality",
"FStar.UInt8.t",
"FStar.UInt8.__uint_to_t",
"FStar.Pervasives.Native.None",
"Spec.K256.PointOps.aff_point",
"Prims.bool",
"Spec.K256.PointOps.recover_y",
"Spec.K256.PointOps.felem",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.Mktuple2",
"FStar.Pervasives.Native.option",
"Prims.op_LessThan",
"Spec.K256.PointOps.prime",
"Prims.nat",
"Prims.b2t",
"Prims.pow2",
"Prims.op_Multiply",
"Lib.Sequence.length",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.Sequence.sub",
"Lib.ByteSequence.nat_from_bytes_be",
"Lib.IntTypes.uint_t",
"Prims.int",
"Prims.l_or",
"Lib.IntTypes.range",
"FStar.UInt.size",
"Lib.IntTypes.v",
"Lib.Sequence.index",
"FStar.UInt8.v",
"Lib.RawIntTypes.u8_to_UInt8",
"Lib.Sequence.op_String_Access"
] | [] | false | false | false | false | false | let aff_point_decompress (s: BSeq.lbytes 33) : option aff_point =
| let s0 = Lib.RawIntTypes.u8_to_UInt8 s.[ 0 ] in
if not (s0 = 0x02uy || s0 = 0x03uy)
then None
else
let x = BSeq.nat_from_bytes_be (sub s 1 32) in
let is_x_valid = x < prime in
let is_y_odd = s0 = 0x03uy in
if not is_x_valid
then None
else
match (recover_y x is_y_odd) with
| Some y -> Some (x, y)
| None -> None | false |
Pulse.Checker.Exists.fsti | Pulse.Checker.Exists.intro_exists_vprop | val intro_exists_vprop : st: Pulse.Syntax.Base.st_term{Tm_IntroExists? (Mkst_term?.term st)} -> Pulse.Syntax.Base.vprop | let intro_exists_vprop (st:st_term { Tm_IntroExists? st.term }) =
match st.term with
| Tm_IntroExists { p } -> p | {
"file_name": "lib/steel/pulse/Pulse.Checker.Exists.fsti",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 29,
"end_line": 41,
"start_col": 0,
"start_line": 39
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Checker.Exists
module T = FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker.Base
val check_elim_exists
(g:env)
(pre:term)
(pre_typing:tot_typing g pre tm_vprop)
(post_hint:post_hint_opt g)
(res_ppname:ppname)
(t:st_term{Tm_ElimExists? t.term})
: T.Tac (checker_result_t g pre post_hint)
let intro_exists_witness_singleton (st:st_term) =
match st.term with
| Tm_IntroExists { witnesses = [_] } -> true
| _ -> false | {
"checked_file": "/",
"dependencies": [
"Pulse.Typing.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Checker.Base.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "Pulse.Checker.Exists.fsti"
} | [
{
"abbrev": false,
"full_module": "Pulse.Checker.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | st: Pulse.Syntax.Base.st_term{Tm_IntroExists? (Mkst_term?.term st)} -> Pulse.Syntax.Base.vprop | Prims.Tot | [
"total"
] | [] | [
"Pulse.Syntax.Base.st_term",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_Tm_IntroExists",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Pulse.Syntax.Base.vprop",
"Prims.list",
"Pulse.Syntax.Base.term"
] | [] | false | false | false | false | false | let intro_exists_vprop (st: st_term{Tm_IntroExists? st.term}) =
| match st.term with | Tm_IntroExists { p = p } -> p | false |
|
Spec.SecretBox.fst | Spec.SecretBox.size_nonce | val size_nonce : Prims.int | let size_nonce = 24 | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 12,
"start_col": 0,
"start_line": 12
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *) | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let size_nonce =
| 24 | false |
|
Spec.SecretBox.fst | Spec.SecretBox.size_key | val size_key : Prims.int | let size_key = 32 | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 11,
"start_col": 0,
"start_line": 11
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let size_key =
| 32 | false |
|
Spec.SecretBox.fst | Spec.SecretBox.size_block | val size_block : Prims.int | let size_block = 64 | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 19,
"end_line": 13,
"start_col": 0,
"start_line": 13
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *) | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let size_block =
| 64 | false |
|
Spec.SecretBox.fst | Spec.SecretBox.size_tag | val size_tag : Prims.int | let size_tag = 16 | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 14,
"start_col": 0,
"start_line": 14
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *) | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Prims.int | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let size_tag =
| 16 | false |
|
Spec.SecretBox.fst | Spec.SecretBox.get_len0 | val get_len0 (len: nat) : r: size_nat{r <= 32} | val get_len0 (len: nat) : r: size_nat{r <= 32} | let get_len0 (len:nat) : r:size_nat{r <= 32} =
if len <= 32 then len else 32 | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 31,
"end_line": 29,
"start_col": 0,
"start_line": 28
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag
let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey) | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> r: Lib.IntTypes.size_nat{r <= 32} | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Prims.op_LessThanOrEqual",
"Prims.bool",
"Lib.IntTypes.size_nat",
"Prims.b2t"
] | [] | false | false | false | false | false | let get_len0 (len: nat) : r: size_nat{r <= 32} =
| if len <= 32 then len else 32 | false |
Spec.SecretBox.fst | Spec.SecretBox.secretbox_init | val secretbox_init (k: key) (n: nonce) : key & aekey | val secretbox_init (k: key) (n: nonce) : key & aekey | let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey) | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 16,
"end_line": 26,
"start_col": 0,
"start_line": 21
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | k: Spec.SecretBox.key -> n: Spec.SecretBox.nonce -> Spec.SecretBox.key * Spec.SecretBox.aekey | Prims.Tot | [
"total"
] | [] | [
"Spec.SecretBox.key",
"Spec.SecretBox.nonce",
"FStar.Pervasives.Native.Mktuple2",
"Spec.SecretBox.aekey",
"Lib.Sequence.lseq",
"Lib.IntTypes.int_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Salsa20.salsa20_key_block0",
"Spec.Salsa20.hsalsa20",
"Lib.Sequence.sub",
"Lib.IntTypes.uint_t",
"Spec.SecretBox.size_nonce",
"FStar.Pervasives.Native.tuple2"
] | [] | false | false | false | true | false | let secretbox_init (k: key) (n: nonce) : key & aekey =
| let n0:lbytes 16 = sub n 0 16 in
let n1:lbytes 8 = sub n 16 8 in
let subkey:lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey:lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey, aekey) | false |
Spec.SecretBox.fst | Spec.SecretBox.secretbox_easy | val secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: c: bytes{length c = size_tag + length m} | val secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: c: bytes{length c = size_tag + length m} | let secretbox_easy (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : c:bytes{length c = size_tag + length m} =
let (tg,c) = secretbox_detached k n m in
Seq.append tg c | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 17,
"end_line": 77,
"start_col": 0,
"start_line": 75
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag
let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey)
let get_len0 (len:nat) : r:size_nat{r <= 32} =
if len <= 32 then len else 32
let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let mlen0 = get_len0 (length m) in
let m0 = Seq.slice m 0 mlen0 in
let m1 = Seq.slice m mlen0 (length m) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 mlen0 m0 in
let block0 = map2 (^.) block0 ekey0 in
let c0 = sub block0 0 mlen0 in
let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in
let c = Seq.append c0 c1 in
let tg = Spec.Poly1305.poly1305_mac c mkey in
(tg, c)
let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let tg' = Spec.Poly1305.poly1305_mac c mkey in
if Lib.ByteSequence.lbytes_eq tg tg' then (
let clen0 = get_len0 (length c) in
let c0 = Seq.slice c 0 clen0 in
let c1 = Seq.slice c clen0 (length c) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 clen0 c0 in
let block0 = map2 (^.) block0 ekey0 in
let m0 = sub block0 0 clen0 in
let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in
let m = Seq.append m0 m1 in
Some m)
else None | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.SecretBox.key ->
n: Spec.SecretBox.nonce ->
m:
Lib.ByteSequence.bytes
{Lib.Sequence.length m / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t}
-> c:
Lib.ByteSequence.bytes{Lib.Sequence.length c = Spec.SecretBox.size_tag + Lib.Sequence.length m} | Prims.Tot | [
"total"
] | [] | [
"Spec.SecretBox.key",
"Spec.SecretBox.nonce",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.SecretBox.size_block",
"Lib.IntTypes.max_size_t",
"Spec.SecretBox.tag",
"Prims.op_Equality",
"Prims.nat",
"FStar.Seq.Base.append",
"Prims.int",
"Prims.op_Addition",
"Spec.SecretBox.size_tag",
"FStar.Pervasives.Native.tuple2",
"Lib.Sequence.seq",
"Lib.IntTypes.int_t",
"Spec.SecretBox.secretbox_detached"
] | [] | false | false | false | false | false | let secretbox_easy (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: c: bytes{length c = size_tag + length m} =
| let tg, c = secretbox_detached k n m in
Seq.append tg c | false |
Spec.SecretBox.fst | Spec.SecretBox.secretbox_open_easy | val secretbox_open_easy
(k: key)
(n: nonce)
(c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t})
: option (m: bytes{length m = length c - size_tag}) | val secretbox_open_easy
(k: key)
(n: nonce)
(c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t})
: option (m: bytes{length m = length c - size_tag}) | let secretbox_open_easy (k:key) (n:nonce) (c:bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t}) : option (m:bytes{length m = length c - size_tag}) =
let tg = Seq.slice c 0 size_tag in
let e = Seq.slice c size_tag (length c) in
secretbox_open_detached k n tg e | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 82,
"start_col": 0,
"start_line": 79
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag
let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey)
let get_len0 (len:nat) : r:size_nat{r <= 32} =
if len <= 32 then len else 32
let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let mlen0 = get_len0 (length m) in
let m0 = Seq.slice m 0 mlen0 in
let m1 = Seq.slice m mlen0 (length m) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 mlen0 m0 in
let block0 = map2 (^.) block0 ekey0 in
let c0 = sub block0 0 mlen0 in
let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in
let c = Seq.append c0 c1 in
let tg = Spec.Poly1305.poly1305_mac c mkey in
(tg, c)
let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let tg' = Spec.Poly1305.poly1305_mac c mkey in
if Lib.ByteSequence.lbytes_eq tg tg' then (
let clen0 = get_len0 (length c) in
let c0 = Seq.slice c 0 clen0 in
let c1 = Seq.slice c clen0 (length c) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 clen0 c0 in
let block0 = map2 (^.) block0 ekey0 in
let m0 = sub block0 0 clen0 in
let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in
let m = Seq.append m0 m1 in
Some m)
else None
let secretbox_easy (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : c:bytes{length c = size_tag + length m} =
let (tg,c) = secretbox_detached k n m in
Seq.append tg c | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.SecretBox.key ->
n: Spec.SecretBox.nonce ->
c:
Lib.ByteSequence.bytes
{ Lib.Sequence.length c >= Spec.SecretBox.size_tag /\
(Lib.Sequence.length c - Spec.SecretBox.size_tag) / Spec.SecretBox.size_block <=
Lib.IntTypes.max_size_t }
-> FStar.Pervasives.Native.option (m:
Lib.ByteSequence.bytes
{Lib.Sequence.length m = Lib.Sequence.length c - Spec.SecretBox.size_tag}) | Prims.Tot | [
"total"
] | [] | [
"Spec.SecretBox.key",
"Spec.SecretBox.nonce",
"Lib.ByteSequence.bytes",
"Prims.l_and",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.SecretBox.size_tag",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Prims.op_Subtraction",
"Spec.SecretBox.size_block",
"Lib.IntTypes.max_size_t",
"Spec.SecretBox.secretbox_open_detached",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.slice",
"FStar.Pervasives.Native.option",
"Prims.op_Equality",
"Prims.int"
] | [] | false | false | false | false | false | let secretbox_open_easy
(k: key)
(n: nonce)
(c: bytes{length c >= size_tag /\ (length c - size_tag) / size_block <= max_size_t})
: option (m: bytes{length m = length c - size_tag}) =
| let tg = Seq.slice c 0 size_tag in
let e = Seq.slice c size_tag (length c) in
secretbox_open_detached k n tg e | false |
OPLSS.Ideal.fsti | OPLSS.Ideal.auth | val auth : OPLSS.Flag.flag | let auth = uf_cma | {
"file_name": "examples/crypto/OPLSS.Ideal.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 46,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module OPLSS.Ideal
(* This interface captures the sequence of idealization steps
that we'll make.
Each concrete use of an idealization flag is a cryptographic
hypothesis and should be treated as an `assume`, i.e., each such
hypothesis should be validates as being cryptographically justified
by an expert.
*)
open OPLSS.Flag
//we're idealizing MACs
val uf_cma : flag
//after idealizing MAC's
//we're pre-idealizing encryption, but without any loss of security
val pre_ind_cpa : b:flag{ reveal b == reveal uf_cma }
//finally, we're idealizing encryption for secrecy, at the end
val ind_cpa : b:flag{ reveal b ==> reveal pre_ind_cpa }
//we get authenticated encryption after idealizing everything
// -- we write it this way to make explicit
// that all the idealization flags are on,
// rather than just ind_cpa
val ae : b:flag{ reveal b = reveal pre_ind_cpa &&
reveal uf_cma &&
reveal ind_cpa } | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"OPLSS.Flag.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "OPLSS.Ideal.fsti"
} | [
{
"abbrev": false,
"full_module": "OPLSS.Flag",
"short_module": null
},
{
"abbrev": false,
"full_module": "OPLSS",
"short_module": null
},
{
"abbrev": false,
"full_module": "OPLSS",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | OPLSS.Flag.flag | Prims.Tot | [
"total"
] | [] | [
"OPLSS.Ideal.uf_cma"
] | [] | false | false | false | true | false | let auth =
| uf_cma | false |
|
OPLSS.Ideal.fsti | OPLSS.Ideal.conf | val conf : b: OPLSS.Flag.flag{OPLSS.Flag.reveal b ==> OPLSS.Flag.reveal OPLSS.Ideal.pre_ind_cpa} | let conf = ind_cpa | {
"file_name": "examples/crypto/OPLSS.Ideal.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 49,
"start_col": 0,
"start_line": 49
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module OPLSS.Ideal
(* This interface captures the sequence of idealization steps
that we'll make.
Each concrete use of an idealization flag is a cryptographic
hypothesis and should be treated as an `assume`, i.e., each such
hypothesis should be validates as being cryptographically justified
by an expert.
*)
open OPLSS.Flag
//we're idealizing MACs
val uf_cma : flag
//after idealizing MAC's
//we're pre-idealizing encryption, but without any loss of security
val pre_ind_cpa : b:flag{ reveal b == reveal uf_cma }
//finally, we're idealizing encryption for secrecy, at the end
val ind_cpa : b:flag{ reveal b ==> reveal pre_ind_cpa }
//we get authenticated encryption after idealizing everything
// -- we write it this way to make explicit
// that all the idealization flags are on,
// rather than just ind_cpa
val ae : b:flag{ reveal b = reveal pre_ind_cpa &&
reveal uf_cma &&
reveal ind_cpa }
//we get authenticity when uf_cma is on
let auth = uf_cma | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"OPLSS.Flag.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "OPLSS.Ideal.fsti"
} | [
{
"abbrev": false,
"full_module": "OPLSS.Flag",
"short_module": null
},
{
"abbrev": false,
"full_module": "OPLSS",
"short_module": null
},
{
"abbrev": false,
"full_module": "OPLSS",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: OPLSS.Flag.flag{OPLSS.Flag.reveal b ==> OPLSS.Flag.reveal OPLSS.Ideal.pre_ind_cpa} | Prims.Tot | [
"total"
] | [] | [
"OPLSS.Ideal.ind_cpa"
] | [] | false | false | false | false | false | let conf =
| ind_cpa | false |
|
Hacl.Frodo.Random.fst | Hacl.Frodo.Random.state | val state: b:lbuffer uint8 48ul{ recallable b } | val state: b:lbuffer uint8 48ul{ recallable b } | let state = gcmalloc HyperStack.root 0uy 48ul | {
"file_name": "code/frodo/Hacl.Frodo.Random.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 19,
"start_col": 0,
"start_line": 19
} | module Hacl.Frodo.Random
open FStar.HyperStack.All
open LowStar.Buffer
open Lib.IntTypes
open Lib.Buffer
module S = Spec.Frodo.Random
(* Stub stateless implementation on top of Lib.RandomBuffer.System.
Intended to be replaced for KATs with include/rng.c *)
friend Lib.IntTypes
#set-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.Frodo.Random.fst.checked",
"prims.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.RandomBuffer.System.fsti.checked",
"Lib.IntTypes.fst.checked",
"Lib.IntTypes.fst.checked",
"Lib.Buffer.fsti.checked",
"FStar.UInt8.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": true,
"source_file": "Hacl.Frodo.Random.fst"
} | [
{
"abbrev": true,
"full_module": "Spec.Frodo.Random",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Frodo.Random",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "LowStar.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Frodo",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | b: Lib.Buffer.lbuffer Lib.IntTypes.uint8 48ul {Lib.Buffer.recallable b} | Prims.Tot | [
"total"
] | [] | [
"LowStar.Buffer.gcmalloc",
"FStar.UInt8.t",
"FStar.Monotonic.HyperHeap.root",
"FStar.UInt8.__uint_to_t",
"FStar.UInt32.__uint_to_t",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Buffer.trivial_preorder",
"Prims.l_and",
"Prims.eq2",
"Prims.nat",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.v",
"Prims.b2t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"FStar.Monotonic.HyperHeap.rid",
"LowStar.Monotonic.Buffer.frameOf",
"LowStar.Monotonic.Buffer.recallable"
] | [] | false | false | false | false | false | let state =
| gcmalloc HyperStack.root 0uy 48ul | false |
Spec.SecretBox.fst | Spec.SecretBox.secretbox_detached | val secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: (tag & c: bytes{length c = length m}) | val secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: (tag & c: bytes{length c = length m}) | let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let mlen0 = get_len0 (length m) in
let m0 = Seq.slice m 0 mlen0 in
let m1 = Seq.slice m mlen0 (length m) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 mlen0 m0 in
let block0 = map2 (^.) block0 ekey0 in
let c0 = sub block0 0 mlen0 in
let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in
let c = Seq.append c0 c1 in
let tg = Spec.Poly1305.poly1305_mac c mkey in
(tg, c) | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 9,
"end_line": 50,
"start_col": 0,
"start_line": 31
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag
let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey)
let get_len0 (len:nat) : r:size_nat{r <= 32} =
if len <= 32 then len else 32 | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.SecretBox.key ->
n: Spec.SecretBox.nonce ->
m:
Lib.ByteSequence.bytes
{Lib.Sequence.length m / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t}
-> Spec.SecretBox.tag * c: Lib.ByteSequence.bytes{Lib.Sequence.length c = Lib.Sequence.length m} | Prims.Tot | [
"total"
] | [] | [
"Spec.SecretBox.key",
"Spec.SecretBox.nonce",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.SecretBox.size_block",
"Lib.IntTypes.max_size_t",
"Spec.SecretBox.aekey",
"FStar.Pervasives.Native.Mktuple2",
"Spec.SecretBox.tag",
"Prims.op_Equality",
"Prims.nat",
"Spec.Poly1305.tag",
"Spec.Poly1305.poly1305_mac",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.eq2",
"Spec.Salsa20.salsa20_encrypt_bytes",
"Lib.Sequence.lseq",
"Prims.l_and",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Prims.l_imp",
"Lib.IntTypes.logxor",
"Lib.Sequence.map2",
"Lib.IntTypes.op_Hat_Dot",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Lib.Sequence.create",
"Lib.IntTypes.u8",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SecretBox.get_len0",
"Spec.SecretBox.size_key",
"Spec.SecretBox.size_nonce",
"FStar.Pervasives.Native.tuple2",
"Spec.SecretBox.secretbox_init"
] | [] | false | false | false | false | false | let secretbox_detached (k: key) (n: nonce) (m: bytes{length m / size_block <= max_size_t})
: (tag & c: bytes{length c = length m}) =
| let subkey, aekey = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let mlen0 = get_len0 (length m) in
let m0 = Seq.slice m 0 mlen0 in
let m1 = Seq.slice m mlen0 (length m) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 mlen0 m0 in
let block0 = map2 ( ^. ) block0 ekey0 in
let c0 = sub block0 0 mlen0 in
let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in
let c = Seq.append c0 c1 in
let tg = Spec.Poly1305.poly1305_mac c mkey in
(tg, c) | false |
Spec.SecretBox.fst | Spec.SecretBox.secretbox_open_detached | val secretbox_open_detached
(k: key)
(n: nonce)
(tg: tag)
(c: bytes{length c / size_block <= max_size_t})
: option (m: bytes{length m = length c}) | val secretbox_open_detached
(k: key)
(n: nonce)
(tg: tag)
(c: bytes{length c / size_block <= max_size_t})
: option (m: bytes{length m = length c}) | let secretbox_open_detached (k:key) (n:nonce) (tg:tag) (c:bytes{length c / size_block <= max_size_t}) : option (m:bytes{length m = length c}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let tg' = Spec.Poly1305.poly1305_mac c mkey in
if Lib.ByteSequence.lbytes_eq tg tg' then (
let clen0 = get_len0 (length c) in
let c0 = Seq.slice c 0 clen0 in
let c1 = Seq.slice c clen0 (length c) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 clen0 c0 in
let block0 = map2 (^.) block0 ekey0 in
let m0 = sub block0 0 clen0 in
let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in
let m = Seq.append m0 m1 in
Some m)
else None | {
"file_name": "specs/Spec.SecretBox.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 11,
"end_line": 73,
"start_col": 0,
"start_line": 52
} | module Spec.SecretBox
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Lib.ByteSequence
#set-options "--z3rlimit 30 --max_fuel 0 --max_ifuel 0"
(* Constants *)
let size_key = 32 (* in bytes *)
let size_nonce = 24 (* in bytes *)
let size_block = 64 (* in bytes *)
let size_tag = 16 (* in bytes *)
type key = lbytes size_key
type aekey = lbytes (size_key + size_key)
type nonce = lbytes size_nonce
type tag = lbytes size_tag
let secretbox_init (k:key) (n:nonce) : key & aekey =
let n0 : lbytes 16 = sub n 0 16 in
let n1 : lbytes 8 = sub n 16 8 in
let subkey : lbytes 32 = Spec.Salsa20.hsalsa20 k n0 in
let aekey : lbytes 64 = Spec.Salsa20.salsa20_key_block0 subkey n1 in
(subkey,aekey)
let get_len0 (len:nat) : r:size_nat{r <= 32} =
if len <= 32 then len else 32
let secretbox_detached (k:key) (n:nonce) (m:bytes{length m / size_block <= max_size_t}) : (tag & c:bytes{length c = length m}) =
let (subkey,aekey) = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let mlen0 = get_len0 (length m) in
let m0 = Seq.slice m 0 mlen0 in
let m1 = Seq.slice m mlen0 (length m) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 mlen0 m0 in
let block0 = map2 (^.) block0 ekey0 in
let c0 = sub block0 0 mlen0 in
let c1 = Spec.Salsa20.salsa20_encrypt_bytes subkey n1 1 m1 in
let c = Seq.append c0 c1 in
let tg = Spec.Poly1305.poly1305_mac c mkey in
(tg, c) | {
"checked_file": "/",
"dependencies": [
"Spec.Salsa20.fst.checked",
"Spec.Poly1305.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.SecretBox.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 30,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
k: Spec.SecretBox.key ->
n: Spec.SecretBox.nonce ->
tg: Spec.SecretBox.tag ->
c:
Lib.ByteSequence.bytes
{Lib.Sequence.length c / Spec.SecretBox.size_block <= Lib.IntTypes.max_size_t}
-> FStar.Pervasives.Native.option (m:
Lib.ByteSequence.bytes{Lib.Sequence.length m = Lib.Sequence.length c}) | Prims.Tot | [
"total"
] | [] | [
"Spec.SecretBox.key",
"Spec.SecretBox.nonce",
"Spec.SecretBox.tag",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Division",
"Lib.Sequence.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.SecretBox.size_block",
"Lib.IntTypes.max_size_t",
"Spec.SecretBox.aekey",
"Lib.ByteSequence.lbytes_eq",
"Spec.SecretBox.size_tag",
"FStar.Pervasives.Native.Some",
"Prims.op_Equality",
"Prims.nat",
"FStar.Seq.Base.seq",
"Lib.IntTypes.int_t",
"FStar.Seq.Base.append",
"Lib.Sequence.seq",
"Prims.eq2",
"Spec.Salsa20.salsa20_decrypt_bytes",
"Lib.Sequence.lseq",
"Prims.l_and",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.slice",
"Prims.op_Addition",
"Prims.l_Forall",
"Prims.op_LessThan",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.index",
"Lib.Sequence.sub",
"Prims.l_imp",
"Lib.IntTypes.logxor",
"Lib.Sequence.map2",
"Lib.IntTypes.op_Hat_Dot",
"Lib.Sequence.update_sub",
"FStar.Seq.Base.create",
"Lib.IntTypes.mk_int",
"Lib.Sequence.create",
"Lib.IntTypes.u8",
"Prims.op_Subtraction",
"Prims.pow2",
"Spec.SecretBox.get_len0",
"Prims.bool",
"FStar.Pervasives.Native.None",
"FStar.Pervasives.Native.option",
"Spec.Poly1305.tag",
"Spec.Poly1305.poly1305_mac",
"Spec.SecretBox.size_key",
"Spec.SecretBox.size_nonce",
"FStar.Pervasives.Native.tuple2",
"Spec.SecretBox.secretbox_init"
] | [] | false | false | false | false | false | let secretbox_open_detached
(k: key)
(n: nonce)
(tg: tag)
(c: bytes{length c / size_block <= max_size_t})
: option (m: bytes{length m = length c}) =
| let subkey, aekey = secretbox_init k n in
let n1 = sub n 16 8 in
let mkey = sub aekey 0 32 in
let ekey0 = sub aekey 32 32 in
let tg' = Spec.Poly1305.poly1305_mac c mkey in
if Lib.ByteSequence.lbytes_eq tg tg'
then
(let clen0 = get_len0 (length c) in
let c0 = Seq.slice c 0 clen0 in
let c1 = Seq.slice c clen0 (length c) in
let block0 = create 32 (u8 0) in
let block0 = update_sub block0 0 clen0 c0 in
let block0 = map2 ( ^. ) block0 ekey0 in
let m0 = sub block0 0 clen0 in
let m1 = Spec.Salsa20.salsa20_decrypt_bytes subkey n1 1 c1 in
let m = Seq.append m0 m1 in
Some m)
else None | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.hide | val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s) | val hide (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:int{within_bounds s x})
: GTot (secret_int l s) | let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x})
: GTot (secret_int l s)
= return l (u x) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 48,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and
/// signedness/width `s`.
let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s)
/// A `secret_int l s` can be seen as an int in spec
let reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
= v (reveal x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Integers.int{FStar.Integers.within_bounds s x}
-> Prims.GTot (FStar.ConstantTime.Integers.secret_int l s) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.Integers.int",
"FStar.Integers.within_bounds",
"FStar.IFC.return",
"FStar.Integers.int_t",
"FStar.Integers.u",
"FStar.ConstantTime.Integers.secret_int"
] | [] | false | false | false | false | false | let hide (#sl: sl) (#l: lattice_element sl) (#s: sw) (x: int{within_bounds s x})
: GTot (secret_int l s) =
| return l (u x) | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.secret_int | val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0 | val secret_int (#sl:sl u#c)
(l:lattice_element sl)
(s:sw) : Type0 | let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 25,
"end_line": 35,
"start_col": 0,
"start_line": 32
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | l: FStar.IFC.lattice_element sl -> s: FStar.ConstantTime.Integers.sw -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.IFC.protected",
"FStar.Integers.int_t"
] | [] | false | false | false | false | true | let secret_int (#sl: sl) (l: lattice_element sl) (s: sw) : Type0 =
| protected l (int_t s) | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.reveal | val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y}) | val reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y}) | let reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
= v (reveal x) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 17,
"end_line": 43,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and
/// signedness/width `s`.
let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.ConstantTime.Integers.secret_int l s
-> Prims.GTot (y: FStar.Integers.int{FStar.Integers.within_bounds s y}) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.secret_int",
"FStar.Integers.v",
"FStar.IFC.reveal",
"FStar.Integers.int_t",
"FStar.Integers.int",
"FStar.Integers.within_bounds"
] | [] | false | false | false | false | false | let reveal (#sl: sl) (#l: lattice_element sl) (#s: sw) (x: secret_int l s)
: GTot (y: int{within_bounds s y}) =
| v (reveal x) | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.promote | val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x}) | val promote (#sl:sl)
(#l0:lattice_element sl)
(#s:sw)
(x:secret_int l0 s)
(l1:lattice_element sl)
: Tot (y:secret_int (l1 `lub` l0) s{reveal y == reveal x}) | let promote #sl #l0 #s x l1 =
join (return #_ #(secret_int l0 s) l1 x) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 54,
"start_col": 0,
"start_line": 53
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and
/// signedness/width `s`.
let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s)
/// A `secret_int l s` can be seen as an int in spec
let reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
= v (reveal x)
/// `hide` is the inverse of `reveal`, proving that `secret_int` is injective
let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x})
: GTot (secret_int l s)
= return l (u x)
let reveal_hide #sl #l #s x = ()
let hide_reveal #sl #l #s x = () | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.ConstantTime.Integers.secret_int l0 s -> l1: FStar.IFC.lattice_element sl
-> y:
FStar.ConstantTime.Integers.secret_int (FStar.IFC.lub l1 l0) s
{FStar.ConstantTime.Integers.reveal y == FStar.ConstantTime.Integers.reveal x} | Prims.Tot | [
"total"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.secret_int",
"FStar.IFC.join",
"FStar.Integers.int_t",
"FStar.IFC.return",
"FStar.IFC.lub",
"Prims.eq2",
"FStar.Integers.int",
"Prims.l_or",
"FStar.Integers.within_bounds",
"FStar.ConstantTime.Integers.reveal"
] | [] | false | false | false | false | false | let promote #sl #l0 #s x l1 =
| join (return #_ #(secret_int l0 s) l1 x) | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.addition_mod | val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } ) | val addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } ) | let addition_mod (#sl:sl)
(#l:lattice_element sl)
(#sw: _ {Unsigned? sw /\ width_of_sw sw <> W128})
(x : secret_int l sw)
(y : secret_int l sw)
: Tot (z:secret_int l sw { m z == m x +% m y } )
= let>> a = x in
let>> b = y in
return l (a +% b) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 23,
"end_line": 84,
"start_col": 0,
"start_line": 76
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and
/// signedness/width `s`.
let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s)
/// A `secret_int l s` can be seen as an int in spec
let reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
= v (reveal x)
/// `hide` is the inverse of `reveal`, proving that `secret_int` is injective
let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x})
: GTot (secret_int l s)
= return l (u x)
let reveal_hide #sl #l #s x = ()
let hide_reveal #sl #l #s x = ()
let promote #sl #l0 #s x l1 =
join (return #_ #(secret_int l0 s) l1 x)
//////////////////////////////////////////////////////////////////////////////////////////
/// The remainder of this module provides liftings of specific integers operations
/// to work on secret integers, i.e., only those that respect the constant time guarantees
/// and do not break confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
noextract
inline_for_extraction
let addition #sl (#l:lattice_element sl) #s
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
= let>> a = x in
let>> b = y in
return l (a + b)
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.ConstantTime.Integers.secret_int l sw -> y: FStar.ConstantTime.Integers.secret_int l sw
-> z:
FStar.ConstantTime.Integers.secret_int l sw
{ FStar.ConstantTime.Integers.m z ==
FStar.ConstantTime.Integers.m x +% FStar.ConstantTime.Integers.m y } | Prims.Tot | [
"total"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.Integers.signed_width",
"Prims.l_and",
"Prims.b2t",
"FStar.Integers.uu___is_Unsigned",
"Prims.op_disEquality",
"FStar.Integers.width",
"FStar.Integers.width_of_sw",
"FStar.Integers.W128",
"FStar.ConstantTime.Integers.secret_int",
"FStar.IFC.op_let_Greater_Greater",
"FStar.Integers.int_t",
"FStar.IFC.lub",
"Prims.eq2",
"FStar.IFC.reveal",
"FStar.IFC.return",
"FStar.Integers.op_Plus_Percent",
"FStar.IFC.protected",
"FStar.ConstantTime.Integers.m"
] | [] | false | false | false | false | false | let addition_mod
(#sl: sl)
(#l: lattice_element sl)
(#sw: _{Unsigned? sw /\ width_of_sw sw <> W128})
(x y: secret_int l sw)
: Tot (z: secret_int l sw {m z == m x +% m y}) =
| let>> a = x in
let>> b = y in
return l (a +% b) | false |
FStar.ConstantTime.Integers.fst | FStar.ConstantTime.Integers.addition | val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y}) | val addition (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y}) | let addition #sl (#l:lattice_element sl) #s
(x : secret_int l s)
(y : secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z:secret_int l s{m z == m x + m y})
= let>> a = x in
let>> b = y in
return l (a + b) | {
"file_name": "ulib/experimental/FStar.ConstantTime.Integers.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 22,
"end_line": 72,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.ConstantTime.Integers
(**
This module provides a refinement of FStar.IFC providing an
interface restricted only to constant-time operations on integers.
In contrast, FStar.IFC provides a general monadic information-flow
control framework, which need not be restricted to constant-time
operations.
*)
open FStar.IFC
open FStar.Integers
/// A `secret_int l s` is a machine-integer at secrecy level `l` and
/// signedness/width `s`.
let secret_int (#sl:sl)
(l:lattice_element sl)
(s:sw) : Type0 =
protected l (int_t s)
/// A `secret_int l s` can be seen as an int in spec
let reveal (#sl:sl)
(#l:lattice_element sl)
(#s:sw)
(x:secret_int l s)
: GTot (y:int{within_bounds s y})
= v (reveal x)
/// `hide` is the inverse of `reveal`, proving that `secret_int` is injective
let hide (#sl:sl) (#l:lattice_element sl) (#s:sw) (x:int{within_bounds s x})
: GTot (secret_int l s)
= return l (u x)
let reveal_hide #sl #l #s x = ()
let hide_reveal #sl #l #s x = ()
let promote #sl #l0 #s x l1 =
join (return #_ #(secret_int l0 s) l1 x)
//////////////////////////////////////////////////////////////////////////////////////////
/// The remainder of this module provides liftings of specific integers operations
/// to work on secret integers, i.e., only those that respect the constant time guarantees
/// and do not break confidentiality.
///
/// Note, with our choice of representation, it is impossible to
/// implement functions that break basic IFC guarantees, e.g., we
/// cannot implement a boolean comparison function on secret_ints
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Integers.fst.checked",
"FStar.IFC.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.ConstantTime.Integers.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Integers",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.IFC",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.ConstantTime",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
x: FStar.ConstantTime.Integers.secret_int l s ->
y:
FStar.ConstantTime.Integers.secret_int l s
{ FStar.Integers.ok FStar.Integers.op_Plus
(FStar.ConstantTime.Integers.m x)
(FStar.ConstantTime.Integers.m y) }
-> z:
FStar.ConstantTime.Integers.secret_int l s
{ FStar.ConstantTime.Integers.m z ==
FStar.ConstantTime.Integers.m x + FStar.ConstantTime.Integers.m y } | Prims.Tot | [
"total"
] | [] | [
"FStar.IFC.sl",
"FStar.IFC.lattice_element",
"FStar.ConstantTime.Integers.sw",
"FStar.ConstantTime.Integers.secret_int",
"FStar.Integers.ok",
"FStar.Integers.op_Plus",
"FStar.Integers.Signed",
"FStar.Integers.Winfinite",
"FStar.ConstantTime.Integers.m",
"FStar.IFC.op_let_Greater_Greater",
"FStar.Integers.int_t",
"FStar.IFC.lub",
"Prims.eq2",
"FStar.IFC.reveal",
"FStar.IFC.return",
"FStar.IFC.protected"
] | [] | false | false | false | false | false | let addition
#sl
(#l: lattice_element sl)
#s
(x: secret_int l s)
(y: secret_int l s {ok ( + ) (m x) (m y)})
: Tot (z: secret_int l s {m z == m x + m y}) =
| let>> a = x in
let>> b = y in
return l (a + b) | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add2_st | val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t | val mul_wide_add2_st: #t:limb_t -> mul_wide_add2_t t | let mul_wide_add2_st #t =
match t with
| U32 -> mul_wide_add2_u32
| U64 -> mul_wide_add2_u64 | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 131,
"start_col": 0,
"start_line": 128
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64
[@CInline]
let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
let mul_wide_add_st #t =
match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64
inline_for_extraction noextract
let mul_wide_add2_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0))
val mul_wide_add2_u32: mul_wide_add2_t U32
[@CInline]
let mul_wide_add2_u32 a b c_in out =
let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add2_u64: mul_wide_add2_t U64
[@CInline]
let mul_wide_add2_u64 a b c_in out =
let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add2_t t | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.Base.mul_wide_add2_u32",
"Hacl.Bignum.Base.mul_wide_add2_u64",
"Hacl.Bignum.Base.mul_wide_add2_t"
] | [] | false | false | false | false | false | let mul_wide_add2_st #t =
| match t with
| U32 -> mul_wide_add2_u32
| U64 -> mul_wide_add2_u64 | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add_st | val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t | val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t | let mul_wide_add_st #t =
match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64 | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 27,
"end_line": 91,
"start_col": 0,
"start_line": 88
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64
[@CInline]
let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add_t t | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.Base.mul_wide_add_u32",
"Hacl.Bignum.Base.mul_wide_add_u64",
"Hacl.Bignum.Base.mul_wide_add_t"
] | [] | false | false | false | false | false | let mul_wide_add_st #t =
| match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64 | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add_t | val mul_wide_add_t : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 67,
"end_line": 65,
"start_col": 0,
"start_line": 57
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Prims.l_and",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Definitions.limb",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.index",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.Base.mul_wide_add"
] | [] | false | false | false | true | true | let mul_wide_add_t (t: limb_t) =
| a: limb t -> b: limb t -> c_in: limb t -> out: lbuffer (limb t) 1ul
-> Stack (limb t)
(requires fun h -> live h out)
(ensures
fun h0 c_out h1 ->
modifies (loc out) h0 h1 /\ (c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in
) | false |
|
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add_u32 | val mul_wide_add_u32: mul_wide_add_t U32 | val mul_wide_add_u32: mul_wide_add_t U32 | let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 74,
"start_col": 0,
"start_line": 70
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add_t Lib.IntTypes.U32 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.U32",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.to_u32",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Prims.unit",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.to_u64",
"Hacl.Spec.Bignum.Base.lemma_mul_wide_add",
"Lib.IntTypes.u32"
] | [] | false | false | false | true | false | let mul_wide_add_u32 a b c_in out =
| lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul) | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add2_t | val mul_wide_add2_t : t: Hacl.Bignum.Definitions.limb_t -> Type0 | let mul_wide_add2_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0)) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 99,
"end_line": 103,
"start_col": 0,
"start_line": 95
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64
[@CInline]
let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
let mul_wide_add_st #t =
match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | t: Hacl.Bignum.Definitions.limb_t -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"FStar.Monotonic.HyperStack.mem",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Prims.l_and",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.eq2",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Definitions.limb",
"FStar.Pervasives.Native.Mktuple2",
"Lib.Sequence.index",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Hacl.Spec.Bignum.Base.mul_wide_add2"
] | [] | false | false | false | true | true | let mul_wide_add2_t (t: limb_t) =
| a: limb t -> b: limb t -> c_in: limb t -> out: lbuffer (limb t) 1ul
-> Stack (limb t)
(requires fun h -> live h out)
(ensures
fun h0 c_out h1 ->
modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) ==
mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0)) | false |
|
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add2_u32 | val mul_wide_add2_u32: mul_wide_add2_t U32 | val mul_wide_add2_u32: mul_wide_add2_t U32 | let mul_wide_add2_u32 a b c_in out =
let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 113,
"start_col": 0,
"start_line": 108
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64
[@CInline]
let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
let mul_wide_add_st #t =
match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64
inline_for_extraction noextract
let mul_wide_add2_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0))
val mul_wide_add2_u32: mul_wide_add2_t U32 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add2_t Lib.IntTypes.U32 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.U32",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.to_u32",
"Lib.IntTypes.U64",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Prims.unit",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.op_Star_Bang",
"Lib.IntTypes.to_u64",
"Hacl.Spec.Bignum.Base.lemma_mul_wide_add",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT"
] | [] | false | false | false | true | false | let mul_wide_add2_u32 a b c_in out =
| let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul) | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add2_u64 | val mul_wide_add2_u64: mul_wide_add2_t U64 | val mul_wide_add2_u64: mul_wide_add2_t U64 | let mul_wide_add2_u64 a b c_in out =
let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 123,
"start_col": 0,
"start_line": 118
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64
[@CInline]
let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul)
inline_for_extraction noextract
val mul_wide_add_st: #t:limb_t -> mul_wide_add_t t
let mul_wide_add_st #t =
match t with
| U32 -> mul_wide_add_u32
| U64 -> mul_wide_add_u64
inline_for_extraction noextract
let mul_wide_add2_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add2 a b c_in (LSeq.index (as_seq h0 out) 0))
val mul_wide_add2_u32: mul_wide_add2_t U32
[@CInline]
let mul_wide_add2_u32 a b c_in out =
let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = to_u64 a *! to_u64 b +! to_u64 c_in +! to_u64 out0 in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add2_u64: mul_wide_add2_t U64 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add2_t Lib.IntTypes.U64 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.U64",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Prims.unit",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.mul64_wide",
"Lib.IntTypes.to_u128",
"Hacl.Spec.Bignum.Base.lemma_mul_wide_add",
"Lib.Buffer.op_Array_Access",
"Lib.Buffer.MUT"
] | [] | false | false | false | true | false | let mul_wide_add2_u64 a b c_in out =
| let out0 = out.(0ul) in
lemma_mul_wide_add a b c_in out0;
let res = mul64_wide a b +! to_u128 c_in +! to_u128 out0 in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul) | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.mul_wide_add_u64 | val mul_wide_add_u64: mul_wide_add_t U64 | val mul_wide_add_u64: mul_wide_add_t U64 | let mul_wide_add_u64 a b c_in out =
lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul) | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 23,
"end_line": 83,
"start_col": 0,
"start_line": 79
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b)
let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out
inline_for_extraction noextract
let mul_wide_add_t (t:limb_t) =
a:limb t
-> b:limb t
-> c_in:limb t
-> out:lbuffer (limb t) 1ul ->
Stack (limb t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == mul_wide_add a b c_in)
val mul_wide_add_u32: mul_wide_add_t U32
[@CInline]
let mul_wide_add_u32 a b c_in out =
lemma_mul_wide_add a b c_in (u32 0);
let res = to_u64 a *! to_u64 b +! to_u64 c_in in
out.(0ul) <- to_u32 res;
to_u32 (res >>. 32ul)
val mul_wide_add_u64: mul_wide_add_t U64 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Hacl.Bignum.Base.mul_wide_add_t Lib.IntTypes.U64 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Bignum.Definitions.limb",
"Lib.IntTypes.U64",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.to_u64",
"Lib.IntTypes.U128",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Greater_Greater_Dot",
"Prims.unit",
"Lib.Buffer.op_Array_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.op_Plus_Bang",
"Lib.IntTypes.mul64_wide",
"Lib.IntTypes.to_u128",
"Hacl.Spec.Bignum.Base.lemma_mul_wide_add",
"Lib.IntTypes.u64"
] | [] | false | false | false | true | false | let mul_wide_add_u64 a b c_in out =
| lemma_mul_wide_add a b c_in (u64 0);
let res = mul64_wide a b +! to_u128 c_in in
out.(0ul) <- to_u64 res;
to_u64 (res >>. 64ul) | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.subborrow_st | val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) | val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) | let subborrow_st c_in a b out =
Lib.IntTypes.Intrinsics.sub_borrow c_in a b out | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 53,
"start_col": 0,
"start_line": 52
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b)
let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out
(**
unsigned char _subborrow_u64 (unsigned char b_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 8-bit borrow b_in (carry flag) to unsigned 64-bit integer b, and subtract the result from
unsigned 64-bit integer a. Store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val subborrow_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == subborrow c_in a b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c_in: Hacl.Spec.Bignum.Base.carry t ->
a: Hacl.Bignum.Definitions.limb t ->
b: Hacl.Bignum.Definitions.limb t ->
out: Lib.Buffer.lbuffer (Hacl.Bignum.Definitions.limb t) 1ul
-> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t) | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.Intrinsics.sub_borrow",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC"
] | [] | false | true | false | false | false | let subborrow_st c_in a b out =
| Lib.IntTypes.Intrinsics.sub_borrow c_in a b out | false |
Hacl.Bignum.Base.fst | Hacl.Bignum.Base.addcarry_st | val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) | val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) | let addcarry_st #t c_in a b out =
Lib.IntTypes.Intrinsics.add_carry c_in a b out | {
"file_name": "code/bignum/Hacl.Bignum.Base.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 48,
"end_line": 35,
"start_col": 0,
"start_line": 34
} | module Hacl.Bignum.Base
open FStar.HyperStack
open FStar.HyperStack.ST
open FStar.Mul
open Lib.IntTypes
open Lib.Buffer
open Hacl.Bignum.Definitions
include Hacl.Spec.Bignum.Base
module ST = FStar.HyperStack.ST
module LSeq = Lib.Sequence
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
(**
unsigned char _addcarry_u64 (unsigned char c_in, unsigned __int64 a, unsigned __int64 b, unsigned __int64 * out)
Description
Add unsigned 64-bit integers a and b with unsigned 8-bit carry-in c_in (carry flag),
and store the unsigned 64-bit result in out, and the carry-out in dst (carry or overflow flag).
*)
inline_for_extraction noextract
val addcarry_st: #t:limb_t -> c_in:carry t -> a:limb t -> b:limb t -> out:lbuffer (limb t) 1ul ->
Stack (carry t)
(requires fun h -> live h out)
(ensures fun h0 c_out h1 -> modifies (loc out) h0 h1 /\
(c_out, LSeq.index (as_seq h1 out) 0) == addcarry c_in a b) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.Intrinsics.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Spec.Bignum.Base.fst.checked",
"Hacl.Bignum.Definitions.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Bignum.Base.fst"
} | [
{
"abbrev": true,
"full_module": "Lib.Sequence",
"short_module": "LSeq"
},
{
"abbrev": true,
"full_module": "FStar.HyperStack.ST",
"short_module": "ST"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Bignum.Base",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Bignum",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
c_in: Hacl.Spec.Bignum.Base.carry t ->
a: Hacl.Bignum.Definitions.limb t ->
b: Hacl.Bignum.Definitions.limb t ->
out: Lib.Buffer.lbuffer (Hacl.Bignum.Definitions.limb t) 1ul
-> FStar.HyperStack.ST.Stack (Hacl.Spec.Bignum.Base.carry t) | FStar.HyperStack.ST.Stack | [] | [] | [
"Hacl.Bignum.Definitions.limb_t",
"Hacl.Spec.Bignum.Base.carry",
"Hacl.Bignum.Definitions.limb",
"Lib.Buffer.lbuffer",
"FStar.UInt32.__uint_to_t",
"Lib.IntTypes.Intrinsics.add_carry",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.SEC"
] | [] | false | true | false | false | false | let addcarry_st #t c_in a b out =
| Lib.IntTypes.Intrinsics.add_carry c_in a b out | false |
FStar.IndefiniteDescription.fst | FStar.IndefiniteDescription.elim_squash | val elim_squash (#p:Type u#a) (s:squash p) : GTot p | val elim_squash (#p:Type u#a) (s:squash p) : GTot p | let elim_squash (#p:Type u#a) (s:squash p) : GTot p =
let uu : squash (x:p & squash trivial) =
bind_squash s (fun x -> return_squash (| x, return_squash T |)) in
give_proof (return_squash uu);
indefinite_description_ghost p (fun _ -> squash trivial) | {
"file_name": "ulib/FStar.IndefiniteDescription.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 58,
"end_line": 89,
"start_col": 0,
"start_line": 85
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IndefiniteDescription
/// Indefinite description is an axiom that allows picking a witness
/// for existentially quantified predicate. See the interface for more
/// context.
///
open FStar.Classical
open FStar.Squash
(** The main axiom:
Given a classical proof of [exists x. p x], we can exhibit an erased
(computationally irrelevant) a witness [x:erased a] validating
[p x].
*)
irreducible
let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x })
: Tot (w:Ghost.erased a{ p w })
= admit() //this is an axiom
(** A version in ghost is easily derivable *)
let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x })
= let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x
(** Indefinite description entails the a strong form of the excluded
middle, i.e., one can case-analyze the truth of a proposition
(only in [Ghost]) *)
let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
let aux (p: Type0) : Lemma (exists b. b = true <==> p) =
give_proof (bind_squash (get_proof (l_or p (~p)))
(fun (b: l_or p (~p)) ->
bind_squash b
(fun (b': Prims.sum p (~p)) ->
match b' with
| Prims.Left hp ->
give_witness hp;
exists_intro (fun b -> b = true <==> p) true;
get_proof (exists b. b = true <==> p)
| Prims.Right hnp ->
give_witness hnp;
exists_intro (fun b -> b = true <==> p) false;
get_proof (exists b. b = true <==> p))))
in
aux p;
indefinite_description_ghost bool (fun b -> b = true <==> p)
(** We also can combine this with a the classical tautology converting
with a [forall] and an [exists] to extract a witness of validity of [p] from
a classical proof that [p] is not universally invalid.
Note, F*+SMT can easily prove, since it is just classical logic:
[(~(forall n. ~(p n))) ==> (exists n. p n) ] *)
let stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
indefinite_description_ghost _ (fun n -> p n==true)
(** A variant of the previous lemma, but for a [prop] rather than a
boolean predicate *)
let stronger_markovs_principle_prop (p: (nat -> GTot prop))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
indefinite_description_ghost _ p
(** A proof for squash p can be eliminated to get p in the Ghost effect *) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.IndefiniteDescription.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.squash p -> Prims.GTot p | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.squash",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.trivial",
"Prims.prop",
"Prims.unit",
"FStar.Squash.give_proof",
"Prims.dtuple2",
"FStar.Squash.return_squash",
"FStar.Squash.bind_squash",
"Prims.Mkdtuple2",
"Prims.T"
] | [] | false | false | false | false | false | let elim_squash (#p: Type u#a) (s: squash p) : GTot p =
| let uu:squash (x: p & squash trivial) =
bind_squash s (fun x -> return_squash (| x, return_squash T |))
in
give_proof (return_squash uu);
indefinite_description_ghost p (fun _ -> squash trivial) | false |
FStar.IndefiniteDescription.fst | FStar.IndefiniteDescription.strong_excluded_middle | val strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) | val strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) | let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
let aux (p: Type0) : Lemma (exists b. b = true <==> p) =
give_proof (bind_squash (get_proof (l_or p (~p)))
(fun (b: l_or p (~p)) ->
bind_squash b
(fun (b': Prims.sum p (~p)) ->
match b' with
| Prims.Left hp ->
give_witness hp;
exists_intro (fun b -> b = true <==> p) true;
get_proof (exists b. b = true <==> p)
| Prims.Right hnp ->
give_witness hnp;
exists_intro (fun b -> b = true <==> p) false;
get_proof (exists b. b = true <==> p))))
in
aux p;
indefinite_description_ghost bool (fun b -> b = true <==> p) | {
"file_name": "ulib/FStar.IndefiniteDescription.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 62,
"end_line": 64,
"start_col": 0,
"start_line": 47
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IndefiniteDescription
/// Indefinite description is an axiom that allows picking a witness
/// for existentially quantified predicate. See the interface for more
/// context.
///
open FStar.Classical
open FStar.Squash
(** The main axiom:
Given a classical proof of [exists x. p x], we can exhibit an erased
(computationally irrelevant) a witness [x:erased a] validating
[p x].
*)
irreducible
let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x })
: Tot (w:Ghost.erased a{ p w })
= admit() //this is an axiom
(** A version in ghost is easily derivable *)
let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x })
= let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x
(** Indefinite description entails the a strong form of the excluded
middle, i.e., one can case-analyze the truth of a proposition | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.IndefiniteDescription.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: Type0 -> Prims.GTot (b: Prims.bool{b = true <==> p}) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.bool",
"Prims.l_iff",
"Prims.b2t",
"Prims.op_Equality",
"Prims.prop",
"Prims.unit",
"Prims.l_True",
"Prims.squash",
"Prims.l_Exists",
"Prims.Nil",
"FStar.Pervasives.pattern",
"FStar.Squash.give_proof",
"FStar.Squash.bind_squash",
"Prims.l_or",
"Prims.l_not",
"FStar.Squash.get_proof",
"Prims.sum",
"FStar.Classical.exists_intro",
"FStar.Classical.give_witness"
] | [] | false | false | false | false | false | let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
| let aux (p: Type0) : Lemma (exists b. b = true <==> p) =
give_proof (bind_squash (get_proof (l_or p (~p)))
(fun (b: l_or p (~p)) ->
bind_squash b
(fun (b': Prims.sum p (~p)) ->
match b' with
| Prims.Left hp ->
give_witness hp;
exists_intro (fun b -> b = true <==> p) true;
get_proof (exists b. b = true <==> p)
| Prims.Right hnp ->
give_witness hnp;
exists_intro (fun b -> b = true <==> p) false;
get_proof (exists b. b = true <==> p))))
in
aux p;
indefinite_description_ghost bool (fun b -> b = true <==> p) | false |
FStar.IndefiniteDescription.fst | FStar.IndefiniteDescription.stronger_markovs_principle_prop | val stronger_markovs_principle_prop (p: (nat -> GTot prop))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) | val stronger_markovs_principle_prop (p: (nat -> GTot prop))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) | let stronger_markovs_principle_prop (p: (nat -> GTot prop))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
indefinite_description_ghost _ p | {
"file_name": "ulib/FStar.IndefiniteDescription.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 36,
"end_line": 80,
"start_col": 0,
"start_line": 78
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IndefiniteDescription
/// Indefinite description is an axiom that allows picking a witness
/// for existentially quantified predicate. See the interface for more
/// context.
///
open FStar.Classical
open FStar.Squash
(** The main axiom:
Given a classical proof of [exists x. p x], we can exhibit an erased
(computationally irrelevant) a witness [x:erased a] validating
[p x].
*)
irreducible
let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x })
: Tot (w:Ghost.erased a{ p w })
= admit() //this is an axiom
(** A version in ghost is easily derivable *)
let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x })
= let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x
(** Indefinite description entails the a strong form of the excluded
middle, i.e., one can case-analyze the truth of a proposition
(only in [Ghost]) *)
let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
let aux (p: Type0) : Lemma (exists b. b = true <==> p) =
give_proof (bind_squash (get_proof (l_or p (~p)))
(fun (b: l_or p (~p)) ->
bind_squash b
(fun (b': Prims.sum p (~p)) ->
match b' with
| Prims.Left hp ->
give_witness hp;
exists_intro (fun b -> b = true <==> p) true;
get_proof (exists b. b = true <==> p)
| Prims.Right hnp ->
give_witness hnp;
exists_intro (fun b -> b = true <==> p) false;
get_proof (exists b. b = true <==> p))))
in
aux p;
indefinite_description_ghost bool (fun b -> b = true <==> p)
(** We also can combine this with a the classical tautology converting
with a [forall] and an [exists] to extract a witness of validity of [p] from
a classical proof that [p] is not universally invalid.
Note, F*+SMT can easily prove, since it is just classical logic:
[(~(forall n. ~(p n))) ==> (exists n. p n) ] *)
let stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
indefinite_description_ghost _ (fun n -> p n==true)
(** A variant of the previous lemma, but for a [prop] rather than a | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.IndefiniteDescription.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Prims.GTot Prims.prop) -> Prims.Ghost Prims.nat | Prims.Ghost | [] | [] | [
"Prims.nat",
"Prims.prop",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.l_not",
"Prims.l_Forall"
] | [] | false | false | false | false | false | let stronger_markovs_principle_prop (p: (nat -> GTot prop))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
| indefinite_description_ghost _ p | false |
FStar.IndefiniteDescription.fst | FStar.IndefiniteDescription.indefinite_description_ghost | val indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x }) | val indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x }) | let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x })
= let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x | {
"file_name": "ulib/FStar.IndefiniteDescription.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 5,
"end_line": 42,
"start_col": 0,
"start_line": 38
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IndefiniteDescription
/// Indefinite description is an axiom that allows picking a witness
/// for existentially quantified predicate. See the interface for more
/// context.
///
open FStar.Classical
open FStar.Squash
(** The main axiom:
Given a classical proof of [exists x. p x], we can exhibit an erased
(computationally irrelevant) a witness [x:erased a] validating
[p x].
*)
irreducible
let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x })
: Tot (w:Ghost.erased a{ p w })
= admit() //this is an axiom | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.IndefiniteDescription.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> p: (_: a -> Prims.prop){exists (x: a). p x} -> Prims.GTot (x: a{p x}) | Prims.GTot | [
"sometrivial"
] | [] | [
"Prims.prop",
"Prims.l_Exists",
"FStar.Ghost.reveal",
"FStar.Ghost.erased",
"FStar.IndefiniteDescription.indefinite_description_tot"
] | [] | false | false | false | false | false | let indefinite_description_ghost (a: Type) (p: (a -> prop){exists x. p x}) : GTot (x: a{p x}) =
| let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x | false |
FStar.IndefiniteDescription.fst | FStar.IndefiniteDescription.stronger_markovs_principle | val stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) | val stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) | let stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
indefinite_description_ghost _ (fun n -> p n==true) | {
"file_name": "ulib/FStar.IndefiniteDescription.fst",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 55,
"end_line": 74,
"start_col": 0,
"start_line": 72
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.IndefiniteDescription
/// Indefinite description is an axiom that allows picking a witness
/// for existentially quantified predicate. See the interface for more
/// context.
///
open FStar.Classical
open FStar.Squash
(** The main axiom:
Given a classical proof of [exists x. p x], we can exhibit an erased
(computationally irrelevant) a witness [x:erased a] validating
[p x].
*)
irreducible
let indefinite_description_tot (a:Type) (p:(a -> prop) { exists x. p x })
: Tot (w:Ghost.erased a{ p w })
= admit() //this is an axiom
(** A version in ghost is easily derivable *)
let indefinite_description_ghost (a: Type) (p: (a -> prop) { exists x. p x })
: GTot (x: a { p x })
= let w = indefinite_description_tot a p in
let x = Ghost.reveal w in
x
(** Indefinite description entails the a strong form of the excluded
middle, i.e., one can case-analyze the truth of a proposition
(only in [Ghost]) *)
let strong_excluded_middle (p: Type0) : GTot (b: bool{b = true <==> p}) =
let aux (p: Type0) : Lemma (exists b. b = true <==> p) =
give_proof (bind_squash (get_proof (l_or p (~p)))
(fun (b: l_or p (~p)) ->
bind_squash b
(fun (b': Prims.sum p (~p)) ->
match b' with
| Prims.Left hp ->
give_witness hp;
exists_intro (fun b -> b = true <==> p) true;
get_proof (exists b. b = true <==> p)
| Prims.Right hnp ->
give_witness hnp;
exists_intro (fun b -> b = true <==> p) false;
get_proof (exists b. b = true <==> p))))
in
aux p;
indefinite_description_ghost bool (fun b -> b = true <==> p)
(** We also can combine this with a the classical tautology converting
with a [forall] and an [exists] to extract a witness of validity of [p] from
a classical proof that [p] is not universally invalid.
Note, F*+SMT can easily prove, since it is just classical logic: | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Squash.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": true,
"source_file": "FStar.IndefiniteDescription.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Squash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | p: (_: Prims.nat -> Prims.GTot Prims.bool) -> Prims.Ghost Prims.nat | Prims.Ghost | [] | [] | [
"Prims.nat",
"Prims.bool",
"FStar.IndefiniteDescription.indefinite_description_ghost",
"Prims.eq2",
"Prims.prop",
"Prims.l_not",
"Prims.l_Forall",
"Prims.b2t"
] | [] | false | false | false | false | false | let stronger_markovs_principle (p: (nat -> GTot bool))
: Ghost nat (requires (~(forall (n: nat). ~(p n)))) (ensures (fun n -> p n)) =
| indefinite_description_ghost _ (fun n -> p n == true) | false |
Lib.NatMod.fsti | Lib.NatMod.nat_mod | val nat_mod : m: Prims.pos -> Type0 | let nat_mod (m:pos) = n:nat{n < m} | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 34,
"end_line": 51,
"start_col": 0,
"start_line": 51
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.pos -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThan"
] | [] | false | false | false | true | true | let nat_mod (m: pos) =
| n: nat{n < m} | false |
|
Vale.Def.Opaque_s.fst | Vale.Def.Opaque_s.opaque_make | val opaque_make (#a:Type) (x:a) : a | val opaque_make (#a:Type) (x:a) : a | let opaque_make #a x = x | {
"file_name": "vale/specs/defs/Vale.Def.Opaque_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 4,
"start_col": 0,
"start_line": 4
} | module Vale.Def.Opaque_s
open FStar.Mul | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Opaque_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> a | Prims.Tot | [
"total"
] | [] | [] | [] | false | false | false | true | false | let opaque_make #a x =
| x | false |
Lib.NatMod.fsti | Lib.NatMod.mk_nat_mod_comm_monoid | val mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m) | val mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m) | let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm;
} | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 72,
"start_col": 0,
"start_line": 66
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m
let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m
let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m
val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a)
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (mul_mod a b == mul_mod b a) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | m: Prims.pos -> Lib.Exponentiation.Definition.comm_monoid (Lib.NatMod.nat_mod m) | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Lib.Exponentiation.Definition.Mkcomm_monoid",
"Lib.NatMod.nat_mod",
"Lib.NatMod.one_mod",
"Lib.NatMod.mul_mod",
"Lib.NatMod.lemma_mul_mod_one",
"Lib.NatMod.lemma_mul_mod_assoc",
"Lib.NatMod.lemma_mul_mod_comm",
"Lib.Exponentiation.Definition.comm_monoid"
] | [] | false | false | false | false | false | let mk_nat_mod_comm_monoid (m: pos) : LE.comm_monoid (nat_mod m) =
| {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm
} | false |
Vale.Def.Opaque_s.fst | Vale.Def.Opaque_s.opaque_reveal | val opaque_reveal (#a:Type) (s:string) (x1 x2:a) : Lemma
(requires norm [delta_only [s]] (x1 == opaque_make x2))
(ensures x1 == x2) | val opaque_reveal (#a:Type) (s:string) (x1 x2:a) : Lemma
(requires norm [delta_only [s]] (x1 == opaque_make x2))
(ensures x1 == x2) | let opaque_reveal #a s x1 x2 =
norm_spec [delta_only [s]] (x1 == opaque_make x2) | {
"file_name": "vale/specs/defs/Vale.Def.Opaque_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 7,
"start_col": 0,
"start_line": 6
} | module Vale.Def.Opaque_s
open FStar.Mul
let opaque_make #a x = x | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Opaque_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> x1: a -> x2: a
-> FStar.Pervasives.Lemma
(requires
FStar.Pervasives.norm [FStar.Pervasives.delta_only [s]]
(x1 == Vale.Def.Opaque_s.opaque_make x2)) (ensures x1 == x2) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.string",
"FStar.Pervasives.norm_spec",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"Prims.Nil",
"Prims.logical",
"Prims.eq2",
"Vale.Def.Opaque_s.opaque_make",
"Prims.unit"
] | [] | true | false | true | false | false | let opaque_reveal #a s x1 x2 =
| norm_spec [delta_only [s]] (x1 == opaque_make x2) | false |
Lib.NatMod.fsti | Lib.NatMod.prime | val prime : Type0 | let prime = m:pos{1 < m /\ Euclid.is_prime m} | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 45,
"end_line": 113,
"start_col": 0,
"start_line": 113
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m
let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m
let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m
val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a)
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (mul_mod a b == mul_mod b a)
let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm;
}
inline_for_extraction
let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) =
if b = 0 then 1
else
if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2)
else mul_mod a (pow_mod_ (mul_mod a a) (b / 2))
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m
val pow_mod_def: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow_mod a b == pow_mod_ a b)
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b)
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat ->
Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b)
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a)
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c))
val lemma_add_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (add_mod a b == add_mod b a)
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c))
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.l_and",
"Prims.b2t",
"Prims.op_LessThan",
"FStar.Math.Euclid.is_prime"
] | [] | false | false | false | true | true | let prime =
| m: pos{1 < m /\ Euclid.is_prime m} | false |
|
Vale.Def.Opaque_s.fst | Vale.Def.Opaque_s.opaque_revealer | val opaque_revealer (#a:Type) (s:string) (x1 x2:a) : Pure (unit -> Lemma (x1 == x2))
(requires norm [delta_only [s]] (x1 == opaque_make x2))
(ensures fun _ -> True) | val opaque_revealer (#a:Type) (s:string) (x1 x2:a) : Pure (unit -> Lemma (x1 == x2))
(requires norm [delta_only [s]] (x1 == opaque_make x2))
(ensures fun _ -> True) | let opaque_revealer #a s x1 x2 =
fun () -> opaque_reveal s x1 x2 | {
"file_name": "vale/specs/defs/Vale.Def.Opaque_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 13,
"start_col": 0,
"start_line": 12
} | module Vale.Def.Opaque_s
open FStar.Mul
let opaque_make #a x = x
let opaque_reveal #a s x1 x2 =
norm_spec [delta_only [s]] (x1 == opaque_make x2)
let opaque_assert #a s x1 x2 p =
norm_spec [delta_only [s]] (x1 == opaque_make x2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Opaque_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> x1: a -> x2: a
-> Prims.Pure (_: Prims.unit -> FStar.Pervasives.Lemma (ensures x1 == x2)) | Prims.Pure | [] | [] | [
"Prims.string",
"Prims.unit",
"Vale.Def.Opaque_s.opaque_reveal"
] | [] | false | false | true | false | false | let opaque_revealer #a s x1 x2 =
| fun () -> opaque_reveal s x1 x2 | false |
Lib.NatMod.fsti | Lib.NatMod.mul_mod | val mul_mod (#m: pos) (a b: nat_mod m) : nat_mod m | val mul_mod (#m: pos) (a b: nat_mod m) : nat_mod m | let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 72,
"end_line": 54,
"start_col": 0,
"start_line": 54
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Lib.NatMod.nat_mod",
"Prims.op_Modulus",
"FStar.Mul.op_Star"
] | [] | false | false | false | false | false | let mul_mod (#m: pos) (a b: nat_mod m) : nat_mod m =
| a * b % m | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.tset | val tset : a: Type -> Type | let tset = TSet.set | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 19,
"end_line": 24,
"start_col": 0,
"start_line": 24
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type -> Type | Prims.Tot | [
"total"
] | [] | [
"FStar.TSet.set"
] | [] | false | false | false | true | true | let tset =
| TSet.set | false |
|
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.set | val set : a: Prims.eqtype -> Type0 | let set = Set.set | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 18,
"end_line": 23,
"start_col": 0,
"start_line": 23
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Prims.eqtype -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Set.set"
] | [] | false | false | false | true | true | let set =
| Set.set | false |
|
Lib.NatMod.fsti | Lib.NatMod.mk_nat_comm_monoid | val mk_nat_comm_monoid:LE.comm_monoid int | val mk_nat_comm_monoid:LE.comm_monoid int | let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
} | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 18,
"start_col": 0,
"start_line": 12
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Lib.Exponentiation.Definition.comm_monoid Prims.int | Prims.Tot | [
"total"
] | [] | [
"Lib.Exponentiation.Definition.Mkcomm_monoid",
"Prims.int",
"FStar.Mul.op_Star",
"FStar.Math.Lemmas.mul_one_right_is_same",
"FStar.Math.Lemmas.paren_mul_right",
"FStar.Math.Lemmas.swap_mul"
] | [] | false | false | false | true | false | let mk_nat_comm_monoid:LE.comm_monoid int =
| {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul
} | false |
Lib.NatMod.fsti | Lib.NatMod.div_mod | val div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m | val div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m | let div_mod (#m:pos{1 < m}) (a:nat_mod m) (b:nat_mod m) : nat_mod m = mul_mod a (inv_mod b) | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 91,
"end_line": 115,
"start_col": 0,
"start_line": 115
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m
let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m
let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m
val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a)
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (mul_mod a b == mul_mod b a)
let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm;
}
inline_for_extraction
let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) =
if b = 0 then 1
else
if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2)
else mul_mod a (pow_mod_ (mul_mod a a) (b / 2))
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m
val pow_mod_def: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow_mod a b == pow_mod_ a b)
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b)
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat ->
Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b)
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a)
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c))
val lemma_add_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (add_mod a b == add_mod b a)
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c))
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c))
let prime = m:pos{1 < m /\ Euclid.is_prime m} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Lib.NatMod.mul_mod",
"Lib.NatMod.inv_mod"
] | [] | false | false | false | false | false | let div_mod (#m: pos{1 < m}) (a b: nat_mod m) : nat_mod m =
| mul_mod a (inv_mod b) | false |
Vale.Def.Opaque_s.fst | Vale.Def.Opaque_s.opaque_assert | val opaque_assert (#a:Type) (s:string) (x1 x2:a) (p:Type0) : Lemma
(requires norm [delta_only [s]] (x1 == opaque_make x2) /\ (x1 == x2 ==> p))
(ensures p) | val opaque_assert (#a:Type) (s:string) (x1 x2:a) (p:Type0) : Lemma
(requires norm [delta_only [s]] (x1 == opaque_make x2) /\ (x1 == x2 ==> p))
(ensures p) | let opaque_assert #a s x1 x2 p =
norm_spec [delta_only [s]] (x1 == opaque_make x2) | {
"file_name": "vale/specs/defs/Vale.Def.Opaque_s.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 10,
"start_col": 0,
"start_line": 9
} | module Vale.Def.Opaque_s
open FStar.Mul
let opaque_make #a x = x
let opaque_reveal #a s x1 x2 =
norm_spec [delta_only [s]] (x1 == opaque_make x2) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": true,
"source_file": "Vale.Def.Opaque_s.fst"
} | [
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Prims.string -> x1: a -> x2: a -> p: Type0
-> FStar.Pervasives.Lemma
(requires
FStar.Pervasives.norm [FStar.Pervasives.delta_only [s]]
(x1 == Vale.Def.Opaque_s.opaque_make x2) /\ (x1 == x2 ==> p)) (ensures p) | FStar.Pervasives.Lemma | [
"lemma"
] | [] | [
"Prims.string",
"FStar.Pervasives.norm_spec",
"Prims.Cons",
"FStar.Pervasives.norm_step",
"FStar.Pervasives.delta_only",
"Prims.Nil",
"Prims.logical",
"Prims.eq2",
"Vale.Def.Opaque_s.opaque_make",
"Prims.unit"
] | [] | true | false | true | false | false | let opaque_assert #a s x1 x2 p =
| norm_spec [delta_only [s]] (x1 == opaque_make x2) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.mref | val mref (a: Type0) (rel: preorder a) : Type0 | val mref (a: Type0) (rel: preorder a) : Type0 | let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 57,
"end_line": 40,
"start_col": 0,
"start_line": 40
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Type0 -> rel: FStar.Preorder.preorder a -> Type0 | Prims.Tot | [
"total"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.core_mref"
] | [] | false | false | false | true | true | let mref (a: Type0) (rel: preorder a) : Type0 =
| core_mref a | false |
Lib.NatMod.fsti | Lib.NatMod.one_mod | val one_mod (#m: pos) : nat_mod m | val one_mod (#m: pos) : nat_mod m | let one_mod (#m:pos) : nat_mod m = 1 % m | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 40,
"end_line": 53,
"start_col": 0,
"start_line": 53
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.op_Modulus",
"Lib.NatMod.nat_mod"
] | [] | false | false | false | false | false | let one_mod (#m: pos) : nat_mod m =
| 1 % m | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.fresh | val fresh : r: FStar.Monotonic.Heap.mref a rel -> h0: FStar.Monotonic.Heap.heap -> h1: FStar.Monotonic.Heap.heap
-> Prims.logical | let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 37,
"end_line": 58,
"start_col": 0,
"start_line": 57
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: FStar.Monotonic.Heap.mref a rel -> h0: FStar.Monotonic.Heap.heap -> h1: FStar.Monotonic.Heap.heap
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"FStar.Monotonic.Heap.heap",
"Prims.l_and",
"FStar.Monotonic.Heap.unused_in",
"FStar.Monotonic.Heap.contains",
"Prims.logical"
] | [] | false | false | false | false | true | let fresh (#a: Type) (#rel: preorder a) (r: mref a rel) (h0 h1: heap) =
| r `unused_in` h0 /\ h1 `contains` r | false |
|
Lib.NatMod.fsti | Lib.NatMod.sub_mod | val sub_mod (#m: pos) (a b: nat_mod m) : nat_mod m | val sub_mod (#m: pos) (a b: nat_mod m) : nat_mod m | let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 74,
"end_line": 56,
"start_col": 0,
"start_line": 56
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Lib.NatMod.nat_mod",
"Prims.op_Modulus",
"Prims.op_Subtraction"
] | [] | false | false | false | false | false | let sub_mod (#m: pos) (a b: nat_mod m) : nat_mod m =
| (a - b) % m | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.equal_dom | val equal_dom (h1 h2: heap) : GTot Type0 | val equal_dom (h1 h2: heap) : GTot Type0 | let equal_dom (h1:heap) (h2:heap) :GTot Type0 =
(forall (a:Type0) (rel:preorder a) (r:mref a rel).
{:pattern (h1 `contains` r) \/ (h2 `contains` r)}
h1 `contains` r <==> h2 `contains` r) /\
(forall (a:Type0) (rel:preorder a) (r:mref a rel).
{:pattern (r `unused_in` h1) \/ (r `unused_in` h2)}
r `unused_in` h1 <==> r `unused_in` h2) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 44,
"end_line": 103,
"start_col": 0,
"start_line": 97
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x)
let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s
let op_Plus_Plus_Hat (#a:Type0) (#rel:preorder a) (s:set nat) (r:mref a rel) :GTot (set nat) = S.union s (only r)
let op_Hat_Plus_Hat (#a:Type0) (#b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot (set nat) = S.union (only r1) (only r2)
val sel_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> Tot a
val sel: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> GTot a
val upd_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> x:a -> Tot heap
val upd: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel -> x:a -> GTot heap
val alloc: #a:Type0 -> rel:preorder a -> heap -> a -> mm:bool -> Tot (mref a rel * heap)
val free_mm: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r /\ is_mm r} -> Tot heap
let modifies_t (s:tset nat) (h0:heap) (h1:heap) =
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (sel h1 r)}
((~ (TS.mem (addr_of r) s)) /\ h0 `contains` r) ==> sel h1 r == sel h0 r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (contains h1 r)}
h0 `contains` r ==> h1 `contains` r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (r `unused_in` h0)}
r `unused_in` h1 ==> r `unused_in` h0) /\
(forall (n: nat) . {:pattern (n `addr_unused_in` h0) }
n `addr_unused_in` h1 ==> n `addr_unused_in` h0
)
let modifies (s:set nat) (h0:heap) (h1:heap) = modifies_t (TS.tset_of_set s) h0 h1 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | h1: FStar.Monotonic.Heap.heap -> h2: FStar.Monotonic.Heap.heap -> Prims.GTot Type0 | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Monotonic.Heap.heap",
"Prims.l_and",
"Prims.l_Forall",
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"Prims.l_iff",
"FStar.Monotonic.Heap.contains",
"FStar.Monotonic.Heap.unused_in"
] | [] | false | false | false | false | true | let equal_dom (h1 h2: heap) : GTot Type0 =
| (forall (a: Type0) (rel: preorder a) (r: mref a rel).
{:pattern (h1 `contains` r)\/(h2 `contains` r)}
h1 `contains` r <==> h2 `contains` r) /\
(forall (a: Type0) (rel: preorder a) (r: mref a rel).
{:pattern (r `unused_in` h1)\/(r `unused_in` h2)}
r `unused_in` h1 <==> r `unused_in` h2) | false |
Lib.NatMod.fsti | Lib.NatMod.pow_mod_ | val pow_mod_ (#m: pos{1 < m}) (a: nat_mod m) (b: nat) : Tot (nat_mod m) (decreases b) | val pow_mod_ (#m: pos{1 < m}) (a: nat_mod m) (b: nat) : Tot (nat_mod m) (decreases b) | let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) =
if b = 0 then 1
else
if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2)
else mul_mod a (pow_mod_ (mul_mod a a) (b / 2)) | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 51,
"end_line": 79,
"start_col": 0,
"start_line": 75
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m
let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m
let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m
val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a)
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (mul_mod a b == mul_mod b a)
let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Prims.nat -> Prims.Tot (Lib.NatMod.nat_mod m) | Prims.Tot | [
"total",
""
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Prims.nat",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_Modulus",
"Lib.NatMod.pow_mod_",
"Lib.NatMod.mul_mod",
"Prims.op_Division"
] | [
"recursion"
] | false | false | false | false | false | let rec pow_mod_ (#m: pos{1 < m}) (a: nat_mod m) (b: nat) : Tot (nat_mod m) (decreases b) =
| if b = 0
then 1
else
if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2) else mul_mod a (pow_mod_ (mul_mod a a) (b / 2)) | false |
Lib.NatMod.fsti | Lib.NatMod.add_mod | val add_mod (#m: pos) (a b: nat_mod m) : nat_mod m | val add_mod (#m: pos) (a b: nat_mod m) : nat_mod m | let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 74,
"end_line": 55,
"start_col": 0,
"start_line": 55
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> b: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Lib.NatMod.nat_mod",
"Prims.op_Modulus",
"Prims.op_Addition"
] | [] | false | false | false | false | false | let add_mod (#m: pos) (a b: nat_mod m) : nat_mod m =
| (a + b) % m | false |
Lib.NatMod.fsti | Lib.NatMod.pow | val pow (x: int) (n: nat) : Tot int | val pow (x: int) (n: nat) : Tot int | let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1) | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 24,
"end_line": 23,
"start_col": 0,
"start_line": 21
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
} | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: Prims.int -> n: Prims.nat -> Prims.int | Prims.Tot | [
"total"
] | [] | [
"Prims.int",
"Prims.nat",
"Prims.op_Equality",
"Prims.bool",
"FStar.Mul.op_Star",
"Lib.NatMod.pow",
"Prims.op_Subtraction"
] | [
"recursion"
] | false | false | false | true | false | let rec pow (x: int) (n: nat) : Tot int =
| if n = 0 then 1 else x * pow x (n - 1) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.compare_addrs | val compare_addrs
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot bool | val compare_addrs
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot bool | let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2 | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 38,
"end_line": 47,
"start_col": 0,
"start_line": 46
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r1: FStar.Monotonic.Heap.mref a rel1 -> r2: FStar.Monotonic.Heap.mref b rel2
-> Prims.GTot Prims.bool | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"Prims.op_Equality",
"Prims.pos",
"FStar.Monotonic.Heap.addr_of",
"Prims.bool"
] | [] | false | false | false | false | false | let compare_addrs
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot bool =
| addr_of r1 = addr_of r2 | false |
Vale.Math.Poly2.Bits.fsti | Vale.Math.Poly2.Bits.poly128_of_nat32s | val poly128_of_nat32s (a0 a1 a2 a3: nat32) : poly | val poly128_of_nat32s (a0 a1 a2 a3: nat32) : poly | let poly128_of_nat32s (a0 a1 a2 a3:nat32) : poly =
poly128_of_poly32s (of_nat32 a0) (of_nat32 a1) (of_nat32 a2) (of_nat32 a3) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Bits.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 59,
"start_col": 0,
"start_line": 58
} | module Vale.Math.Poly2.Bits
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.UInt
open FStar.Seq
open Vale.Arch.Types
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
val lemma_to_of_uint (n:pos) (u:uint_t n) : Lemma
(ensures to_uint n (of_uint n u) == u)
[SMTPat (to_uint n (of_uint n u))]
val of_nat (x:nat) : poly
// TODO: of_uint should accept n = 0
let of_uint_ (n:nat) (u:uint_t n) : poly =
if n = 0 then zero else of_uint n u
val lemma_of_nat_of_uint (n:nat) (x:nat) : Lemma
(requires x < pow2 n)
(ensures of_nat x == of_uint_ n x)
let rec poly_nat_eq_rec (len:nat) (p:poly) (c:nat) (n:nat) : bool =
if n = 0 then c = 0
else
(c % 2 = (if p.[len - n] then 1 else 0)) &&
poly_nat_eq_rec len p (c / 2) (n - 1)
// Useful for proving variable p equivalent to constant c via normalization
// (c and len should be constant integers)
val lemma_to_nat (len:nat) (p:poly) (c:nat) : Lemma
(requires degree p < len /\ normalize (poly_nat_eq_rec len p c len))
(ensures p == of_nat c)
val of_nat32 (n:nat32) : p:poly{degree p < 32 /\ p == of_nat n}
val of_nat32_zero : _:unit{of_nat32 0 == zero}
val of_nat32_ones : _:unit{of_nat32 0xffffffff == ones 32}
val of_nat32_eq (a b:nat32) : Lemma
(requires of_nat32 a == of_nat32 b)
(ensures a == b)
val of_nat32_xor (a b:nat32) : Lemma
(of_nat32 a +. of_nat32 b == of_nat32 (ixor a b))
val of_nat32_and (a b:nat32) : Lemma
(poly_and (of_nat32 a) (of_nat32 b) == of_nat32 (iand a b))
let poly128_of_poly32s (a0 a1 a2 a3:poly) : poly =
a0 +. shift a1 32 +. shift a2 64 +. shift a3 96 | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Bits.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Vale.Def.Types_s.nat32 ->
a1: Vale.Def.Types_s.nat32 ->
a2: Vale.Def.Types_s.nat32 ->
a3: Vale.Def.Types_s.nat32
-> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Def.Types_s.nat32",
"Vale.Math.Poly2.Bits.poly128_of_poly32s",
"Vale.Math.Poly2.Bits.of_nat32",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | true | false | let poly128_of_nat32s (a0 a1 a2 a3: nat32) : poly =
| poly128_of_poly32s (of_nat32 a0) (of_nat32 a1) (of_nat32 a2) (of_nat32 a3) | false |
Lib.NatMod.fsti | Lib.NatMod.inv_mod | val inv_mod (#m: pos{1 < m}) (a: nat_mod m) : nat_mod m | val inv_mod (#m: pos{1 < m}) (a: nat_mod m) : nat_mod m | let inv_mod (#m:pos{1 < m}) (a:nat_mod m) : nat_mod m = pow_mod #m a (m - 2) | {
"file_name": "lib/Lib.NatMod.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 76,
"end_line": 114,
"start_col": 0,
"start_line": 114
} | module Lib.NatMod
open FStar.Mul
module Fermat = FStar.Math.Fermat
module Euclid = FStar.Math.Euclid
module LE = Lib.Exponentiation.Definition
#set-options "--z3rlimit 10 --fuel 0 --ifuel 0"
let mk_nat_comm_monoid : LE.comm_monoid int = {
LE.one = 1;
LE.mul = FStar.Mul.op_Star;
LE.lemma_one = Math.Lemmas.mul_one_right_is_same;
LE.lemma_mul_assoc = Math.Lemmas.paren_mul_right;
LE.lemma_mul_comm = Math.Lemmas.swap_mul;
}
let rec pow (x:int) (n:nat) : Tot int =
if n = 0 then 1
else x * pow x (n - 1)
val lemma_pow0: a:int -> Lemma (pow a 0 = 1)
val lemma_pow1: a:int -> Lemma (pow a 1 = a)
val lemma_pow_unfold: a:int -> b:pos -> Lemma (a * pow a (b - 1) == pow a b)
val lemma_pow_gt_zero: a:pos -> b:nat -> Lemma (pow a b > 0) [SMTPat (pow a b)]
val lemma_pow_ge_zero: a:nat -> b:nat -> Lemma (pow a b >= 0) [SMTPat (pow a b)]
val lemma_pow_nat_is_pow: a:int -> b:nat ->
Lemma (pow a b == LE.pow mk_nat_comm_monoid a b)
val lemma_pow_zero: b:pos -> Lemma (pow 0 b = 0)
val lemma_pow_one: b:nat -> Lemma (pow 1 b = 1)
val lemma_pow_add: x:int -> n:nat -> m:nat -> Lemma (pow x n * pow x m = pow x (n + m))
val lemma_pow_mul: x:int -> n:nat -> m:nat -> Lemma (pow (pow x n) m = pow x (n * m))
val lemma_pow_double: a:int -> b:nat -> Lemma (pow (a * a) b == pow a (b + b))
val lemma_pow_mul_base: a:int -> b:int -> n:nat -> Lemma (pow a n * pow b n == pow (a * b) n)
val lemma_pow_mod_base: a:int -> b:nat -> n:pos -> Lemma (pow a b % n == pow (a % n) b % n)
let nat_mod (m:pos) = n:nat{n < m}
let one_mod (#m:pos) : nat_mod m = 1 % m
let mul_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = a * b % m
let add_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a + b) % m
let sub_mod (#m:pos) (a:nat_mod m) (b:nat_mod m) : nat_mod m = (a - b) % m
val lemma_mul_mod_one: #m:pos -> a:nat_mod m -> Lemma (mul_mod a one_mod == a)
val lemma_mul_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (mul_mod a b) c == mul_mod a (mul_mod b c))
val lemma_mul_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (mul_mod a b == mul_mod b a)
let mk_nat_mod_comm_monoid (m:pos) : LE.comm_monoid (nat_mod m) = {
LE.one = one_mod;
LE.mul = mul_mod;
LE.lemma_one = lemma_mul_mod_one;
LE.lemma_mul_assoc = lemma_mul_mod_assoc;
LE.lemma_mul_comm = lemma_mul_mod_comm;
}
inline_for_extraction
let rec pow_mod_ (#m:pos{1 < m}) (a:nat_mod m) (b:nat) : Tot (nat_mod m) (decreases b) =
if b = 0 then 1
else
if b % 2 = 0 then pow_mod_ (mul_mod a a) (b / 2)
else mul_mod a (pow_mod_ (mul_mod a a) (b / 2))
val pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> nat_mod m
val pow_mod_def: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow_mod a b == pow_mod_ a b)
val lemma_pow_mod: #m:pos{1 < m} -> a:nat_mod m -> b:nat -> Lemma (pow a b % m == pow_mod #m a b)
val lemma_pow_nat_mod_is_pow: #n:pos{1 < n} -> a:nat_mod n -> b:nat ->
Lemma (pow a b % n == LE.pow (mk_nat_mod_comm_monoid n) a b)
val lemma_add_mod_one: #m:pos -> a:nat_mod m -> Lemma (add_mod a 0 == a)
val lemma_add_mod_assoc: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (add_mod (add_mod a b) c == add_mod a (add_mod b c))
val lemma_add_mod_comm: #m:pos -> a:nat_mod m -> b:nat_mod m ->
Lemma (add_mod a b == add_mod b a)
val lemma_mod_distributivity_add_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (add_mod b c) == add_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_add_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (add_mod a b) c == add_mod (mul_mod a c) (mul_mod b c))
val lemma_mod_distributivity_sub_right: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod a (sub_mod b c) == sub_mod (mul_mod a b) (mul_mod a c))
val lemma_mod_distributivity_sub_left: #m:pos -> a:nat_mod m -> b:nat_mod m -> c:nat_mod m ->
Lemma (mul_mod (sub_mod a b) c == sub_mod (mul_mod a c) (mul_mod b c)) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"Lib.Exponentiation.Definition.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Math.Fermat.fsti.checked",
"FStar.Math.Euclid.fsti.checked"
],
"interface_file": false,
"source_file": "Lib.NatMod.fsti"
} | [
{
"abbrev": true,
"full_module": "Lib.Exponentiation.Definition",
"short_module": "LE"
},
{
"abbrev": true,
"full_module": "FStar.Math.Euclid",
"short_module": "Euclid"
},
{
"abbrev": true,
"full_module": "FStar.Math.Fermat",
"short_module": "Fermat"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 10,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | a: Lib.NatMod.nat_mod m -> Lib.NatMod.nat_mod m | Prims.Tot | [
"total"
] | [] | [
"Prims.pos",
"Prims.b2t",
"Prims.op_LessThan",
"Lib.NatMod.nat_mod",
"Lib.NatMod.pow_mod",
"Prims.op_Subtraction"
] | [] | false | false | false | false | false | let inv_mod (#m: pos{1 < m}) (a: nat_mod m) : nat_mod m =
| pow_mod #m a (m - 2) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.only | val only (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (set nat) | val only (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (set nat) | let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 94,
"end_line": 62,
"start_col": 0,
"start_line": 62
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Monotonic.Heap.mref a rel -> Prims.GTot (FStar.Monotonic.Heap.set Prims.nat) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"FStar.Set.singleton",
"Prims.nat",
"FStar.Monotonic.Heap.addr_of",
"FStar.Monotonic.Heap.set"
] | [] | false | false | false | false | false | let only (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (set nat) =
| S.singleton (addr_of x) | false |
Vale.Math.Poly2.Bits.fsti | Vale.Math.Poly2.Bits.poly128_of_poly32s | val poly128_of_poly32s (a0 a1 a2 a3: poly) : poly | val poly128_of_poly32s (a0 a1 a2 a3: poly) : poly | let poly128_of_poly32s (a0 a1 a2 a3:poly) : poly =
a0 +. shift a1 32 +. shift a2 64 +. shift a3 96 | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Bits.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 49,
"end_line": 56,
"start_col": 0,
"start_line": 55
} | module Vale.Math.Poly2.Bits
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.UInt
open FStar.Seq
open Vale.Arch.Types
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
val lemma_to_of_uint (n:pos) (u:uint_t n) : Lemma
(ensures to_uint n (of_uint n u) == u)
[SMTPat (to_uint n (of_uint n u))]
val of_nat (x:nat) : poly
// TODO: of_uint should accept n = 0
let of_uint_ (n:nat) (u:uint_t n) : poly =
if n = 0 then zero else of_uint n u
val lemma_of_nat_of_uint (n:nat) (x:nat) : Lemma
(requires x < pow2 n)
(ensures of_nat x == of_uint_ n x)
let rec poly_nat_eq_rec (len:nat) (p:poly) (c:nat) (n:nat) : bool =
if n = 0 then c = 0
else
(c % 2 = (if p.[len - n] then 1 else 0)) &&
poly_nat_eq_rec len p (c / 2) (n - 1)
// Useful for proving variable p equivalent to constant c via normalization
// (c and len should be constant integers)
val lemma_to_nat (len:nat) (p:poly) (c:nat) : Lemma
(requires degree p < len /\ normalize (poly_nat_eq_rec len p c len))
(ensures p == of_nat c)
val of_nat32 (n:nat32) : p:poly{degree p < 32 /\ p == of_nat n}
val of_nat32_zero : _:unit{of_nat32 0 == zero}
val of_nat32_ones : _:unit{of_nat32 0xffffffff == ones 32}
val of_nat32_eq (a b:nat32) : Lemma
(requires of_nat32 a == of_nat32 b)
(ensures a == b)
val of_nat32_xor (a b:nat32) : Lemma
(of_nat32 a +. of_nat32 b == of_nat32 (ixor a b))
val of_nat32_and (a b:nat32) : Lemma
(poly_and (of_nat32 a) (of_nat32 b) == of_nat32 (iand a b)) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Bits.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a0: Vale.Math.Poly2_s.poly ->
a1: Vale.Math.Poly2_s.poly ->
a2: Vale.Math.Poly2_s.poly ->
a3: Vale.Math.Poly2_s.poly
-> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Vale.Math.Poly2_s.poly",
"Vale.Math.Poly2.op_Plus_Dot",
"Vale.Math.Poly2_s.shift"
] | [] | false | false | false | true | false | let poly128_of_poly32s (a0 a1 a2 a3: poly) : poly =
| a0 +. shift a1 32 +. shift a2 64 +. shift a3 96 | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.op_Hat_Plus_Hat | val ( ^+^ )
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot (set nat) | val ( ^+^ )
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot (set nat) | let op_Hat_Plus_Hat (#a:Type0) (#b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot (set nat) = S.union (only r1) (only r2) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 47,
"end_line": 69,
"start_col": 0,
"start_line": 68
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x)
let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s
let op_Plus_Plus_Hat (#a:Type0) (#rel:preorder a) (s:set nat) (r:mref a rel) :GTot (set nat) = S.union s (only r) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r1: FStar.Monotonic.Heap.mref a rel1 -> r2: FStar.Monotonic.Heap.mref b rel2
-> Prims.GTot (FStar.Monotonic.Heap.set Prims.nat) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"FStar.Set.union",
"Prims.nat",
"FStar.Monotonic.Heap.only",
"FStar.Monotonic.Heap.set"
] | [] | false | false | false | false | false | let ( ^+^ )
(#a #b: Type0)
(#rel1: preorder a)
(#rel2: preorder b)
(r1: mref a rel1)
(r2: mref b rel2)
: GTot (set nat) =
| S.union (only r1) (only r2) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.only_t | val only_t (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (tset nat) | val only_t (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (tset nat) | let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 98,
"end_line": 60,
"start_col": 0,
"start_line": 60
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: FStar.Monotonic.Heap.mref a rel -> Prims.GTot (FStar.Monotonic.Heap.tset Prims.nat) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"FStar.TSet.singleton",
"Prims.nat",
"FStar.Monotonic.Heap.addr_of",
"FStar.Monotonic.Heap.tset"
] | [] | false | false | false | false | false | let only_t (#a: Type0) (#rel: preorder a) (x: mref a rel) : GTot (tset nat) =
| TS.singleton (addr_of x) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.modifies | val modifies : s: FStar.Monotonic.Heap.set Prims.nat ->
h0: FStar.Monotonic.Heap.heap ->
h1: FStar.Monotonic.Heap.heap
-> Prims.logical | let modifies (s:set nat) (h0:heap) (h1:heap) = modifies_t (TS.tset_of_set s) h0 h1 | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 82,
"end_line": 95,
"start_col": 0,
"start_line": 95
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x)
let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s
let op_Plus_Plus_Hat (#a:Type0) (#rel:preorder a) (s:set nat) (r:mref a rel) :GTot (set nat) = S.union s (only r)
let op_Hat_Plus_Hat (#a:Type0) (#b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot (set nat) = S.union (only r1) (only r2)
val sel_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> Tot a
val sel: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> GTot a
val upd_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> x:a -> Tot heap
val upd: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel -> x:a -> GTot heap
val alloc: #a:Type0 -> rel:preorder a -> heap -> a -> mm:bool -> Tot (mref a rel * heap)
val free_mm: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r /\ is_mm r} -> Tot heap
let modifies_t (s:tset nat) (h0:heap) (h1:heap) =
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (sel h1 r)}
((~ (TS.mem (addr_of r) s)) /\ h0 `contains` r) ==> sel h1 r == sel h0 r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (contains h1 r)}
h0 `contains` r ==> h1 `contains` r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (r `unused_in` h0)}
r `unused_in` h1 ==> r `unused_in` h0) /\
(forall (n: nat) . {:pattern (n `addr_unused_in` h0) }
n `addr_unused_in` h1 ==> n `addr_unused_in` h0
) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Monotonic.Heap.set Prims.nat ->
h0: FStar.Monotonic.Heap.heap ->
h1: FStar.Monotonic.Heap.heap
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Monotonic.Heap.set",
"Prims.nat",
"FStar.Monotonic.Heap.heap",
"FStar.Monotonic.Heap.modifies_t",
"FStar.TSet.tset_of_set",
"Prims.logical"
] | [] | false | false | false | true | true | let modifies (s: set nat) (h0 h1: heap) =
| modifies_t (TS.tset_of_set s) h0 h1 | false |
|
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.op_Plus_Plus_Hat | val ( ++^ ) (#a: Type0) (#rel: preorder a) (s: set nat) (r: mref a rel) : GTot (set nat) | val ( ++^ ) (#a: Type0) (#rel: preorder a) (s: set nat) (r: mref a rel) : GTot (set nat) | let op_Plus_Plus_Hat (#a:Type0) (#rel:preorder a) (s:set nat) (r:mref a rel) :GTot (set nat) = S.union s (only r) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 113,
"end_line": 66,
"start_col": 0,
"start_line": 66
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x)
let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: FStar.Monotonic.Heap.set Prims.nat -> r: FStar.Monotonic.Heap.mref a rel
-> Prims.GTot (FStar.Monotonic.Heap.set Prims.nat) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.set",
"Prims.nat",
"FStar.Monotonic.Heap.mref",
"FStar.Set.union",
"FStar.Monotonic.Heap.only"
] | [] | false | false | false | false | false | let ( ++^ ) (#a: Type0) (#rel: preorder a) (s: set nat) (r: mref a rel) : GTot (set nat) =
| S.union s (only r) | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.op_Hat_Plus_Plus | val ( ^++ ) (#a: Type0) (#rel: preorder a) (r: mref a rel) (s: set nat) : GTot (set nat) | val ( ^++ ) (#a: Type0) (#rel: preorder a) (r: mref a rel) (s: set nat) : GTot (set nat) | let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 113,
"end_line": 64,
"start_col": 0,
"start_line": 64
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | r: FStar.Monotonic.Heap.mref a rel -> s: FStar.Monotonic.Heap.set Prims.nat
-> Prims.GTot (FStar.Monotonic.Heap.set Prims.nat) | Prims.GTot | [
"sometrivial"
] | [] | [
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"FStar.Monotonic.Heap.set",
"Prims.nat",
"FStar.Set.union",
"FStar.Monotonic.Heap.only"
] | [] | false | false | false | false | false | let ( ^++ ) (#a: Type0) (#rel: preorder a) (r: mref a rel) (s: set nat) : GTot (set nat) =
| S.union (only r) s | false |
FStar.Monotonic.Heap.fsti | FStar.Monotonic.Heap.modifies_t | val modifies_t : s: FStar.Monotonic.Heap.tset Prims.nat ->
h0: FStar.Monotonic.Heap.heap ->
h1: FStar.Monotonic.Heap.heap
-> Prims.logical | let modifies_t (s:tset nat) (h0:heap) (h1:heap) =
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (sel h1 r)}
((~ (TS.mem (addr_of r) s)) /\ h0 `contains` r) ==> sel h1 r == sel h0 r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (contains h1 r)}
h0 `contains` r ==> h1 `contains` r) /\
(forall (a:Type) (rel:preorder a) (r:mref a rel).{:pattern (r `unused_in` h0)}
r `unused_in` h1 ==> r `unused_in` h0) /\
(forall (n: nat) . {:pattern (n `addr_unused_in` h0) }
n `addr_unused_in` h1 ==> n `addr_unused_in` h0
) | {
"file_name": "ulib/FStar.Monotonic.Heap.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 3,
"end_line": 92,
"start_col": 0,
"start_line": 83
} | (*
Copyright 2008-2018 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module FStar.Monotonic.Heap
module S = FStar.Set
module TS = FStar.TSet
open FStar.Preorder
let set = Set.set
let tset = TSet.set
val heap :Type u#1
val equal: heap -> heap -> Type0
val equal_extensional (h1:heap) (h2:heap)
:Lemma (requires True) (ensures (equal h1 h2 <==> h1 == h2))
[SMTPat (equal h1 h2)]
val emp :heap
val next_addr: heap -> GTot pos
val core_mref ([@@@ strictly_positive] a:Type0) : Type0
let mref (a:Type0) (rel:preorder a) : Type0 = core_mref a
val addr_of: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot pos
val is_mm: #a:Type0 -> #rel:preorder a -> mref a rel -> GTot bool
let compare_addrs (#a #b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot bool = addr_of r1 = addr_of r2
val contains: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> Type0
val addr_unused_in: nat -> heap -> Type0
val not_addr_unused_in_nullptr (h: heap) : Lemma (~ (addr_unused_in 0 h))
val unused_in: #a:Type0 -> #rel:preorder a -> mref a rel -> heap -> Type0
let fresh (#a:Type) (#rel:preorder a) (r:mref a rel) (h0:heap) (h1:heap) =
r `unused_in` h0 /\ h1 `contains` r
let only_t (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (tset nat) = TS.singleton (addr_of x)
let only (#a:Type0) (#rel:preorder a) (x:mref a rel) :GTot (set nat) = S.singleton (addr_of x)
let op_Hat_Plus_Plus (#a:Type0) (#rel:preorder a) (r:mref a rel) (s:set nat) :GTot (set nat) = S.union (only r) s
let op_Plus_Plus_Hat (#a:Type0) (#rel:preorder a) (s:set nat) (r:mref a rel) :GTot (set nat) = S.union s (only r)
let op_Hat_Plus_Hat (#a:Type0) (#b:Type0) (#rel1:preorder a) (#rel2:preorder b) (r1:mref a rel1) (r2:mref b rel2)
:GTot (set nat) = S.union (only r1) (only r2)
val sel_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> Tot a
val sel: #a:Type0 -> #rel:preorder a -> heap -> mref a rel -> GTot a
val upd_tot: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r} -> x:a -> Tot heap
val upd: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel -> x:a -> GTot heap
val alloc: #a:Type0 -> rel:preorder a -> heap -> a -> mm:bool -> Tot (mref a rel * heap)
val free_mm: #a:Type0 -> #rel:preorder a -> h:heap -> r:mref a rel{h `contains` r /\ is_mm r} -> Tot heap | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.TSet.fsti.checked",
"FStar.Set.fsti.checked",
"FStar.Preorder.fst.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Monotonic.Heap.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.FunctionalExtensionality",
"short_module": "F"
},
{
"abbrev": false,
"full_module": "FStar.Classical",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Preorder",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.TSet",
"short_module": "TS"
},
{
"abbrev": true,
"full_module": "FStar.Set",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Monotonic",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
s: FStar.Monotonic.Heap.tset Prims.nat ->
h0: FStar.Monotonic.Heap.heap ->
h1: FStar.Monotonic.Heap.heap
-> Prims.logical | Prims.Tot | [
"total"
] | [] | [
"FStar.Monotonic.Heap.tset",
"Prims.nat",
"FStar.Monotonic.Heap.heap",
"Prims.l_and",
"Prims.l_Forall",
"FStar.Preorder.preorder",
"FStar.Monotonic.Heap.mref",
"Prims.l_imp",
"Prims.l_not",
"FStar.TSet.mem",
"FStar.Monotonic.Heap.addr_of",
"FStar.Monotonic.Heap.contains",
"Prims.eq2",
"FStar.Monotonic.Heap.sel",
"FStar.Monotonic.Heap.unused_in",
"FStar.Monotonic.Heap.addr_unused_in",
"Prims.logical"
] | [] | false | false | false | true | true | let modifies_t (s: tset nat) (h0 h1: heap) =
| (forall (a: Type) (rel: preorder a) (r: mref a rel). {:pattern (sel h1 r)}
((~(TS.mem (addr_of r) s)) /\ h0 `contains` r) ==> sel h1 r == sel h0 r) /\
(forall (a: Type) (rel: preorder a) (r: mref a rel). {:pattern (contains h1 r)}
h0 `contains` r ==> h1 `contains` r) /\
(forall (a: Type) (rel: preorder a) (r: mref a rel). {:pattern (r `unused_in` h0)}
r `unused_in` h1 ==> r `unused_in` h0) /\
(forall (n: nat). {:pattern (n `addr_unused_in` h0)} n `addr_unused_in` h1 ==> n `addr_unused_in` h0
) | false |
|
Vale.Math.Poly2.Bits.fsti | Vale.Math.Poly2.Bits.of_uint_ | val of_uint_ (n: nat) (u: uint_t n) : poly | val of_uint_ (n: nat) (u: uint_t n) : poly | let of_uint_ (n:nat) (u:uint_t n) : poly =
if n = 0 then zero else of_uint n u | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Bits.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 37,
"end_line": 21,
"start_col": 0,
"start_line": 20
} | module Vale.Math.Poly2.Bits
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.UInt
open FStar.Seq
open Vale.Arch.Types
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
val lemma_to_of_uint (n:pos) (u:uint_t n) : Lemma
(ensures to_uint n (of_uint n u) == u)
[SMTPat (to_uint n (of_uint n u))]
val of_nat (x:nat) : poly | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Bits.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | n: Prims.nat -> u8: FStar.UInt.uint_t n -> Vale.Math.Poly2_s.poly | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"FStar.UInt.uint_t",
"Prims.op_Equality",
"Prims.int",
"Vale.Math.Poly2_s.zero",
"Prims.bool",
"Vale.Math.Poly2.Bits_s.of_uint",
"Vale.Math.Poly2_s.poly"
] | [] | false | false | false | false | false | let of_uint_ (n: nat) (u: uint_t n) : poly =
| if n = 0 then zero else of_uint n u | false |
Vale.Math.Poly2.Bits.fsti | Vale.Math.Poly2.Bits.poly_nat_eq_rec | val poly_nat_eq_rec (len: nat) (p: poly) (c n: nat) : bool | val poly_nat_eq_rec (len: nat) (p: poly) (c n: nat) : bool | let rec poly_nat_eq_rec (len:nat) (p:poly) (c:nat) (n:nat) : bool =
if n = 0 then c = 0
else
(c % 2 = (if p.[len - n] then 1 else 0)) &&
poly_nat_eq_rec len p (c / 2) (n - 1) | {
"file_name": "vale/code/lib/math/Vale.Math.Poly2.Bits.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 41,
"end_line": 31,
"start_col": 0,
"start_line": 27
} | module Vale.Math.Poly2.Bits
open FStar.Mul
open Vale.Def.Words_s
open Vale.Def.Types_s
open FStar.UInt
open FStar.Seq
open Vale.Arch.Types
open Vale.Math.Poly2_s
open Vale.Math.Poly2.Bits_s
open Vale.Math.Poly2
open Vale.Math.Poly2.Lemmas
val lemma_to_of_uint (n:pos) (u:uint_t n) : Lemma
(ensures to_uint n (of_uint n u) == u)
[SMTPat (to_uint n (of_uint n u))]
val of_nat (x:nat) : poly
// TODO: of_uint should accept n = 0
let of_uint_ (n:nat) (u:uint_t n) : poly =
if n = 0 then zero else of_uint n u
val lemma_of_nat_of_uint (n:nat) (x:nat) : Lemma
(requires x < pow2 n)
(ensures of_nat x == of_uint_ n x) | {
"checked_file": "/",
"dependencies": [
"Vale.Math.Poly2_s.fsti.checked",
"Vale.Math.Poly2.Lemmas.fsti.checked",
"Vale.Math.Poly2.Bits_s.fsti.checked",
"Vale.Math.Poly2.fsti.checked",
"Vale.Def.Words_s.fsti.checked",
"Vale.Def.Types_s.fst.checked",
"Vale.Arch.Types.fsti.checked",
"prims.fst.checked",
"FStar.UInt.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Vale.Math.Poly2.Bits.fsti"
} | [
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Lemmas",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2.Bits_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Arch.Types",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Seq",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.UInt",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Types_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Def.Words_s",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "Vale.Math.Poly2",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 0,
"max_fuel": 1,
"max_ifuel": 1,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": true,
"smtencoding_l_arith_repr": "native",
"smtencoding_nl_arith_repr": "wrapped",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [
"smt.arith.nl=false",
"smt.QI.EAGER_THRESHOLD=100",
"smt.CASE_SPLIT=3"
],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | len: Prims.nat -> p: Vale.Math.Poly2_s.poly -> c: Prims.nat -> n: Prims.nat -> Prims.bool | Prims.Tot | [
"total"
] | [] | [
"Prims.nat",
"Vale.Math.Poly2_s.poly",
"Prims.op_Equality",
"Prims.int",
"Prims.bool",
"Prims.op_AmpAmp",
"Prims.op_Modulus",
"Vale.Math.Poly2_s.op_String_Access",
"Prims.op_Subtraction",
"Vale.Math.Poly2.Bits.poly_nat_eq_rec",
"Prims.op_Division"
] | [
"recursion"
] | false | false | false | true | false | let rec poly_nat_eq_rec (len: nat) (p: poly) (c n: nat) : bool =
| if n = 0
then c = 0
else (c % 2 = (if p.[ len - n ] then 1 else 0)) && poly_nat_eq_rec len p (c / 2) (n - 1) | false |
Pulse.Main.fst | Pulse.Main.join_smt_goals | val join_smt_goals: Prims.unit -> Tac unit | val join_smt_goals: Prims.unit -> Tac unit | let join_smt_goals () : Tac unit =
let open FStar.Tactics.V2 in
let open FStar.List.Tot in
if RU.debug_at_level (top_env ()) "pulse.join" then
dump "PULSE: Goals before join";
(* Join *)
let smt_goals = smt_goals () in
set_goals (goals () @ smt_goals);
set_smt_goals [];
let n = List.Tot.length (goals ()) in
ignore (repeat join);
(* Heuristic rlimit setting :). Increase by 2 for every joined goal.
Default rlimit is 5, so this is "saving" 3 rlimit units per joined
goal. *)
if not (Nil? (goals ())) then (
let open FStar.Mul in
let rlimit = get_rlimit() + (n-1)*2 in
set_rlimit rlimit
);
if RU.debug_at_level (top_env ()) "pulse.join" then
dump "PULSE: Goals after join";
() | {
"file_name": "lib/steel/pulse/Pulse.Main.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 4,
"end_line": 168,
"start_col": 0,
"start_line": 142
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Main
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module RT = FStar.Reflection.Typing
open FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker
open Pulse.Elaborate
open Pulse.Soundness
module Cfg = Pulse.Config
module RU = Pulse.RuntimeUtils
module P = Pulse.Syntax.Printer
module Rec = Pulse.Recursion
let debug_main g (s: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) "pulse.main"
then T.print (s ())
else ()
let rec mk_abs (g:env) (qbs:list (option qualifier & binder & bv)) (body:st_term) (comp:comp)
: TacH st_term (fun _ -> not (Nil? qbs))
(fun _ r -> match r with FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term | _ -> False)
=
let with_range (s:st_term') (r:range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [(q, last, last_bv)] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv)::qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range
let check_fndecl
(d : decl{FnDecl? d.d})
(g : Soundness.Common.stt_env{bindings g == []})
(pre : term) (pre_typing : tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g))
=
(* Maybe add a recursive knot before starting *)
let FnDecl fn_d = d.d in
let nm_orig = fst (inspect_ident fn_d.id) in // keep the original name
let d =
if fn_d.isrec
then Recursion.add_knot g d.range d
else d
in
let FnDecl { id; isrec; bs; comp; meas; body } = d.d in
let nm_aux = fst (inspect_ident id) in
if Nil? bs then
fail g (Some d.range) "main: FnDecl does not have binders";
let body = mk_abs g bs body comp in
let rng = body.range in
debug_main g (fun _ -> Printf.sprintf "\nbody after mk_abs:\n%s\n" (P.st_term_to_string body));
let (| body, c, t_typing |) = Pulse.Checker.Abs.check_abs g body Pulse.Checker.check in
Pulse.Checker.Prover.debug_prover g
(fun _ -> Printf.sprintf "\ncheck call returned in main with:\n%s\nat type %s\n"
(P.st_term_to_string body)
(P.comp_to_string c));
debug_main g
(fun _ -> Printf.sprintf "\nchecker call returned in main with:\n%s\nderivation=%s\n"
(P.st_term_to_string body)
(Pulse.Typing.Printer.print_st_typing t_typing));
let refl_t = elab_comp c in
let refl_e = Pulse.RuntimeUtils.embed_st_term_for_extraction #st_term body (Some rng) in
let blob = "pulse", refl_e in
soundness_lemma g body c t_typing;
let main_decl =
let nm = fst (inspect_ident id) in
if T.ext_getv "pulse:elab_derivation" <> ""
then RT.mk_checked_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
else Pulse.Reflection.Util.mk_opaque_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
in
(* Set the blob *)
let main_decl =
let (chk, se, _) = main_decl in
let se =
if fn_d.isrec
then (
let nm = R.pack_ln (R.Tv_Const (R.C_String nm_orig)) in
let attribute = `("pulse.recursive", `#(nm)) in
let se = RU.add_attribute se (`(noextract_to "krml")) in
let se = RU.add_noextract_qual se in
let se : T.sigelt = RU.add_attribute se attribute in
se
)
else se
in
(chk, se, Some blob)
in
let recursive_decls =
if fn_d.isrec
then Rec.tie_knot g rng nm_orig nm_aux d refl_t blob
else []
in
main_decl :: recursive_decls
let main' (nm:string) (d:decl) (pre:term) (g:RT.fstar_top_env)
: T.Tac (RT.dsl_tac_result_t g)
= match Pulse.Soundness.Common.check_top_level_environment g with
| None -> T.fail "pulse main: top-level environment does not include stt at the expected types"
| Some g ->
if RU.debug_at_level (fstar_env g) "Pulse" then
T.print (Printf.sprintf "About to check pulse decl:\n%s\n" (P.decl_to_string d));
let (| pre, ty, pre_typing |) = Pulse.Checker.Pure.compute_tot_term_type g pre in
if not (eq_tm ty tm_vprop) then
fail g (Some pre.range) "pulse main: cannot typecheck pre at type vprop"; //fix range
let pre_typing : tot_typing g pre tm_vprop = pre_typing in
match d.d with
| FnDecl _ ->
check_fndecl d g pre pre_typing | {
"checked_file": "/",
"dependencies": [
"PulseSyntaxExtension.ASTBuilder.fsti.checked",
"Pulse.Typing.Printer.fst.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Builder.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Soundness.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Recursion.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Config.fsti.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Abs.fsti.checked",
"Pulse.Checker.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Issue.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Main.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Recursion",
"short_module": "Rec"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "Pulse.Config",
"short_module": "Cfg"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.Tactics.Effect.Tac Prims.unit | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.unit",
"FStar.Stubs.Tactics.V2.Builtins.dump",
"Prims.bool",
"Pulse.RuntimeUtils.debug_at_level",
"FStar.Stubs.Reflection.Types.env",
"FStar.Stubs.Tactics.V2.Builtins.top_env",
"FStar.Tactics.SMT.set_rlimit",
"Prims.int",
"Prims.op_Addition",
"FStar.Mul.op_Star",
"Prims.op_Subtraction",
"FStar.Tactics.SMT.get_rlimit",
"Prims.op_Negation",
"Prims.uu___is_Nil",
"FStar.Stubs.Tactics.Types.goal",
"Prims.list",
"FStar.Tactics.V2.Derived.goals",
"FStar.Pervasives.ignore",
"FStar.Tactics.V2.Derived.repeat",
"FStar.Stubs.Tactics.V2.Builtins.join",
"Prims.nat",
"FStar.List.Tot.Base.length",
"FStar.Stubs.Tactics.V2.Builtins.set_smt_goals",
"Prims.Nil",
"FStar.Stubs.Tactics.V2.Builtins.set_goals",
"FStar.List.Tot.Base.op_At",
"FStar.Tactics.V2.Derived.smt_goals"
] | [] | false | true | false | false | false | let join_smt_goals () : Tac unit =
| let open FStar.Tactics.V2 in
let open FStar.List.Tot in
if RU.debug_at_level (top_env ()) "pulse.join" then dump "PULSE: Goals before join";
let smt_goals = smt_goals () in
set_goals (goals () @ smt_goals);
set_smt_goals [];
let n = List.Tot.length (goals ()) in
ignore (repeat join);
if not (Nil? (goals ()))
then
(let open FStar.Mul in
let rlimit = get_rlimit () + (n - 1) * 2 in
set_rlimit rlimit);
if RU.debug_at_level (top_env ()) "pulse.join" then dump "PULSE: Goals after join";
() | false |
Spec.Hash.Incremental.fsti | Spec.Hash.Incremental.hash_is_hash_incremental | val hash_is_hash_incremental : a: Spec.Hash.Definitions.fixed_len_alg ->
input:
Lib.ByteSequence.bytes
{Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length input) a}
-> Prims.unit | let hash_is_hash_incremental (a: fixed_len_alg) (input: bytes { S.length input `less_than_max_input_length` a }) =
hash_is_hash_incremental' a input () | {
"file_name": "specs/lemmas/Spec.Hash.Incremental.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 38,
"end_line": 31,
"start_col": 0,
"start_line": 30
} | module Spec.Hash.Incremental
module S = FStar.Seq
module Blake2 = Spec.Blake2
open Spec.Agile.Hash
open Spec.Hash.Definitions
open FStar.Mul
open Lib.Sequence
open Lib.ByteSequence
open Lib.IntTypes
module Loops = Lib.LoopCombinators
module UpdateMulti = Lib.UpdateMulti
#set-options "--fuel 0 --ifuel 0 --z3rlimit 50"
/// A declaration whose sole purpose is to force synchronize the .fst and the .fsti
[@must_erase_for_extraction]
private val _sync_decl : Type0
include Spec.Hash.Incremental.Definitions
val hash_is_hash_incremental' (a: hash_alg) (input: bytes { S.length input `less_than_max_input_length` a })
(l: output_length a):
Lemma (S.equal (hash' a input l) (hash_incremental a input l)) | {
"checked_file": "/",
"dependencies": [
"Spec.Hash.Incremental.Definitions.fst.checked",
"Spec.Hash.Definitions.fst.checked",
"Spec.Blake2.fst.checked",
"Spec.Agile.Hash.fsti.checked",
"prims.fst.checked",
"Lib.UpdateMulti.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.LoopCombinators.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked"
],
"interface_file": false,
"source_file": "Spec.Hash.Incremental.fsti"
} | [
{
"abbrev": false,
"full_module": "Spec.Hash.Incremental.Definitions",
"short_module": null
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": true,
"full_module": "Lib.UpdateMulti",
"short_module": "UpdateMulti"
},
{
"abbrev": true,
"full_module": "Lib.LoopCombinators",
"short_module": "Loops"
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.ByteSequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash.Definitions",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Agile.Hash",
"short_module": null
},
{
"abbrev": true,
"full_module": "Spec.Blake2",
"short_module": "Blake2"
},
{
"abbrev": true,
"full_module": "FStar.Seq",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "Spec.Hash",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
a: Spec.Hash.Definitions.fixed_len_alg ->
input:
Lib.ByteSequence.bytes
{Spec.Hash.Definitions.less_than_max_input_length (FStar.Seq.Base.length input) a}
-> Prims.unit | Prims.Tot | [
"total"
] | [] | [
"Spec.Hash.Definitions.fixed_len_alg",
"Lib.ByteSequence.bytes",
"Prims.b2t",
"Spec.Hash.Definitions.less_than_max_input_length",
"FStar.Seq.Base.length",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Spec.Hash.Incremental.hash_is_hash_incremental'",
"Prims.unit"
] | [] | false | false | false | false | false | let hash_is_hash_incremental
(a: fixed_len_alg)
(input: bytes{(S.length input) `less_than_max_input_length` a})
=
| hash_is_hash_incremental' a input () | false |
|
Lib.Loops.fst | Lib.Loops.while | val while:
inv: (mem -> Type0)
-> guard: (h:mem{inv h} -> GTot bool)
-> test: (unit -> Stack bool
(requires inv)
(ensures fun h0 b h1 -> b == guard h0 /\ h0 == h1))
-> body: (unit -> Stack unit
(requires fun h -> inv h /\ guard h)
(ensures fun _ _ h -> inv h))
-> Stack unit
(requires inv)
(ensures fun _ _ h -> inv h /\ ~(guard h)) | val while:
inv: (mem -> Type0)
-> guard: (h:mem{inv h} -> GTot bool)
-> test: (unit -> Stack bool
(requires inv)
(ensures fun h0 b h1 -> b == guard h0 /\ h0 == h1))
-> body: (unit -> Stack unit
(requires fun h -> inv h /\ guard h)
(ensures fun _ _ h -> inv h))
-> Stack unit
(requires inv)
(ensures fun _ _ h -> inv h /\ ~(guard h)) | let while inv guard test body =
let test: unit -> Stack bool
(requires fun h -> inv h) //AR: C.Loops.while precondition is written in eta-expanded form
(ensures fun _ b h -> inv h /\ b == guard h)
= test
in
C.Loops.while #inv #(fun b h -> inv h /\ b == guard h) test body | {
"file_name": "lib/Lib.Loops.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 66,
"end_line": 18,
"start_col": 0,
"start_line": 12
} | module Lib.Loops
open Lib.IntTypes
let for start finish inv f =
C.Loops.for
start
finish
(fun h i -> v start <= i /\ i <= v finish /\ inv h i)
(fun i -> f i) | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"C.Loops.fst.checked"
],
"interface_file": true,
"source_file": "Lib.Loops.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
inv: (_: FStar.Monotonic.HyperStack.mem -> Type0) ->
guard: (h: FStar.Monotonic.HyperStack.mem{inv h} -> Prims.GTot Prims.bool) ->
test: (_: Prims.unit -> FStar.HyperStack.ST.Stack Prims.bool) ->
body: (_: Prims.unit -> FStar.HyperStack.ST.Stack Prims.unit)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"FStar.Monotonic.HyperStack.mem",
"Prims.bool",
"Prims.unit",
"Prims.l_and",
"Prims.eq2",
"Prims.b2t",
"C.Loops.while"
] | [] | false | true | false | false | false | let while inv guard test body =
| let test: unit -> Stack bool (requires fun h -> inv h) (ensures fun _ b h -> inv h /\ b == guard h)
=
test
in
C.Loops.while #inv #(fun b h -> inv h /\ b == guard h) test body | false |
Lib.Loops.fst | Lib.Loops.for | val for:
start:size_t
-> finish:size_t{v finish >= v start}
-> inv:(mem -> (i:nat{v start <= i /\ i <= v finish}) -> Type0)
-> f:(i:size_t{v start <= v i /\ v i < v finish} -> Stack unit
(requires fun h -> inv h (v i))
(ensures fun h_1 _ h_2 -> inv h_2 (v i + 1))) ->
Stack unit
(requires fun h -> inv h (v start))
(ensures fun _ _ h_2 -> inv h_2 (v finish)) | val for:
start:size_t
-> finish:size_t{v finish >= v start}
-> inv:(mem -> (i:nat{v start <= i /\ i <= v finish}) -> Type0)
-> f:(i:size_t{v start <= v i /\ v i < v finish} -> Stack unit
(requires fun h -> inv h (v i))
(ensures fun h_1 _ h_2 -> inv h_2 (v i + 1))) ->
Stack unit
(requires fun h -> inv h (v start))
(ensures fun _ _ h_2 -> inv h_2 (v finish)) | let for start finish inv f =
C.Loops.for
start
finish
(fun h i -> v start <= i /\ i <= v finish /\ inv h i)
(fun i -> f i) | {
"file_name": "lib/Lib.Loops.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 18,
"end_line": 10,
"start_col": 0,
"start_line": 5
} | module Lib.Loops
open Lib.IntTypes | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"C.Loops.fst.checked"
],
"interface_file": true,
"source_file": "Lib.Loops.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
start: Lib.IntTypes.size_t ->
finish: Lib.IntTypes.size_t{Lib.IntTypes.v finish >= Lib.IntTypes.v start} ->
inv:
(
_: FStar.Monotonic.HyperStack.mem ->
i: Prims.nat{Lib.IntTypes.v start <= i /\ i <= Lib.IntTypes.v finish}
-> Type0) ->
f:
(
i:
Lib.IntTypes.size_t
{ Lib.IntTypes.v start <= Lib.IntTypes.v i /\
Lib.IntTypes.v i < Lib.IntTypes.v finish }
-> FStar.HyperStack.ST.Stack Prims.unit)
-> FStar.HyperStack.ST.Stack Prims.unit | FStar.HyperStack.ST.Stack | [] | [] | [
"Lib.IntTypes.size_t",
"Prims.b2t",
"Prims.op_GreaterThanOrEqual",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"FStar.Monotonic.HyperStack.mem",
"Prims.nat",
"Prims.l_and",
"Prims.op_LessThanOrEqual",
"Prims.op_LessThan",
"Prims.unit",
"Prims.op_Addition",
"C.Loops.for",
"FStar.UInt32.t",
"FStar.UInt32.v"
] | [] | false | true | false | false | false | let for start finish inv f =
| C.Loops.for start finish (fun h i -> v start <= i /\ i <= v finish /\ inv h i) (fun i -> f i) | false |
Hacl.Impl.Curve25519.Generic.fsti | Hacl.Impl.Curve25519.Generic.secret_to_public_st | val secret_to_public_st : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | let secret_to_public_st (s: field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack unit
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 _ h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.secret_to_public (as_seq h0 i)) | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Generic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 54,
"end_line": 34,
"start_col": 0,
"start_line": 26
} | module Hacl.Impl.Curve25519.Generic
open FStar.HyperStack
open FStar.HyperStack.All
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module S = Spec.Curve25519
inline_for_extraction noextract
let scalarmult_st (s:field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> k:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack unit
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 _ h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i)) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Generic.fsti"
} | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Spec.Curve25519.secret_to_public"
] | [] | false | false | false | true | true | let secret_to_public_st (s: field_spec) (p: Type0) =
| o: lbuffer uint8 32ul -> i: lbuffer uint8 32ul
-> Stack unit
(requires fun h0 -> p /\ live h0 o /\ live h0 i /\ disjoint o i)
(ensures
fun h0 _ h1 -> modifies (loc o) h0 h1 /\ as_seq h1 o == S.secret_to_public (as_seq h0 i)) | false |
|
Hacl.Impl.Curve25519.Generic.fsti | Hacl.Impl.Curve25519.Generic.scalarmult_st | val scalarmult_st : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | let scalarmult_st (s:field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> k:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack unit
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 _ h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i)) | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Generic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 62,
"end_line": 23,
"start_col": 0,
"start_line": 13
} | module Hacl.Impl.Curve25519.Generic
open FStar.HyperStack
open FStar.HyperStack.All
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module S = Spec.Curve25519 | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Generic.fsti"
} | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Prims.unit",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Spec.Curve25519.scalarmult"
] | [] | false | false | false | true | true | let scalarmult_st (s: field_spec) (p: Type0) =
| o: lbuffer uint8 32ul -> k: lbuffer uint8 32ul -> i: lbuffer uint8 32ul
-> Stack unit
(requires fun h0 -> p /\ live h0 o /\ live h0 k /\ live h0 i /\ disjoint o i /\ disjoint o k)
(ensures
fun h0 _ h1 ->
modifies (loc o) h0 h1 /\ as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i)) | false |
|
Pulse.Main.fst | Pulse.Main.check_pulse | val check_pulse (namespaces:list string)
(module_abbrevs:list (string & string))
(content:string)
(file_name:string)
(line col:int)
(nm:string)
: RT.dsl_tac_t | val check_pulse (namespaces:list string)
(module_abbrevs:list (string & string))
(content:string)
(file_name:string)
(line col:int)
(nm:string)
: RT.dsl_tac_t | let check_pulse (namespaces:list string)
(module_abbrevs:list (string & string))
(content:string)
(file_name:string)
(line col:int)
(nm:string)
: RT.dsl_tac_t
= fun env ->
match PulseSyntaxExtension.ASTBuilder.parse_pulse env namespaces module_abbrevs content file_name line col with
| Inl decl ->
main nm decl tm_emp env
| Inr None ->
T.fail "Pulse parser failed"
| Inr (Some (msg, range)) ->
let i =
Issue.mk_issue "Error"
(Printf.sprintf "%s: %s" (T.range_to_string range) msg)
(Some range)
None
[]
in
T.log_issues [i];
T.fail "Pulse parser failed" | {
"file_name": "lib/steel/pulse/Pulse.Main.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 36,
"end_line": 214,
"start_col": 0,
"start_line": 190
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Main
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module RT = FStar.Reflection.Typing
open FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker
open Pulse.Elaborate
open Pulse.Soundness
module Cfg = Pulse.Config
module RU = Pulse.RuntimeUtils
module P = Pulse.Syntax.Printer
module Rec = Pulse.Recursion
let debug_main g (s: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) "pulse.main"
then T.print (s ())
else ()
let rec mk_abs (g:env) (qbs:list (option qualifier & binder & bv)) (body:st_term) (comp:comp)
: TacH st_term (fun _ -> not (Nil? qbs))
(fun _ r -> match r with FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term | _ -> False)
=
let with_range (s:st_term') (r:range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [(q, last, last_bv)] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv)::qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range
let check_fndecl
(d : decl{FnDecl? d.d})
(g : Soundness.Common.stt_env{bindings g == []})
(pre : term) (pre_typing : tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g))
=
(* Maybe add a recursive knot before starting *)
let FnDecl fn_d = d.d in
let nm_orig = fst (inspect_ident fn_d.id) in // keep the original name
let d =
if fn_d.isrec
then Recursion.add_knot g d.range d
else d
in
let FnDecl { id; isrec; bs; comp; meas; body } = d.d in
let nm_aux = fst (inspect_ident id) in
if Nil? bs then
fail g (Some d.range) "main: FnDecl does not have binders";
let body = mk_abs g bs body comp in
let rng = body.range in
debug_main g (fun _ -> Printf.sprintf "\nbody after mk_abs:\n%s\n" (P.st_term_to_string body));
let (| body, c, t_typing |) = Pulse.Checker.Abs.check_abs g body Pulse.Checker.check in
Pulse.Checker.Prover.debug_prover g
(fun _ -> Printf.sprintf "\ncheck call returned in main with:\n%s\nat type %s\n"
(P.st_term_to_string body)
(P.comp_to_string c));
debug_main g
(fun _ -> Printf.sprintf "\nchecker call returned in main with:\n%s\nderivation=%s\n"
(P.st_term_to_string body)
(Pulse.Typing.Printer.print_st_typing t_typing));
let refl_t = elab_comp c in
let refl_e = Pulse.RuntimeUtils.embed_st_term_for_extraction #st_term body (Some rng) in
let blob = "pulse", refl_e in
soundness_lemma g body c t_typing;
let main_decl =
let nm = fst (inspect_ident id) in
if T.ext_getv "pulse:elab_derivation" <> ""
then RT.mk_checked_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
else Pulse.Reflection.Util.mk_opaque_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
in
(* Set the blob *)
let main_decl =
let (chk, se, _) = main_decl in
let se =
if fn_d.isrec
then (
let nm = R.pack_ln (R.Tv_Const (R.C_String nm_orig)) in
let attribute = `("pulse.recursive", `#(nm)) in
let se = RU.add_attribute se (`(noextract_to "krml")) in
let se = RU.add_noextract_qual se in
let se : T.sigelt = RU.add_attribute se attribute in
se
)
else se
in
(chk, se, Some blob)
in
let recursive_decls =
if fn_d.isrec
then Rec.tie_knot g rng nm_orig nm_aux d refl_t blob
else []
in
main_decl :: recursive_decls
let main' (nm:string) (d:decl) (pre:term) (g:RT.fstar_top_env)
: T.Tac (RT.dsl_tac_result_t g)
= match Pulse.Soundness.Common.check_top_level_environment g with
| None -> T.fail "pulse main: top-level environment does not include stt at the expected types"
| Some g ->
if RU.debug_at_level (fstar_env g) "Pulse" then
T.print (Printf.sprintf "About to check pulse decl:\n%s\n" (P.decl_to_string d));
let (| pre, ty, pre_typing |) = Pulse.Checker.Pure.compute_tot_term_type g pre in
if not (eq_tm ty tm_vprop) then
fail g (Some pre.range) "pulse main: cannot typecheck pre at type vprop"; //fix range
let pre_typing : tot_typing g pre tm_vprop = pre_typing in
match d.d with
| FnDecl _ ->
check_fndecl d g pre pre_typing
let join_smt_goals () : Tac unit =
let open FStar.Tactics.V2 in
let open FStar.List.Tot in
if RU.debug_at_level (top_env ()) "pulse.join" then
dump "PULSE: Goals before join";
(* Join *)
let smt_goals = smt_goals () in
set_goals (goals () @ smt_goals);
set_smt_goals [];
let n = List.Tot.length (goals ()) in
ignore (repeat join);
(* Heuristic rlimit setting :). Increase by 2 for every joined goal.
Default rlimit is 5, so this is "saving" 3 rlimit units per joined
goal. *)
if not (Nil? (goals ())) then (
let open FStar.Mul in
let rlimit = get_rlimit() + (n-1)*2 in
set_rlimit rlimit
);
if RU.debug_at_level (top_env ()) "pulse.join" then
dump "PULSE: Goals after join";
()
let main nm t pre : RT.dsl_tac_t = fun g ->
(* We use the SMT policy by default, to collect goals in the
proofstate and discharge them all at the end, potentially joining
them (see below). But it can be overriden to SMTSync by `--ext
pulse:guard_policy=SMTSync`. *)
if ext_getv "pulse:guard_policy" = "SMTSync" then
set_guard_policy SMTSync
else
set_guard_policy SMT;
let res = main' nm t pre g in
if ext_getv "pulse:join" = "1"
(* || ext_getv "pulse:join" <> "" *)
// ^ Uncomment to make it true by default.
then
join_smt_goals();
res | {
"checked_file": "/",
"dependencies": [
"PulseSyntaxExtension.ASTBuilder.fsti.checked",
"Pulse.Typing.Printer.fst.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Builder.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Soundness.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Recursion.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Config.fsti.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Abs.fsti.checked",
"Pulse.Checker.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Issue.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Main.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Recursion",
"short_module": "Rec"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "Pulse.Config",
"short_module": "Cfg"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
namespaces: Prims.list Prims.string ->
module_abbrevs: Prims.list (Prims.string * Prims.string) ->
content: Prims.string ->
file_name: Prims.string ->
line: Prims.int ->
col: Prims.int ->
nm: Prims.string
-> FStar.Reflection.Typing.dsl_tac_t | Prims.Tot | [
"total"
] | [] | [
"Prims.list",
"Prims.string",
"FStar.Pervasives.Native.tuple2",
"Prims.int",
"FStar.Reflection.Typing.fstar_top_env",
"Pulse.Syntax.Base.decl",
"Pulse.Main.main",
"Pulse.Syntax.Base.tm_emp",
"FStar.Reflection.Typing.dsl_tac_result_t",
"FStar.Tactics.V2.Derived.fail",
"FStar.Range.range",
"Prims.unit",
"FStar.Stubs.Tactics.V2.Builtins.log_issues",
"Prims.Cons",
"FStar.Issue.issue",
"Prims.Nil",
"FStar.Issue.mk_issue",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.None",
"FStar.Printf.sprintf",
"FStar.Stubs.Tactics.V2.Builtins.range_to_string",
"FStar.Pervasives.either",
"FStar.Pervasives.Native.option",
"PulseSyntaxExtension.ASTBuilder.parse_pulse",
"FStar.Reflection.Typing.dsl_tac_t"
] | [] | false | false | false | true | false | let check_pulse
(namespaces: list string)
(module_abbrevs: list (string & string))
(content file_name: string)
(line col: int)
(nm: string)
: RT.dsl_tac_t =
| fun env ->
match
PulseSyntaxExtension.ASTBuilder.parse_pulse env
namespaces
module_abbrevs
content
file_name
line
col
with
| Inl decl -> main nm decl tm_emp env
| Inr None -> T.fail "Pulse parser failed"
| Inr (Some (msg, range)) ->
let i =
Issue.mk_issue "Error"
(Printf.sprintf "%s: %s" (T.range_to_string range) msg)
(Some range)
None
[]
in
T.log_issues [i];
T.fail "Pulse parser failed" | false |
Pulse.Main.fst | Pulse.Main.mk_abs | val mk_abs (g: env) (qbs: list (option qualifier & binder & bv)) (body: st_term) (comp: comp)
: TacH st_term
(fun _ -> not (Nil? qbs))
(fun _ r ->
match r with
| FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term
| _ -> False) | val mk_abs (g: env) (qbs: list (option qualifier & binder & bv)) (body: st_term) (comp: comp)
: TacH st_term
(fun _ -> not (Nil? qbs))
(fun _ r ->
match r with
| FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term
| _ -> False) | let rec mk_abs (g:env) (qbs:list (option qualifier & binder & bv)) (body:st_term) (comp:comp)
: TacH st_term (fun _ -> not (Nil? qbs))
(fun _ r -> match r with FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term | _ -> False)
=
let with_range (s:st_term') (r:range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [(q, last, last_bv)] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv)::qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range | {
"file_name": "lib/steel/pulse/Pulse.Main.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 81,
"end_line": 55,
"start_col": 0,
"start_line": 39
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Main
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module RT = FStar.Reflection.Typing
open FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker
open Pulse.Elaborate
open Pulse.Soundness
module Cfg = Pulse.Config
module RU = Pulse.RuntimeUtils
module P = Pulse.Syntax.Printer
module Rec = Pulse.Recursion
let debug_main g (s: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) "pulse.main"
then T.print (s ())
else () | {
"checked_file": "/",
"dependencies": [
"PulseSyntaxExtension.ASTBuilder.fsti.checked",
"Pulse.Typing.Printer.fst.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Builder.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Soundness.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Recursion.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Config.fsti.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Abs.fsti.checked",
"Pulse.Checker.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Issue.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Main.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Recursion",
"short_module": "Rec"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "Pulse.Config",
"short_module": "Cfg"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
g: Pulse.Typing.Env.env ->
qbs:
Prims.list ((FStar.Pervasives.Native.option Pulse.Syntax.Base.qualifier *
Pulse.Syntax.Base.binder) *
Pulse.Syntax.Base.bv) ->
body: Pulse.Syntax.Base.st_term ->
comp: Pulse.Syntax.Base.comp
-> FStar.Tactics.Effect.TacH Pulse.Syntax.Base.st_term | FStar.Tactics.Effect.TacH | [] | [] | [
"Pulse.Typing.Env.env",
"Prims.list",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.qualifier",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.bv",
"Pulse.Syntax.Base.st_term",
"Pulse.Syntax.Base.comp",
"Pulse.Syntax.Builder.tm_abs",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Pulse.Syntax.Base.comp_ascription",
"Pulse.Syntax.Base.Mkcomp_ascription",
"FStar.Pervasives.Native.Some",
"FStar.Pervasives.Native.None",
"Pulse.Syntax.Naming.close_comp",
"Pulse.Syntax.Base.__proj__Mkbv__item__bv_index",
"Pulse.Syntax.Naming.close_st_term",
"Pulse.Syntax.Base.empty_ascription",
"Pulse.Main.mk_abs",
"Pulse.Syntax.Base.st_term'",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.Mkst_term",
"Pulse.Syntax.Base.default_effect_hint",
"FStar.Stubs.Tactics.Types.proofstate",
"Prims.b2t",
"Prims.op_Negation",
"Prims.uu___is_Nil",
"FStar.Stubs.Tactics.Result.__result",
"Pulse.Syntax.Base.uu___is_Tm_Abs",
"Pulse.Syntax.Base.__proj__Mkst_term__item__term",
"Prims.l_False"
] | [
"recursion"
] | false | true | false | false | false | let rec mk_abs (g: env) (qbs: list (option qualifier & binder & bv)) (body: st_term) (comp: comp)
: TacH st_term
(fun _ -> not (Nil? qbs))
(fun _ r ->
match r with
| FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term
| _ -> False) =
| let with_range (s: st_term') (r: range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [q, last, last_bv] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv) :: qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range | false |
Pulse.Main.fst | Pulse.Main.main' | val main' (nm: string) (d: decl) (pre: term) (g: RT.fstar_top_env) : T.Tac (RT.dsl_tac_result_t g) | val main' (nm: string) (d: decl) (pre: term) (g: RT.fstar_top_env) : T.Tac (RT.dsl_tac_result_t g) | let main' (nm:string) (d:decl) (pre:term) (g:RT.fstar_top_env)
: T.Tac (RT.dsl_tac_result_t g)
= match Pulse.Soundness.Common.check_top_level_environment g with
| None -> T.fail "pulse main: top-level environment does not include stt at the expected types"
| Some g ->
if RU.debug_at_level (fstar_env g) "Pulse" then
T.print (Printf.sprintf "About to check pulse decl:\n%s\n" (P.decl_to_string d));
let (| pre, ty, pre_typing |) = Pulse.Checker.Pure.compute_tot_term_type g pre in
if not (eq_tm ty tm_vprop) then
fail g (Some pre.range) "pulse main: cannot typecheck pre at type vprop"; //fix range
let pre_typing : tot_typing g pre tm_vprop = pre_typing in
match d.d with
| FnDecl _ ->
check_fndecl d g pre pre_typing | {
"file_name": "lib/steel/pulse/Pulse.Main.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 39,
"end_line": 140,
"start_col": 0,
"start_line": 127
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Main
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module RT = FStar.Reflection.Typing
open FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker
open Pulse.Elaborate
open Pulse.Soundness
module Cfg = Pulse.Config
module RU = Pulse.RuntimeUtils
module P = Pulse.Syntax.Printer
module Rec = Pulse.Recursion
let debug_main g (s: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) "pulse.main"
then T.print (s ())
else ()
let rec mk_abs (g:env) (qbs:list (option qualifier & binder & bv)) (body:st_term) (comp:comp)
: TacH st_term (fun _ -> not (Nil? qbs))
(fun _ r -> match r with FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term | _ -> False)
=
let with_range (s:st_term') (r:range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [(q, last, last_bv)] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv)::qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range
let check_fndecl
(d : decl{FnDecl? d.d})
(g : Soundness.Common.stt_env{bindings g == []})
(pre : term) (pre_typing : tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g))
=
(* Maybe add a recursive knot before starting *)
let FnDecl fn_d = d.d in
let nm_orig = fst (inspect_ident fn_d.id) in // keep the original name
let d =
if fn_d.isrec
then Recursion.add_knot g d.range d
else d
in
let FnDecl { id; isrec; bs; comp; meas; body } = d.d in
let nm_aux = fst (inspect_ident id) in
if Nil? bs then
fail g (Some d.range) "main: FnDecl does not have binders";
let body = mk_abs g bs body comp in
let rng = body.range in
debug_main g (fun _ -> Printf.sprintf "\nbody after mk_abs:\n%s\n" (P.st_term_to_string body));
let (| body, c, t_typing |) = Pulse.Checker.Abs.check_abs g body Pulse.Checker.check in
Pulse.Checker.Prover.debug_prover g
(fun _ -> Printf.sprintf "\ncheck call returned in main with:\n%s\nat type %s\n"
(P.st_term_to_string body)
(P.comp_to_string c));
debug_main g
(fun _ -> Printf.sprintf "\nchecker call returned in main with:\n%s\nderivation=%s\n"
(P.st_term_to_string body)
(Pulse.Typing.Printer.print_st_typing t_typing));
let refl_t = elab_comp c in
let refl_e = Pulse.RuntimeUtils.embed_st_term_for_extraction #st_term body (Some rng) in
let blob = "pulse", refl_e in
soundness_lemma g body c t_typing;
let main_decl =
let nm = fst (inspect_ident id) in
if T.ext_getv "pulse:elab_derivation" <> ""
then RT.mk_checked_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
else Pulse.Reflection.Util.mk_opaque_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
in
(* Set the blob *)
let main_decl =
let (chk, se, _) = main_decl in
let se =
if fn_d.isrec
then (
let nm = R.pack_ln (R.Tv_Const (R.C_String nm_orig)) in
let attribute = `("pulse.recursive", `#(nm)) in
let se = RU.add_attribute se (`(noextract_to "krml")) in
let se = RU.add_noextract_qual se in
let se : T.sigelt = RU.add_attribute se attribute in
se
)
else se
in
(chk, se, Some blob)
in
let recursive_decls =
if fn_d.isrec
then Rec.tie_knot g rng nm_orig nm_aux d refl_t blob
else []
in
main_decl :: recursive_decls | {
"checked_file": "/",
"dependencies": [
"PulseSyntaxExtension.ASTBuilder.fsti.checked",
"Pulse.Typing.Printer.fst.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Builder.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Soundness.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Recursion.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Config.fsti.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Abs.fsti.checked",
"Pulse.Checker.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Issue.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Main.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Recursion",
"short_module": "Rec"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "Pulse.Config",
"short_module": "Cfg"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
nm: Prims.string ->
d: Pulse.Syntax.Base.decl ->
pre: Pulse.Syntax.Base.term ->
g: FStar.Reflection.Typing.fstar_top_env
-> FStar.Tactics.Effect.Tac (FStar.Reflection.Typing.dsl_tac_result_t g) | FStar.Tactics.Effect.Tac | [] | [] | [
"Prims.string",
"Pulse.Syntax.Base.decl",
"Pulse.Syntax.Base.term",
"FStar.Reflection.Typing.fstar_top_env",
"Pulse.Soundness.Common.check_top_level_environment",
"FStar.Tactics.V2.Derived.fail",
"FStar.Reflection.Typing.dsl_tac_result_t",
"Pulse.Soundness.Common.stt_env",
"Pulse.Syntax.Base.typ",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.__proj__Mkdecl__item__d",
"Pulse.Syntax.Base.decl'__FnDecl__payload",
"Pulse.Main.check_fndecl",
"Pulse.Typing.Env.fstar_env",
"Pulse.Syntax.Base.tm_vprop",
"Prims.unit",
"Prims.op_Negation",
"Pulse.Syntax.Base.eq_tm",
"Pulse.Typing.Env.fail",
"FStar.Pervasives.Native.Some",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.__proj__Mkterm__item__range",
"Prims.bool",
"FStar.Pervasives.dtuple3",
"Pulse.Checker.Pure.compute_tot_term_type",
"Pulse.RuntimeUtils.debug_at_level",
"FStar.Stubs.Tactics.V2.Builtins.print",
"FStar.Printf.sprintf",
"Pulse.Syntax.Printer.decl_to_string"
] | [] | false | true | false | false | false | let main' (nm: string) (d: decl) (pre: term) (g: RT.fstar_top_env) : T.Tac (RT.dsl_tac_result_t g) =
| match Pulse.Soundness.Common.check_top_level_environment g with
| None -> T.fail "pulse main: top-level environment does not include stt at the expected types"
| Some g ->
if RU.debug_at_level (fstar_env g) "Pulse"
then T.print (Printf.sprintf "About to check pulse decl:\n%s\n" (P.decl_to_string d));
let (| pre , ty , pre_typing |) = Pulse.Checker.Pure.compute_tot_term_type g pre in
if not (eq_tm ty tm_vprop)
then fail g (Some pre.range) "pulse main: cannot typecheck pre at type vprop";
let pre_typing:tot_typing g pre tm_vprop = pre_typing in
match d.d with | FnDecl _ -> check_fndecl d g pre pre_typing | false |
Lib.Loops.fst | Lib.Loops.square_while | val square_while: unit -> Stack UInt32.t (fun _ -> true) (fun h0 x h1 -> x == 9ul) | val square_while: unit -> Stack UInt32.t (fun _ -> true) (fun h0 x h1 -> x == 9ul) | let square_while () =
let open LowStar.Buffer in
let open LowStar.BufferOps in
let open FStar.UInt32 in
push_frame();
let l = [ 1ul; 2ul; 3ul ] in
let b = alloca_of_list l in
let r = alloca 0ul 1ul in
let h = HyperStack.ST.get() in
assert (forall i. Seq.index (Seq.seq_of_list l) i == List.Tot.index l i);
let h0 = HyperStack.ST.get () in
let inv h = live h b /\ live h r /\
get h r 0 <=^ 3ul /\
(forall (i:nat{i < 3}). i < v (get h r 0) ==> get h b i == get h0 b i *^ get h0 b i) /\
(forall (i:nat{i < 3}). v (get h r 0) <= i ==> get h b i == get h0 b i)
in
let guard h = get h r 0 <^ 3ul in
while inv guard (fun () -> !*r <^ 3ul) (fun () ->
b.(!*r) <- b.(!*r) *^ b.(!*r);
r.(0ul) <- !*r +^ 1ul
);
let x = b.(2ul) in
pop_frame();
x | {
"file_name": "lib/Lib.Loops.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 3,
"end_line": 48,
"start_col": 0,
"start_line": 25
} | module Lib.Loops
open Lib.IntTypes
let for start finish inv f =
C.Loops.for
start
finish
(fun h i -> v start <= i /\ i <= v finish /\ inv h i)
(fun i -> f i)
let while inv guard test body =
let test: unit -> Stack bool
(requires fun h -> inv h) //AR: C.Loops.while precondition is written in eta-expanded form
(ensures fun _ b h -> inv h /\ b == guard h)
= test
in
C.Loops.while #inv #(fun b h -> inv h /\ b == guard h) test body
/// Test
#set-options "--max_fuel 3 --max_ifuel 0 --z3rlimit 50" | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"LowStar.BufferOps.fst.checked",
"LowStar.Buffer.fst.checked",
"Lib.IntTypes.fsti.checked",
"FStar.UInt32.fsti.checked",
"FStar.Seq.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.HyperStack.ST.fsti.checked",
"C.Loops.fst.checked"
],
"interface_file": true,
"source_file": "Lib.Loops.fst"
} | [
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.ST",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 3,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | _: Prims.unit -> FStar.HyperStack.ST.Stack FStar.UInt32.t | FStar.HyperStack.ST.Stack | [] | [] | [
"Prims.unit",
"FStar.UInt32.t",
"FStar.HyperStack.ST.pop_frame",
"LowStar.BufferOps.op_Array_Access",
"LowStar.Buffer.trivial_preorder",
"FStar.UInt32.__uint_to_t",
"Lib.Loops.while",
"FStar.UInt32.op_Less_Hat",
"Prims.bool",
"LowStar.BufferOps.op_Bang_Star",
"LowStar.BufferOps.op_Array_Assignment",
"FStar.UInt32.op_Plus_Hat",
"FStar.UInt32.op_Star_Hat",
"FStar.Monotonic.HyperStack.mem",
"LowStar.Monotonic.Buffer.get",
"Prims.logical",
"Prims.l_and",
"LowStar.Monotonic.Buffer.live",
"Prims.b2t",
"FStar.UInt32.op_Less_Equals_Hat",
"Prims.l_Forall",
"Prims.nat",
"Prims.op_LessThan",
"Prims.l_imp",
"FStar.UInt32.v",
"Prims.eq2",
"Prims.op_LessThanOrEqual",
"FStar.HyperStack.ST.get",
"Prims._assert",
"FStar.Seq.Base.length",
"FStar.Seq.Base.seq_of_list",
"FStar.List.Tot.Base.length",
"FStar.Seq.Base.index",
"FStar.List.Tot.Base.index",
"LowStar.Monotonic.Buffer.mbuffer",
"LowStar.Monotonic.Buffer.length",
"FStar.UInt32.uint_to_t",
"Prims.op_Negation",
"LowStar.Monotonic.Buffer.g_is_null",
"LowStar.Buffer.alloca",
"FStar.Pervasives.normalize_term",
"LowStar.Buffer.alloca_of_list",
"Prims.list",
"Prims.Cons",
"Prims.Nil",
"FStar.HyperStack.ST.push_frame"
] | [] | false | true | false | false | false | let square_while () =
| let open LowStar.Buffer in
let open LowStar.BufferOps in
let open FStar.UInt32 in
push_frame ();
let l = [1ul; 2ul; 3ul] in
let b = alloca_of_list l in
let r = alloca 0ul 1ul in
let h = HyperStack.ST.get () in
assert (forall i. Seq.index (Seq.seq_of_list l) i == List.Tot.index l i);
let h0 = HyperStack.ST.get () in
let inv h =
live h b /\ live h r /\ get h r 0 <=^ 3ul /\
(forall (i: nat{i < 3}). i < v (get h r 0) ==> get h b i == get h0 b i *^ get h0 b i) /\
(forall (i: nat{i < 3}). v (get h r 0) <= i ==> get h b i == get h0 b i)
in
let guard h = get h r 0 <^ 3ul in
while inv
guard
(fun () -> !*r <^ 3ul)
(fun () ->
b.(!*r) <- b.(!*r) *^ b.(!*r);
r.(0ul) <- !*r +^ 1ul);
let x = b.(2ul) in
pop_frame ();
x | false |
Hacl.Impl.Curve25519.Generic.fsti | Hacl.Impl.Curve25519.Generic.ecdh_st | val ecdh_st : s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | let ecdh_st (s:field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> k:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack bool
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 r h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i)
/\ (not r == Lib.ByteSequence.lbytes_eq #32 (as_seq h1 o) (Lib.Sequence.create 32 (u8 0)))) | {
"file_name": "code/curve25519/Hacl.Impl.Curve25519.Generic.fsti",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 97,
"end_line": 48,
"start_col": 0,
"start_line": 37
} | module Hacl.Impl.Curve25519.Generic
open FStar.HyperStack
open FStar.HyperStack.All
open Lib.IntTypes
open Lib.Buffer
open Hacl.Impl.Curve25519.Fields
module S = Spec.Curve25519
inline_for_extraction noextract
let scalarmult_st (s:field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> k:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack unit
(requires fun h0 ->
p /\
live h0 o /\ live h0 k /\ live h0 i /\
disjoint o i /\ disjoint o k)
(ensures fun h0 _ h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i))
inline_for_extraction noextract
let secret_to_public_st (s: field_spec) (p: Type0) =
o:lbuffer uint8 32ul
-> i:lbuffer uint8 32ul
-> Stack unit
(requires fun h0 ->
p /\
live h0 o /\ live h0 i /\ disjoint o i)
(ensures fun h0 _ h1 -> modifies (loc o) h0 h1 /\
as_seq h1 o == S.secret_to_public (as_seq h0 i)) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Lib.ByteSequence.fsti.checked",
"Lib.Buffer.fsti.checked",
"Hacl.Impl.Curve25519.Fields.fst.checked",
"FStar.UInt32.fsti.checked",
"FStar.Pervasives.fsti.checked",
"FStar.HyperStack.All.fst.checked",
"FStar.HyperStack.fst.checked"
],
"interface_file": false,
"source_file": "Hacl.Impl.Curve25519.Generic.fsti"
} | [
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "S"
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519.Fields",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Buffer",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack.All",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.HyperStack",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Impl.Curve25519",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | s: Hacl.Impl.Curve25519.Fields.Core.field_spec -> p: Type0 -> Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Impl.Curve25519.Fields.Core.field_spec",
"Lib.Buffer.lbuffer",
"Lib.IntTypes.uint8",
"FStar.UInt32.__uint_to_t",
"Prims.bool",
"FStar.Monotonic.HyperStack.mem",
"Prims.l_and",
"Lib.Buffer.live",
"Lib.Buffer.MUT",
"Lib.Buffer.disjoint",
"Lib.Buffer.modifies",
"Lib.Buffer.loc",
"Prims.eq2",
"Lib.Sequence.lseq",
"Lib.IntTypes.v",
"Lib.IntTypes.U32",
"Lib.IntTypes.PUB",
"Lib.Buffer.as_seq",
"Spec.Curve25519.scalarmult",
"Prims.op_Negation",
"Lib.ByteSequence.lbytes_eq",
"Lib.Sequence.create",
"Lib.IntTypes.uint_t",
"Lib.IntTypes.U8",
"Lib.IntTypes.SEC",
"Lib.IntTypes.u8"
] | [] | false | false | false | true | true | let ecdh_st (s: field_spec) (p: Type0) =
| o: lbuffer uint8 32ul -> k: lbuffer uint8 32ul -> i: lbuffer uint8 32ul
-> Stack bool
(requires fun h0 -> p /\ live h0 o /\ live h0 k /\ live h0 i /\ disjoint o i /\ disjoint o k)
(ensures
fun h0 r h1 ->
modifies (loc o) h0 h1 /\ as_seq h1 o == S.scalarmult (as_seq h0 k) (as_seq h0 i) /\
(not r == Lib.ByteSequence.lbytes_eq #32 (as_seq h1 o) (Lib.Sequence.create 32 (u8 0)))) | false |
|
Pulse.Main.fst | Pulse.Main.check_fndecl | val check_fndecl
(d: decl{FnDecl? d.d})
(g: Soundness.Common.stt_env{bindings g == []})
(pre: term)
(pre_typing: tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g)) | val check_fndecl
(d: decl{FnDecl? d.d})
(g: Soundness.Common.stt_env{bindings g == []})
(pre: term)
(pre_typing: tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g)) | let check_fndecl
(d : decl{FnDecl? d.d})
(g : Soundness.Common.stt_env{bindings g == []})
(pre : term) (pre_typing : tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g))
=
(* Maybe add a recursive knot before starting *)
let FnDecl fn_d = d.d in
let nm_orig = fst (inspect_ident fn_d.id) in // keep the original name
let d =
if fn_d.isrec
then Recursion.add_knot g d.range d
else d
in
let FnDecl { id; isrec; bs; comp; meas; body } = d.d in
let nm_aux = fst (inspect_ident id) in
if Nil? bs then
fail g (Some d.range) "main: FnDecl does not have binders";
let body = mk_abs g bs body comp in
let rng = body.range in
debug_main g (fun _ -> Printf.sprintf "\nbody after mk_abs:\n%s\n" (P.st_term_to_string body));
let (| body, c, t_typing |) = Pulse.Checker.Abs.check_abs g body Pulse.Checker.check in
Pulse.Checker.Prover.debug_prover g
(fun _ -> Printf.sprintf "\ncheck call returned in main with:\n%s\nat type %s\n"
(P.st_term_to_string body)
(P.comp_to_string c));
debug_main g
(fun _ -> Printf.sprintf "\nchecker call returned in main with:\n%s\nderivation=%s\n"
(P.st_term_to_string body)
(Pulse.Typing.Printer.print_st_typing t_typing));
let refl_t = elab_comp c in
let refl_e = Pulse.RuntimeUtils.embed_st_term_for_extraction #st_term body (Some rng) in
let blob = "pulse", refl_e in
soundness_lemma g body c t_typing;
let main_decl =
let nm = fst (inspect_ident id) in
if T.ext_getv "pulse:elab_derivation" <> ""
then RT.mk_checked_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
else Pulse.Reflection.Util.mk_opaque_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
in
(* Set the blob *)
let main_decl =
let (chk, se, _) = main_decl in
let se =
if fn_d.isrec
then (
let nm = R.pack_ln (R.Tv_Const (R.C_String nm_orig)) in
let attribute = `("pulse.recursive", `#(nm)) in
let se = RU.add_attribute se (`(noextract_to "krml")) in
let se = RU.add_noextract_qual se in
let se : T.sigelt = RU.add_attribute se attribute in
se
)
else se
in
(chk, se, Some blob)
in
let recursive_decls =
if fn_d.isrec
then Rec.tie_knot g rng nm_orig nm_aux d refl_t blob
else []
in
main_decl :: recursive_decls | {
"file_name": "lib/steel/pulse/Pulse.Main.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 30,
"end_line": 125,
"start_col": 0,
"start_line": 57
} | (*
Copyright 2023 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Pulse.Main
module T = FStar.Tactics.V2
module R = FStar.Reflection.V2
module RT = FStar.Reflection.Typing
open FStar.Tactics.V2
open Pulse.Syntax
open Pulse.Typing
open Pulse.Checker
open Pulse.Elaborate
open Pulse.Soundness
module Cfg = Pulse.Config
module RU = Pulse.RuntimeUtils
module P = Pulse.Syntax.Printer
module Rec = Pulse.Recursion
let debug_main g (s: unit -> T.Tac string) : T.Tac unit =
if RU.debug_at_level (fstar_env g) "pulse.main"
then T.print (s ())
else ()
let rec mk_abs (g:env) (qbs:list (option qualifier & binder & bv)) (body:st_term) (comp:comp)
: TacH st_term (fun _ -> not (Nil? qbs))
(fun _ r -> match r with FStar.Tactics.Result.Success v _ -> Tm_Abs? v.term | _ -> False)
=
let with_range (s:st_term') (r:range) : st_term =
{ term = s; range = r; effect_tag = default_effect_hint }
in
match qbs with
| [(q, last, last_bv)] ->
let body = close_st_term body last_bv.bv_index in
let comp = close_comp comp last_bv.bv_index in
let asc = { annotated = Some comp; elaborated = None } in
with_range (Pulse.Syntax.Builder.tm_abs last q asc body) body.range
| (q, b, bv)::qbs ->
let body = mk_abs g qbs body comp in
let body = close_st_term body bv.bv_index in
with_range (Pulse.Syntax.Builder.tm_abs b q empty_ascription body) body.range | {
"checked_file": "/",
"dependencies": [
"PulseSyntaxExtension.ASTBuilder.fsti.checked",
"Pulse.Typing.Printer.fst.checked",
"Pulse.Typing.fst.checked",
"Pulse.Syntax.Printer.fsti.checked",
"Pulse.Syntax.Builder.fst.checked",
"Pulse.Syntax.fst.checked",
"Pulse.Soundness.Common.fst.checked",
"Pulse.Soundness.fsti.checked",
"Pulse.RuntimeUtils.fsti.checked",
"Pulse.Reflection.Util.fst.checked",
"Pulse.Recursion.fsti.checked",
"Pulse.Elaborate.fsti.checked",
"Pulse.Config.fsti.checked",
"Pulse.Checker.Pure.fsti.checked",
"Pulse.Checker.Prover.fsti.checked",
"Pulse.Checker.Abs.fsti.checked",
"Pulse.Checker.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.V2.fst.checked",
"FStar.Reflection.V2.fst.checked",
"FStar.Reflection.Typing.fsti.checked",
"FStar.Printf.fst.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.List.Tot.fst.checked",
"FStar.Issue.fsti.checked"
],
"interface_file": true,
"source_file": "Pulse.Main.fst"
} | [
{
"abbrev": true,
"full_module": "Pulse.Recursion",
"short_module": "Rec"
},
{
"abbrev": true,
"full_module": "Pulse.Syntax.Printer",
"short_module": "P"
},
{
"abbrev": true,
"full_module": "Pulse.RuntimeUtils",
"short_module": "RU"
},
{
"abbrev": true,
"full_module": "Pulse.Config",
"short_module": "Cfg"
},
{
"abbrev": false,
"full_module": "Pulse.Soundness",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Elaborate",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Checker",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Typing",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse.Syntax",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Tactics.V2",
"short_module": null
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.V2",
"short_module": "R"
},
{
"abbrev": true,
"full_module": "FStar.Tactics.V2",
"short_module": "T"
},
{
"abbrev": true,
"full_module": "FStar.Reflection.Typing",
"short_module": "RT"
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "Pulse",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
d: Pulse.Syntax.Base.decl{FnDecl? (Mkdecl?.d d)} ->
g: Pulse.Soundness.Common.stt_env{Pulse.Typing.Env.bindings g == []} ->
pre: Pulse.Syntax.Base.term ->
pre_typing: Pulse.Typing.tot_typing g pre Pulse.Syntax.Base.tm_vprop
-> FStar.Tactics.Effect.Tac
(FStar.Reflection.Typing.dsl_tac_result_t (Pulse.Typing.Env.fstar_env g)) | FStar.Tactics.Effect.Tac | [] | [] | [
"Pulse.Syntax.Base.decl",
"Prims.b2t",
"Pulse.Syntax.Base.uu___is_FnDecl",
"Pulse.Syntax.Base.__proj__Mkdecl__item__d",
"Pulse.Soundness.Common.stt_env",
"Prims.eq2",
"Prims.list",
"Pulse.Typing.Env.binding",
"Pulse.Typing.Env.bindings",
"Prims.Nil",
"Pulse.Syntax.Base.term",
"Pulse.Typing.tot_typing",
"Pulse.Syntax.Base.tm_vprop",
"Pulse.Syntax.Base.decl'__FnDecl__payload",
"FStar.Stubs.Reflection.Types.ident",
"Prims.bool",
"FStar.Pervasives.Native.tuple3",
"FStar.Pervasives.Native.option",
"Pulse.Syntax.Base.qualifier",
"Pulse.Syntax.Base.binder",
"Pulse.Syntax.Base.bv",
"Pulse.Syntax.Base.comp",
"Prims.l_imp",
"FStar.Pervasives.Native.uu___is_Some",
"Pulse.Syntax.Base.st_term",
"Pulse.Typing.st_typing",
"Prims.Cons",
"FStar.Reflection.Typing.sigelt_for",
"Pulse.Typing.Env.fstar_env",
"FStar.Reflection.Typing.dsl_tac_result_t",
"Pulse.Syntax.Base.__proj__Mkdecl'__FnDecl__payload__item__isrec",
"Pulse.Recursion.tie_knot",
"FStar.Stubs.Reflection.Types.sigelt",
"FStar.Reflection.Typing.blob",
"FStar.Pervasives.Native.Mktuple3",
"FStar.Pervasives.Native.Some",
"Pulse.RuntimeUtils.add_attribute",
"Pulse.RuntimeUtils.add_noextract_qual",
"FStar.Stubs.Reflection.Types.term",
"FStar.Stubs.Reflection.V2.Builtins.pack_ln",
"FStar.Stubs.Reflection.V2.Data.Tv_Const",
"FStar.Stubs.Reflection.V2.Data.C_String",
"FStar.Reflection.Typing.mk_checked_let",
"Pulse.Elaborate.Core.elab_st_typing",
"Pulse.Reflection.Util.mk_opaque_let",
"FStar.Ghost.hide",
"Prims.op_disEquality",
"Prims.string",
"FStar.Stubs.Tactics.V2.Builtins.ext_getv",
"FStar.Pervasives.Native.fst",
"FStar.Range.range",
"FStar.Stubs.Reflection.V2.Builtins.inspect_ident",
"Prims.unit",
"Pulse.Soundness.soundness_lemma",
"FStar.Pervasives.Native.tuple2",
"FStar.Pervasives.Native.Mktuple2",
"Pulse.RuntimeUtils.embed_st_term_for_extraction",
"Pulse.Elaborate.Pure.elab_comp",
"Pulse.Main.debug_main",
"FStar.Printf.sprintf",
"Pulse.Syntax.Printer.st_term_to_string",
"Pulse.Typing.Printer.print_st_typing",
"Pulse.Checker.Prover.Util.debug_prover",
"Pulse.Syntax.Printer.comp_to_string",
"FStar.Pervasives.dtuple3",
"Pulse.Checker.Abs.check_abs",
"Pulse.Checker.check",
"Pulse.Syntax.Base.range",
"Pulse.Syntax.Base.__proj__Mkst_term__item__range",
"Pulse.Main.mk_abs",
"Prims.uu___is_Nil",
"Pulse.Typing.Env.fail",
"Pulse.Syntax.Base.__proj__Mkdecl__item__range",
"Pulse.Syntax.Base.decl'",
"Pulse.Recursion.add_knot",
"Pulse.Syntax.Base.__proj__Mkdecl'__FnDecl__payload__item__id"
] | [] | false | true | false | false | false | let check_fndecl
(d: decl{FnDecl? d.d})
(g: Soundness.Common.stt_env{bindings g == []})
(pre: term)
(pre_typing: tot_typing g pre tm_vprop)
: T.Tac (RT.dsl_tac_result_t (fstar_env g)) =
| let FnDecl fn_d = d.d in
let nm_orig = fst (inspect_ident fn_d.id) in
let d = if fn_d.isrec then Recursion.add_knot g d.range d else d in
let FnDecl { id = id ; isrec = isrec ; bs = bs ; comp = comp ; meas = meas ; body = body } = d.d in
let nm_aux = fst (inspect_ident id) in
if Nil? bs then fail g (Some d.range) "main: FnDecl does not have binders";
let body = mk_abs g bs body comp in
let rng = body.range in
debug_main g (fun _ -> Printf.sprintf "\nbody after mk_abs:\n%s\n" (P.st_term_to_string body));
let (| body , c , t_typing |) = Pulse.Checker.Abs.check_abs g body Pulse.Checker.check in
Pulse.Checker.Prover.debug_prover g
(fun _ ->
Printf.sprintf "\ncheck call returned in main with:\n%s\nat type %s\n"
(P.st_term_to_string body)
(P.comp_to_string c));
debug_main g
(fun _ ->
Printf.sprintf "\nchecker call returned in main with:\n%s\nderivation=%s\n"
(P.st_term_to_string body)
(Pulse.Typing.Printer.print_st_typing t_typing));
let refl_t = elab_comp c in
let refl_e = Pulse.RuntimeUtils.embed_st_term_for_extraction #st_term body (Some rng) in
let blob = "pulse", refl_e in
soundness_lemma g body c t_typing;
let main_decl =
let nm = fst (inspect_ident id) in
if T.ext_getv "pulse:elab_derivation" <> ""
then RT.mk_checked_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
else Pulse.Reflection.Util.mk_opaque_let (fstar_env g) nm (elab_st_typing t_typing) refl_t
in
let main_decl =
let chk, se, _ = main_decl in
let se =
if fn_d.isrec
then
(let nm = R.pack_ln (R.Tv_Const (R.C_String nm_orig)) in
let attribute = `("pulse.recursive", (`#(nm))) in
let se = RU.add_attribute se (`(noextract_to "krml")) in
let se = RU.add_noextract_qual se in
let se:T.sigelt = RU.add_attribute se attribute in
se)
else se
in
(chk, se, Some blob)
in
let recursive_decls = if fn_d.isrec then Rec.tie_knot g rng nm_orig nm_aux d refl_t blob else [] in
main_decl :: recursive_decls | false |
TwoLockQueue.fst | TwoLockQueue.new_queue | val new_queue (#a: _) (x: a) : SteelT (t a) emp (fun _ -> emp) | val new_queue (#a: _) (x: a) : SteelT (t a) emp (fun _ -> emp) | let new_queue (#a:_) (x:a)
: SteelT (t a) emp (fun _ -> emp)
= let new_qptr (#a:_) (q:Q.t a)
: SteelT (q_ptr a) emp (fun qp -> ghost_pts_to qp.ghost half q)
= // Allocates the concrete pointer.
let ptr = alloc_pt q in
// Allocates the ghost state, and sets the corresponding lock invariant
let ghost = ghost_alloc_pt q in
ghost_share_pt ghost;
intro_exists _ (fun q -> pts_to ptr full q `star` ghost_pts_to ghost half q);
let lock = Steel.SpinLock.new_lock _ in
{ ptr; ghost; lock}
in
// Creating a concrete queue
let hd = Q.new_queue x in
// Creating the head and queue pointers
let head = new_qptr hd in
let tail = new_qptr hd in
// Creating the global queue invariant
pack_queue_invariant (hide hd) (hide hd) head tail;
let inv = new_invariant _ in
// Packing the different components to return a queue, as defined in type `t`
return ({ head; tail; inv }) | {
"file_name": "share/steel/examples/steel/TwoLockQueue.fst",
"git_rev": "f984200f79bdc452374ae994a5ca837496476c41",
"git_url": "https://github.com/FStarLang/steel.git",
"project_name": "steel"
} | {
"end_col": 32,
"end_line": 162,
"start_col": 0,
"start_line": 140
} | module TwoLockQueue
open FStar.Ghost
open Steel.Memory
open Steel.Effect.Atomic
open Steel.Effect
open Steel.FractionalPermission
open Steel.Reference
open Steel.SpinLock
module L = FStar.List.Tot
module U = Steel.Utils
module Q = Queue
/// This module provides an implementation of Michael and Scott's two lock queue, using the
/// abstract interface for queues provided in Queue.fsti.
/// This implementation allows an enqueue and a dequeue operation to safely operate in parallel.
/// There is a lock associated to both the enqueuer and the dequeuer, which guards each of those operation,
/// ensuring that at most one enqueue (resp. dequeue) is happening at any time
/// We only prove that this implementation is memory safe, and do not prove the functional correctness of the concurrent queue
#push-options "--ide_id_info_off"
/// Adding the definition of the vprop equivalence to the context, for proof purposes
let _: squash (forall p q. p `equiv` q <==> hp_of p `Steel.Memory.equiv` hp_of q) =
Classical.forall_intro_2 reveal_equiv
(* Some wrappers to reduce clutter in the code *)
[@@__reduce__]
let full = full_perm
[@@__reduce__]
let half = half_perm full
(* Wrappers around fst and snd to avoid overnormalization.
TODO: The frame inference tactic should not normalize fst and snd *)
let fst x = fst x
let snd x = snd x
(* Some wrappers around Steel functions which are easier to use inside this module *)
let ghost_gather (#a:Type) (#u:_)
(#p0 #p1:perm) (#p:perm{p == sum_perm p0 p1})
(x0 #x1:erased a)
(r:ghost_ref a)
: SteelGhost unit u
(ghost_pts_to r p0 x0 `star`
ghost_pts_to r p1 x1)
(fun _ -> ghost_pts_to r p x0)
(requires fun _ -> True)
(ensures fun _ _ _ -> x0 == x1)
= let _ = ghost_gather_pt #a #u #p0 #p1 r in ()
let rewrite #u (p q:vprop)
: SteelGhost unit u p (fun _ -> q)
(requires fun _ -> p `equiv` q)
(ensures fun _ _ _ -> True)
= rewrite_slprop p q (fun _ -> reveal_equiv p q)
let elim_pure (#p:prop) #u ()
: SteelGhost unit u
(pure p) (fun _ -> emp)
(requires fun _ -> True)
(ensures fun _ _ _ -> p)
= let _ = Steel.Effect.Atomic.elim_pure p in ()
let open_exists (#a:Type) (#opened_invariants:_) (#p:a -> vprop) (_:unit)
: SteelGhostT (Ghost.erased a) opened_invariants
(h_exists p) (fun r -> p (reveal r))
= let v : erased a = witness_exists () in
v
(*** Queue invariant ***)
/// The invariant associated to the lock. Basically a variant of the
/// Owicki-Gries invariant, but applied to queues
[@@__reduce__]
let lock_inv #a (ptr:ref (Q.t a)) (ghost:ghost_ref (Q.t a)) =
h_exists (fun (v:Q.t a) ->
pts_to ptr full v `star`
ghost_pts_to ghost half v)
let intro_lock_inv #a #u (ptr:ref (Q.t a)) (ghost:ghost_ref (Q.t a))
: SteelGhostT unit u
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v))
(fun _ -> lock_inv ptr ghost)
= assert_spinoff
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v) == lock_inv ptr ghost);
rewrite_slprop
(h_exists (fun (v:Q.t a) -> pts_to ptr full v `star` ghost_pts_to ghost half v))
(lock_inv _ _)
(fun _ -> ())
/// The type of a queue pointer.
/// Contains the concrete pointer [ptr], the pointer to ghost state [ghost],
/// and a lock [lock] protecting the invariant relating the concrete and ghost states
noeq
type q_ptr (a:Type) = {
ptr : ref (Q.t a);
ghost: ghost_ref (Q.t a);
lock: lock (lock_inv ptr ghost);
}
/// The global queue invariant, which will be shared by the enqueuer and the dequeuer.
/// Again, inspired by the Owicki-Gries counter: It contains half the permission for the ghost
/// state of the enqueuer and dequeuer, while ensuring that the concrete queue always remains
/// a valid queue
let queue_invariant (#a:_) ([@@@smt_fallback]head:q_ptr a) ([@@@smt_fallback] tail:q_ptr a) =
h_exists (fun (h:Q.t a) ->
h_exists (fun (t:Q.t a) ->
ghost_pts_to head.ghost half h `star`
ghost_pts_to tail.ghost half t `star`
Q.queue h t))
let pack_queue_invariant (#a:_) (#u:_) (x:erased (Q.t a)) (y:erased (Q.t a)) (head tail:q_ptr a)
: SteelGhostT unit u
(ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y)
(fun _ -> queue_invariant head tail)
= intro_exists (reveal y) (fun y -> ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y);
intro_exists (reveal x) (fun x -> h_exists (fun y -> ghost_pts_to head.ghost half x `star`
ghost_pts_to tail.ghost half y `star`
Q.queue x y))
/// The type of a queue. It contains a head and tail pointers, each with their own ghost state,
/// as well as the global queue invariant [inv]. Note that compared to the locks in the head and tail
/// pointers with type `q_ptr`, since invariant is a true Steel invariant, only accessible inside
/// atomic computations
noeq
type t (a:Type0) = {
head : q_ptr a;
tail : q_ptr a;
inv : inv (queue_invariant head tail)
} | {
"checked_file": "/",
"dependencies": [
"Steel.Utils.fst.checked",
"Steel.SpinLock.fsti.checked",
"Steel.Reference.fsti.checked",
"Steel.Memory.fsti.checked",
"Steel.FractionalPermission.fst.checked",
"Steel.Effect.Atomic.fsti.checked",
"Steel.Effect.fsti.checked",
"Queue.fsti.checked",
"prims.fst.checked",
"FStar.Tactics.Effect.fsti.checked",
"FStar.Tactics.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.List.Tot.fst.checked",
"FStar.Ghost.fsti.checked",
"FStar.Classical.fsti.checked"
],
"interface_file": false,
"source_file": "TwoLockQueue.fst"
} | [
{
"abbrev": true,
"full_module": "Queue",
"short_module": "Q"
},
{
"abbrev": true,
"full_module": "Steel.Utils",
"short_module": "U"
},
{
"abbrev": true,
"full_module": "FStar.List.Tot",
"short_module": "L"
},
{
"abbrev": false,
"full_module": "Steel.SpinLock",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Reference",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.FractionalPermission",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Effect.Atomic",
"short_module": null
},
{
"abbrev": false,
"full_module": "Steel.Memory",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Ghost",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | x: a -> Steel.Effect.SteelT (TwoLockQueue.t a) | Steel.Effect.SteelT | [] | [] | [
"Steel.Effect.Atomic.return",
"TwoLockQueue.t",
"FStar.Ghost.hide",
"FStar.Set.set",
"Steel.Memory.iname",
"FStar.Set.empty",
"FStar.Algebra.CommMonoid.Equiv.__proj__CM__item__unit",
"Steel.Effect.Common.vprop",
"Steel.Effect.Common.req",
"Steel.Effect.Common.rm",
"TwoLockQueue.Mkt",
"Steel.Effect.Common.inv",
"TwoLockQueue.queue_invariant",
"Steel.Effect.Atomic.new_invariant",
"Prims.unit",
"TwoLockQueue.pack_queue_invariant",
"Queue.Def.t",
"TwoLockQueue.q_ptr",
"Queue.new_queue",
"Steel.Effect.Common.emp",
"Steel.Reference.ghost_pts_to",
"TwoLockQueue.__proj__Mkq_ptr__item__ghost",
"TwoLockQueue.half",
"TwoLockQueue.Mkq_ptr",
"Steel.SpinLock.lock",
"TwoLockQueue.lock_inv",
"Steel.SpinLock.new_lock",
"Steel.Effect.Atomic.intro_exists",
"Steel.Effect.Common.star",
"Steel.Reference.pts_to",
"TwoLockQueue.full",
"Steel.Reference.ghost_share_pt",
"Steel.FractionalPermission.full_perm",
"Steel.Reference.ghost_ref",
"Steel.Reference.ghost_alloc_pt",
"Steel.Reference.ref",
"Steel.Reference.alloc_pt"
] | [] | false | true | false | false | false | let new_queue (#a: _) (x: a) : SteelT (t a) emp (fun _ -> emp) =
| let new_qptr (#a: _) (q: Q.t a) : SteelT (q_ptr a) emp (fun qp -> ghost_pts_to qp.ghost half q) =
let ptr = alloc_pt q in
let ghost = ghost_alloc_pt q in
ghost_share_pt ghost;
intro_exists _ (fun q -> (pts_to ptr full q) `star` (ghost_pts_to ghost half q));
let lock = Steel.SpinLock.new_lock _ in
{ ptr = ptr; ghost = ghost; lock = lock }
in
let hd = Q.new_queue x in
let head = new_qptr hd in
let tail = new_qptr hd in
pack_queue_invariant (hide hd) (hide hd) head tail;
let inv = new_invariant _ in
return ({ head = head; tail = tail; inv = inv }) | false |
FStar.Issue.fsti | FStar.Issue.issue_level_string | val issue_level_string : Type0 | let issue_level_string = s:string {
s == "Info" \/
s == "Warning" \/
s == "Error" \/
s == "Feature not yet implemented: "
} | {
"file_name": "ulib/FStar.Issue.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 1,
"end_line": 14,
"start_col": 0,
"start_line": 9
} | module FStar.Issue
open FStar.Range
module Pprint = FStar.Stubs.Pprint
new
val issue : Type0 | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Issue.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Pprint",
"short_module": "Pprint"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Prims.string",
"Prims.l_or",
"Prims.eq2"
] | [] | false | false | false | true | true | let issue_level_string =
| s: string{s == "Info" \/ s == "Warning" \/ s == "Error" \/ s == "Feature not yet implemented: "} | false |
|
FStar.Issue.fsti | FStar.Issue.mk_issue | val mk_issue : i: FStar.Issue.issue_level_string ->
msg: Prims.string ->
range: FStar.Pervasives.Native.option FStar.Range.range ->
number: FStar.Pervasives.Native.option Prims.int ->
ctx: Prims.list Prims.string
-> FStar.Issue.issue | let mk_issue (i:issue_level_string)
(msg:string)
(range:option range)
(number:option int)
(ctx:list string)
= mk_issue_doc i [Pprint.arbitrary_string msg] range number ctx | {
"file_name": "ulib/FStar.Issue.fsti",
"git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3",
"git_url": "https://github.com/FStarLang/FStar.git",
"project_name": "FStar"
} | {
"end_col": 65,
"end_line": 49,
"start_col": 0,
"start_line": 44
} | module FStar.Issue
open FStar.Range
module Pprint = FStar.Stubs.Pprint
new
val issue : Type0
let issue_level_string = s:string {
s == "Info" \/
s == "Warning" \/
s == "Error" \/
s == "Feature not yet implemented: "
}
val message_of_issue (i:issue) : Tot (list Pprint.document)
val level_of_issue (i:issue) : Tot issue_level_string
val number_of_issue (i:issue) : Tot (option int)
val range_of_issue (i:issue) : Tot (option range)
val context_of_issue (i:issue) : Tot (list string)
val render_issue (i:issue) : Tot string
(* NOTE: the only way to build a document that actually reduces
in interpreted mode (like in tactics when not using plugins)
is using arbitrary_string, as below. *)
val mk_issue_doc (i:issue_level_string)
(msg:list Pprint.document)
(range:option range)
(number:option int)
(ctx:list string)
: Tot issue
(* These qualifiers here to make sure that karamel (while building
krmllib) does not attempt to extract this definition, as that would fail
since it does not have an implementation of arbitrary_string. We could
also not extract this module altogether. *)
noextract | {
"checked_file": "/",
"dependencies": [
"prims.fst.checked",
"FStar.Stubs.Pprint.fsti.checked",
"FStar.Range.fsti.checked",
"FStar.Pervasives.fsti.checked"
],
"interface_file": false,
"source_file": "FStar.Issue.fsti"
} | [
{
"abbrev": true,
"full_module": "FStar.Stubs.Pprint",
"short_module": "Pprint"
},
{
"abbrev": false,
"full_module": "FStar.Range",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 2,
"initial_ifuel": 1,
"max_fuel": 8,
"max_ifuel": 2,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": true,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 5,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false |
i: FStar.Issue.issue_level_string ->
msg: Prims.string ->
range: FStar.Pervasives.Native.option FStar.Range.range ->
number: FStar.Pervasives.Native.option Prims.int ->
ctx: Prims.list Prims.string
-> FStar.Issue.issue | Prims.Tot | [
"total"
] | [] | [
"FStar.Issue.issue_level_string",
"Prims.string",
"FStar.Pervasives.Native.option",
"FStar.Range.range",
"Prims.int",
"Prims.list",
"FStar.Issue.mk_issue_doc",
"Prims.Cons",
"FStar.Stubs.Pprint.document",
"FStar.Stubs.Pprint.arbitrary_string",
"Prims.Nil",
"FStar.Issue.issue"
] | [] | false | false | false | true | false | let mk_issue
(i: issue_level_string)
(msg: string)
(range: option range)
(number: option int)
(ctx: list string)
=
| mk_issue_doc i [Pprint.arbitrary_string msg] range number ctx | false |
|
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.felem | val felem : Type0 | let felem = SD.lbignum U64 4 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 28,
"end_line": 19,
"start_col": 0,
"start_line": 19
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.U64"
] | [] | false | false | false | true | true | let felem =
| SD.lbignum U64 4 | false |
|
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.mul1 | val mul1: f:felem -> u:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) | val mul1: f:felem -> u:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) | let mul1 f u =
let c, out = SB.bn_mul1 f u in
SB.bn_mul1_lemma f u;
c, out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 62,
"start_col": 0,
"start_line": 59
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let felem = SD.lbignum U64 4
unfold
let felem_wide = SD.lbignum U64 8
// let as_felem4 (e:felem) : felem4 =
// (e.[0], e.[1], e.[2], e.[3])
// let as_nat (e:felem) = as_nat4 (as_felem4 e)
val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin)
let add1 f cin =
let (c, out) = SB.bn_add1 f cin in
SB.bn_add1_lemma f cin;
(c, out)
val sub1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
let sub1 f cin =
let c, out = SB.bn_sub1 f cin in
SB.bn_sub1_lemma f cin;
c, out
val mul1: f:felem -> u:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.Curve25519.Field64.Core.felem -> u19: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field64.Core.felem",
"Lib.IntTypes.uint64",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.U64",
"Hacl.Spec.Bignum.Definitions.lbignum",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"Hacl.Spec.Bignum.bn_mul1_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.bn_mul1"
] | [] | false | false | false | false | false | let mul1 f u =
| let c, out = SB.bn_mul1 f u in
SB.bn_mul1_lemma f u;
c, out | false |
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.add4 | val add4: f1:felem -> f2:felem ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) | val add4: f1:felem -> f2:felem ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) | let add4 f1 f2 =
let c, out = SB.bn_add f1 f2 in
SB.bn_add_lemma f1 f2;
c, out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 8,
"end_line": 172,
"start_col": 0,
"start_line": 169
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let felem = SD.lbignum U64 4
unfold
let felem_wide = SD.lbignum U64 8
// let as_felem4 (e:felem) : felem4 =
// (e.[0], e.[1], e.[2], e.[3])
// let as_nat (e:felem) = as_nat4 (as_felem4 e)
val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin)
let add1 f cin =
let (c, out) = SB.bn_add1 f cin in
SB.bn_add1_lemma f cin;
(c, out)
val sub1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
let sub1 f cin =
let c, out = SB.bn_sub1 f cin in
SB.bn_sub1_lemma f cin;
c, out
val mul1: f:felem -> u:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u)
let mul1 f u =
let c, out = SB.bn_mul1 f u in
SB.bn_mul1_lemma f u;
c, out
val mul1_add: f1:felem -> u2:uint64 -> f3:felem ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2)
let mul1_add f1 u2 f3 =
let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in
SB.bn_mul1_lshift_add_lemma f1 u2 0 f3;
c, out
val carry_pass: f:felem -> cin:uint64 -> felem
let carry_pass f cin =
let c, r = add1 f (cin *. u64 38) in
let b1 = r.[0] +. c *. u64 38 in
let out = r.[0] <- b1 in
out
val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} ->
Lemma (let c, r = add1 f (cin *! u64 38) in
let b1 = r.[0] +. c *. u64 38 in
v b1 == v r.[0] + v c * 38)
let lemma_add1_carry f cin =
let c, r = add1 f (cin *! u64 38) in
let b1 = r.[0] +. c *. u64 38 in
assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38);
SD.bn_eval_split_i f 1;
SD.bn_eval1 (slice f 0 1);
//assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4));
SD.bn_eval_split_i r 1;
SD.bn_eval1 (slice r 0 1);
assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38);
SD.bn_eval_bound (slice f 1 4) 3;
SD.bn_eval_bound (slice r 1 4) 3;
Math.Lemmas.pow2_plus 64 192;
assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64)
val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} ->
Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime)
let carry_pass_lemma f cin =
let c, r = add1 f (cin *! u64 38) in
let b1 = r.[0] +. c *. u64 38 in
let out = r.[0] <- b1 in
SD.bn_upd_eval r b1 0;
calc (==) {
SD.bn_v out % P.prime;
(==) { assert_norm (pow2 0 = 1) }
(SD.bn_v r - v r.[0] + v b1) % P.prime;
(==) { lemma_add1_carry f cin }
(SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime;
(==) { }
(SD.bn_v r + v c * 38) % P.prime;
(==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) }
(SD.bn_v r + v c * pow2 256) % P.prime;
(==) { }
(SD.bn_v f + v cin * 38) % P.prime;
(==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) }
(SD.bn_v f + v cin * pow2 256) % P.prime;
}
val carry_wide: f:felem_wide ->
Pure felem
(requires True)
(ensures fun out ->
SD.bn_v out % P.prime == SD.bn_v f % P.prime)
let carry_wide f =
let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in
assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38);
SD.bn_eval_bound (sub f 0 4) 4;
SD.bn_eval_bound (sub f 4 4) 4;
SD.bn_eval_bound r0 4;
Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4));
let out = carry_pass r0 c in
calc (==) {
SD.bn_v out % P.prime;
(==) { carry_pass_lemma r0 c }
(SD.bn_v r0 + v c * pow2 256) % P.prime;
(==) { }
(SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime;
(==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) }
(SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime;
(==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) }
SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime;
(==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) }
SD.bn_v f % P.prime;
};
out
val add4: f1:felem -> f2:felem ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f1: Hacl.Spec.Curve25519.Field64.Core.felem -> f2: Hacl.Spec.Curve25519.Field64.Core.felem
-> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field64.Core.felem",
"Hacl.Spec.Bignum.Base.carry",
"Lib.IntTypes.U64",
"Hacl.Spec.Bignum.Definitions.lbignum",
"FStar.Pervasives.Native.Mktuple2",
"Lib.IntTypes.uint64",
"Prims.unit",
"Hacl.Spec.Bignum.bn_add_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.bn_add"
] | [] | false | false | false | false | false | let add4 f1 f2 =
| let c, out = SB.bn_add f1 f2 in
SB.bn_add_lemma f1 f2;
c, out | false |
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.felem_wide | val felem_wide : Type0 | let felem_wide = SD.lbignum U64 8 | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 33,
"end_line": 21,
"start_col": 0,
"start_line": 21
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let felem = SD.lbignum U64 4 | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | Type0 | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Bignum.Definitions.lbignum",
"Lib.IntTypes.U64"
] | [] | false | false | false | true | true | let felem_wide =
| SD.lbignum U64 8 | false |
|
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.carry_pass | val carry_pass: f:felem -> cin:uint64 -> felem | val carry_pass: f:felem -> cin:uint64 -> felem | let carry_pass f cin =
let c, r = add1 f (cin *. u64 38) in
let b1 = r.[0] +. c *. u64 38 in
let out = r.[0] <- b1 in
out | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 5,
"end_line": 82,
"start_col": 0,
"start_line": 78
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let felem = SD.lbignum U64 4
unfold
let felem_wide = SD.lbignum U64 8
// let as_felem4 (e:felem) : felem4 =
// (e.[0], e.[1], e.[2], e.[3])
// let as_nat (e:felem) = as_nat4 (as_felem4 e)
val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin)
let add1 f cin =
let (c, out) = SB.bn_add1 f cin in
SB.bn_add1_lemma f cin;
(c, out)
val sub1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
let sub1 f cin =
let c, out = SB.bn_sub1 f cin in
SB.bn_sub1_lemma f cin;
c, out
val mul1: f:felem -> u:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u)
let mul1 f u =
let c, out = SB.bn_mul1 f u in
SB.bn_mul1_lemma f u;
c, out
val mul1_add: f1:felem -> u2:uint64 -> f3:felem ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) ->
SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2)
let mul1_add f1 u2 f3 =
let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in
SB.bn_mul1_lshift_add_lemma f1 u2 0 f3;
c, out | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64
-> Hacl.Spec.Curve25519.Field64.Core.felem | Prims.Tot | [
"total"
] | [] | [
"Hacl.Spec.Curve25519.Field64.Core.felem",
"Lib.IntTypes.uint64",
"Lib.Sequence.lseq",
"Hacl.Spec.Bignum.Definitions.limb",
"Lib.IntTypes.U64",
"Prims.l_and",
"Prims.eq2",
"FStar.Seq.Base.seq",
"Lib.Sequence.to_seq",
"FStar.Seq.Base.upd",
"Lib.Sequence.index",
"Prims.l_Forall",
"Prims.nat",
"Prims.b2t",
"Prims.op_LessThanOrEqual",
"Prims.op_Subtraction",
"Prims.pow2",
"Prims.l_imp",
"Prims.op_LessThan",
"Prims.op_disEquality",
"Prims.l_or",
"FStar.Seq.Base.index",
"Lib.Sequence.op_String_Assignment",
"Lib.IntTypes.int_t",
"Lib.IntTypes.SEC",
"Lib.IntTypes.op_Plus_Dot",
"Lib.Sequence.op_String_Access",
"Lib.IntTypes.op_Star_Dot",
"Lib.IntTypes.u64",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.Definitions.lbignum",
"Hacl.Spec.Curve25519.Field64.Core.add1"
] | [] | false | false | false | true | false | let carry_pass f cin =
| let c, r = add1 f (cin *. u64 38) in
let b1 = r.[ 0 ] +. c *. u64 38 in
let out = r.[ 0 ] <- b1 in
out | false |
Hacl.Spec.Curve25519.Field64.Core.fst | Hacl.Spec.Curve25519.Field64.Core.add1 | val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) | val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) | let add1 f cin =
let (c, out) = SB.bn_add1 f cin in
SB.bn_add1_lemma f cin;
(c, out) | {
"file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst",
"git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872",
"git_url": "https://github.com/project-everest/hacl-star.git",
"project_name": "hacl-star"
} | {
"end_col": 10,
"end_line": 38,
"start_col": 0,
"start_line": 35
} | module Hacl.Spec.Curve25519.Field64.Core
open FStar.Mul
open Lib.IntTypes
open Lib.Sequence
open Hacl.Spec.Curve25519.Field64.Definition
module P = Spec.Curve25519
module CL = Hacl.Spec.Curve25519.Field64.Lemmas
module SD = Hacl.Spec.Bignum.Definitions
module SB = Hacl.Spec.Bignum
#reset-options "--z3rlimit 50 --fuel 0 --ifuel 0"
unfold
let felem = SD.lbignum U64 4
unfold
let felem_wide = SD.lbignum U64 8
// let as_felem4 (e:felem) : felem4 =
// (e.[0], e.[1], e.[2], e.[3])
// let as_nat (e:felem) = as_nat4 (as_felem4 e)
val add1: f:felem -> cin:uint64 ->
Pure (uint64 & felem)
(requires True)
(ensures fun (c, r) -> v c <= 1 /\
SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) | {
"checked_file": "/",
"dependencies": [
"Spec.Curve25519.fst.checked",
"prims.fst.checked",
"Lib.Sequence.fsti.checked",
"Lib.IntTypes.fsti.checked",
"Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked",
"Hacl.Spec.Curve25519.Field64.Definition.fst.checked",
"Hacl.Spec.Bignum.Definitions.fst.checked",
"Hacl.Spec.Bignum.fsti.checked",
"FStar.Pervasives.Native.fst.checked",
"FStar.Pervasives.fsti.checked",
"FStar.Mul.fst.checked",
"FStar.Math.Lemmas.fst.checked",
"FStar.Calc.fsti.checked"
],
"interface_file": false,
"source_file": "Hacl.Spec.Curve25519.Field64.Core.fst"
} | [
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum",
"short_module": "SB"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Bignum.Definitions",
"short_module": "SD"
},
{
"abbrev": true,
"full_module": "Hacl.Spec.Curve25519.Field64.Lemmas",
"short_module": "CL"
},
{
"abbrev": true,
"full_module": "Spec.Curve25519",
"short_module": "P"
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64.Definition",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.Sequence",
"short_module": null
},
{
"abbrev": false,
"full_module": "Lib.IntTypes",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Mul",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "Hacl.Spec.Curve25519.Field64",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar.Pervasives",
"short_module": null
},
{
"abbrev": false,
"full_module": "Prims",
"short_module": null
},
{
"abbrev": false,
"full_module": "FStar",
"short_module": null
}
] | {
"detail_errors": false,
"detail_hint_replay": false,
"initial_fuel": 0,
"initial_ifuel": 0,
"max_fuel": 0,
"max_ifuel": 0,
"no_plugins": false,
"no_smt": false,
"no_tactics": false,
"quake_hi": 1,
"quake_keep": false,
"quake_lo": 1,
"retry": false,
"reuse_hint_for": null,
"smtencoding_elim_box": false,
"smtencoding_l_arith_repr": "boxwrap",
"smtencoding_nl_arith_repr": "boxwrap",
"smtencoding_valid_elim": false,
"smtencoding_valid_intro": true,
"tcnorm": true,
"trivial_pre_for_unannotated_effectful_fns": false,
"z3cliopt": [],
"z3refresh": false,
"z3rlimit": 50,
"z3rlimit_factor": 1,
"z3seed": 0,
"z3smtopt": [],
"z3version": "4.8.5"
} | false | f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64
-> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem) | Prims.Pure | [] | [] | [
"Hacl.Spec.Curve25519.Field64.Core.felem",
"Lib.IntTypes.uint64",
"Hacl.Spec.Bignum.Base.carry",
"Lib.IntTypes.U64",
"Hacl.Spec.Bignum.Definitions.lbignum",
"FStar.Pervasives.Native.Mktuple2",
"Prims.unit",
"Hacl.Spec.Bignum.bn_add1_lemma",
"FStar.Pervasives.Native.tuple2",
"Hacl.Spec.Bignum.bn_add1"
] | [] | false | false | false | false | false | let add1 f cin =
| let c, out = SB.bn_add1 f cin in
SB.bn_add1_lemma f cin;
(c, out) | false |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.