file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.sub1
val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 8, "end_line": 50, "start_col": 0, "start_line": 47 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64 -> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem)
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Hacl.Spec.Bignum.bn_sub1_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_sub1" ]
[]
false
false
false
false
false
let sub1 f cin =
let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.mul1_add
val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2)
val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2)
let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 8, "end_line": 74, "start_col": 0, "start_line": 71 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> u2: Lib.IntTypes.uint64 -> f3: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem)
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Hacl.Spec.Bignum.Definitions.limb", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Hacl.Spec.Bignum.bn_mul1_lshift_add_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_mul1_lshift_add" ]
[]
false
false
false
false
false
let mul1_add f1 u2 f3 =
let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.sub4
val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2)
val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2)
let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 8, "end_line": 200, "start_col": 0, "start_line": 197 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> f2: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure (Lib.IntTypes.uint64 * Hacl.Spec.Curve25519.Field64.Core.felem)
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Hacl.Spec.Bignum.Base.carry", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.uint64", "Prims.unit", "Hacl.Spec.Bignum.bn_sub_lemma", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.bn_sub" ]
[]
false
false
false
false
false
let sub4 f1 f2 =
let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.fadd4
val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 188, "start_col": 0, "start_line": 181 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> f2: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_plus_distr_r", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "FStar.Math.Lemmas.lemma_mod_plus_distr_l", "Prims._assert", "Prims.eq2", "Prims.int", "Prims.op_Addition", "Hacl.Spec.Curve25519.Field64.Core.carry_pass_lemma", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.carry_pass", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Hacl.Spec.Curve25519.Field64.Core.add4" ]
[]
false
false
false
false
false
let fadd4 f1 f2 =
let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.lemma_add1_carry
val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38)
val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38)
let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64)
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 103, "start_col": 0, "start_line": 90 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64{Lib.IntTypes.v cin * 38 < Prims.pow2 63} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Curve25519.Field64.Core.add1 f (cin *! Lib.IntTypes.u64 38) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c r = _ in let b1 = r.[ 0 ] +. c *. Lib.IntTypes.u64 38 in Lib.IntTypes.v b1 == Lib.IntTypes.v r.[ 0 ] + Lib.IntTypes.v c * 38) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Modulus", "Prims.op_Addition", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Lib.Sequence.slice", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.add1", "Lib.IntTypes.op_Star_Bang" ]
[]
false
false
true
false
false
let lemma_add1_carry f cin =
let c, r = add1 f (cin *! u64 38) in let b1 = r.[ 0 ] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[ 0 ] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[ 0 ] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[ 0 ] == (v f.[ 0 ] + v cin * 38) % pow2 64)
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.mul4
val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r)
val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r)
let mul4 f r = let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 261, "start_col": 0, "start_line": 258 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> r: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem_wide
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Prims.unit", "Hacl.Spec.Bignum.bn_mul_lemma", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "Hacl.Spec.Bignum.bn_mul", "Hacl.Spec.Curve25519.Field64.Core.felem_wide" ]
[]
false
false
false
false
false
let mul4 f r =
let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.fmul4
val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime))
val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime))
let fmul4 f1 r = let tmp = mul4 f1 r in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (SD.bn_v r) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v r) P.prime; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 275, "start_col": 0, "start_line": 270 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r) let mul4 f r = let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> r: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.carry_wide", "Hacl.Spec.Curve25519.Field64.Core.mul4" ]
[]
false
false
false
false
false
let fmul4 f1 r =
let tmp = mul4 f1 r in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (SD.bn_v r) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v r) P.prime; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.sqr4
val sqr4: f:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v f)
val sqr4: f:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v f)
let sqr4 f = let out = SB.bn_sqr f in SB.bn_sqr_lemma f; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 314, "start_col": 0, "start_line": 311 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r) let mul4 f r = let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime)) let fmul4 f1 r = let tmp = mul4 f1 r in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (SD.bn_v r) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v r) P.prime; out //121665 < pow2 17 val fmul14: f1:felem -> f2:uint64 -> Pure felem (requires v f2 < pow2 17) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f1 % P.prime * v f2 % P.prime) let fmul14 f1 f2 = let c0, r0 = mul1 f1 f2 in assert (SD.bn_v r0 + v c0 * pow2 256 == SD.bn_v f1 * v f2); SD.bn_eval_bound f1 4; SD.bn_eval_bound r0 4; Lemmas.fmul14_bound (SD.bn_v r0) (v c0) (SD.bn_v f1) (v f2); let out = carry_pass r0 c0 in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c0 } (SD.bn_v r0 + v c0 * pow2 256) % P.prime; (==) { } (SD.bn_v f1 * v f2) % P.prime; (==) {Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (v f2) P.prime } (SD.bn_v f1 % P.prime * v f2) % P.prime; }; out val sqr4: f:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v f)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem_wide
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Prims.unit", "Hacl.Spec.Bignum.bn_sqr_lemma", "Lib.IntTypes.U64", "Hacl.Spec.Bignum.Definitions.lbignum", "Prims.op_Addition", "Hacl.Spec.Bignum.bn_sqr", "Hacl.Spec.Curve25519.Field64.Core.felem_wide" ]
[]
false
false
false
false
false
let sqr4 f =
let out = SB.bn_sqr f in SB.bn_sqr_lemma f; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.fsqr4
val fsqr4: f:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f % P.prime) (SD.bn_v f % P.prime))
val fsqr4: f:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f % P.prime) (SD.bn_v f % P.prime))
let fsqr4 f = let tmp = sqr4 f in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f) (SD.bn_v f) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f % P.prime) (SD.bn_v f) P.prime; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 328, "start_col": 0, "start_line": 323 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r) let mul4 f r = let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime)) let fmul4 f1 r = let tmp = mul4 f1 r in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (SD.bn_v r) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v r) P.prime; out //121665 < pow2 17 val fmul14: f1:felem -> f2:uint64 -> Pure felem (requires v f2 < pow2 17) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f1 % P.prime * v f2 % P.prime) let fmul14 f1 f2 = let c0, r0 = mul1 f1 f2 in assert (SD.bn_v r0 + v c0 * pow2 256 == SD.bn_v f1 * v f2); SD.bn_eval_bound f1 4; SD.bn_eval_bound r0 4; Lemmas.fmul14_bound (SD.bn_v r0) (v c0) (SD.bn_v f1) (v f2); let out = carry_pass r0 c0 in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c0 } (SD.bn_v r0 + v c0 * pow2 256) % P.prime; (==) { } (SD.bn_v f1 * v f2) % P.prime; (==) {Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (v f2) P.prime } (SD.bn_v f1 % P.prime * v f2) % P.prime; }; out val sqr4: f:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v f) let sqr4 f = let out = SB.bn_sqr f in SB.bn_sqr_lemma f; out val fsqr4: f:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f % P.prime) (SD.bn_v f % P.prime))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Prims.unit", "FStar.Math.Lemmas.lemma_mod_mul_distr_r", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.carry_wide", "Hacl.Spec.Curve25519.Field64.Core.sqr4" ]
[]
false
false
false
false
false
let fsqr4 f =
let tmp = sqr4 f in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f) (SD.bn_v f) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f % P.prime) (SD.bn_v f) P.prime; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.lemma_sub1_carry
val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38)
val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38)
let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64)
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 54, "end_line": 222, "start_col": 0, "start_line": 208 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64{Lib.IntTypes.v cin * 38 < Prims.pow2 63} -> FStar.Pervasives.Lemma (ensures (let _ = Hacl.Spec.Curve25519.Field64.Core.sub1 f (cin *! Lib.IntTypes.u64 38) in (let FStar.Pervasives.Native.Mktuple2 #_ #_ c r = _ in let b1 = r.[ 0 ] -. c *. Lib.IntTypes.u64 38 in Lib.IntTypes.v b1 == Lib.IntTypes.v r.[ 0 ] - Lib.IntTypes.v c * 38) <: Type0))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "Prims._assert", "Prims.eq2", "Prims.int", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "Prims.op_Modulus", "Prims.op_Subtraction", "Prims.unit", "FStar.Math.Lemmas.pow2_plus", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Lib.Sequence.slice", "Prims.op_Addition", "Hacl.Spec.Bignum.Definitions.bn_v", "Hacl.Spec.Bignum.Definitions.bn_eval1", "Hacl.Spec.Bignum.Definitions.bn_eval_split_i", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.sub1", "Lib.IntTypes.op_Star_Bang" ]
[]
false
false
true
false
false
let lemma_sub1_carry f cin =
let c, r = sub1 f (cin *! u64 38) in let b1 = r.[ 0 ] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[ 0 ] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[ 0 ] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[ 0 ] == (v f.[ 0 ] - v cin * 38) % pow2 64)
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.fmul14
val fmul14: f1:felem -> f2:uint64 -> Pure felem (requires v f2 < pow2 17) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f1 % P.prime * v f2 % P.prime)
val fmul14: f1:felem -> f2:uint64 -> Pure felem (requires v f2 < pow2 17) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f1 % P.prime * v f2 % P.prime)
let fmul14 f1 f2 = let c0, r0 = mul1 f1 f2 in assert (SD.bn_v r0 + v c0 * pow2 256 == SD.bn_v f1 * v f2); SD.bn_eval_bound f1 4; SD.bn_eval_bound r0 4; Lemmas.fmul14_bound (SD.bn_v r0) (v c0) (SD.bn_v f1) (v f2); let out = carry_pass r0 c0 in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c0 } (SD.bn_v r0 + v c0 * pow2 256) % P.prime; (==) { } (SD.bn_v f1 * v f2) % P.prime; (==) {Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (v f2) P.prime } (SD.bn_v f1 % P.prime * v f2) % P.prime; }; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 302, "start_col": 0, "start_line": 285 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out val mul4: f:felem -> r:felem -> Pure felem_wide (requires True) (ensures fun out -> SD.bn_v out == SD.bn_v f * SD.bn_v r) let mul4 f r = let out = SB.bn_mul f r in SB.bn_mul_lemma f r; out val fmul4: f1:felem -> r:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fmul (SD.bn_v f1 % P.prime) (SD.bn_v r % P.prime)) let fmul4 f1 r = let tmp = mul4 f1 r in let out = carry_wide tmp in Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (SD.bn_v r) P.prime; Math.Lemmas.lemma_mod_mul_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v r) P.prime; out //121665 < pow2 17 val fmul14: f1:felem -> f2:uint64 -> Pure felem (requires v f2 < pow2 17) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f1 % P.prime * v f2 % P.prime)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> f2: Lib.IntTypes.uint64 -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "Prims.pow2", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Curve25519.Field64.Core.carry_pass_lemma", "Prims.squash", "FStar.Math.Lemmas.lemma_mod_mul_distr_l", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.carry_pass", "Hacl.Spec.Curve25519.Field64.Lemmas.fmul14_bound", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Prims._assert", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.Curve25519.Field64.Core.mul1" ]
[]
false
false
false
false
false
let fmul14 f1 f2 =
let c0, r0 = mul1 f1 f2 in assert (SD.bn_v r0 + v c0 * pow2 256 == SD.bn_v f1 * v f2); SD.bn_eval_bound f1 4; SD.bn_eval_bound r0 4; Lemmas.fmul14_bound (SD.bn_v r0) (v c0) (SD.bn_v f1) (v f2); let out = carry_pass r0 c0 in calc ( == ) { SD.bn_v out % P.prime; ( == ) { carry_pass_lemma r0 c0 } (SD.bn_v r0 + v c0 * pow2 256) % P.prime; ( == ) { () } (SD.bn_v f1 * v f2) % P.prime; ( == ) { Math.Lemmas.lemma_mod_mul_distr_l (SD.bn_v f1) (v f2) P.prime } ((SD.bn_v f1 % P.prime) * v f2) % P.prime; }; out
false
Steel.ST.Printf.fst
Steel.ST.Printf.fragments
val fragments : Type0
let fragments = list fragment
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 29, "end_line": 175, "start_col": 0, "start_line": 175 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Steel.ST.Printf.fragment" ]
[]
false
false
false
true
true
let fragments =
list fragment
false
Steel.ST.Printf.fst
Steel.ST.Printf.__printf_reduce__
val __printf_reduce__ : Prims.eqtype
let __printf_reduce__ = unit
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 28, "end_line": 124, "start_col": 0, "start_line": 124 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Prims.unit" ]
[]
false
false
false
true
false
let __printf_reduce__ =
unit
false
Steel.ST.Printf.fst
Steel.ST.Printf.parse_format_string
val parse_format_string (s: string) : option fragments
val parse_format_string (s: string) : option fragments
let parse_format_string (s:string) : option fragments = parse_format (list_of_string s)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 35, "end_line": 247, "start_col": 0, "start_line": 244 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.string -> FStar.Pervasives.Native.option Steel.ST.Printf.fragments
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Steel.ST.Printf.parse_format", "FStar.String.list_of_string", "FStar.Pervasives.Native.option", "Steel.ST.Printf.fragments" ]
[]
false
false
false
true
false
let parse_format_string (s: string) : option fragments =
parse_format (list_of_string s)
false
Steel.ST.Printf.fst
Steel.ST.Printf.frag_t
val frag_t : Type
let frag_t = either string (a:arg & arg_t a)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 274, "start_col": 0, "start_line": 274 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.either", "Prims.string", "Prims.dtuple2", "Steel.ST.Printf.arg", "Steel.ST.Printf.arg_t" ]
[]
false
false
false
true
true
let frag_t =
either string (a: arg & arg_t a)
false
Steel.ST.Printf.fst
Steel.ST.Printf.live_frag
val live_frag (f: frag_t) : vprop
val live_frag (f: frag_t) : vprop
let live_frag (f: frag_t) : vprop = live_frag0 f
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 14, "end_line": 291, "start_col": 0, "start_line": 290 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.ST.Printf.frag_t -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.frag_t", "Steel.ST.Printf.live_frag0", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let live_frag (f: frag_t) : vprop =
live_frag0 f
false
Steel.ST.Printf.fst
Steel.ST.Printf.normal
val normal (#a: Type) (x: a) : a
val normal (#a: Type) (x: a) : a
let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 6, "end_line": 351, "start_col": 0, "start_line": 343 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> a
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.norm", "Prims.Cons", "FStar.Pervasives.norm_step", "FStar.Pervasives.iota", "FStar.Pervasives.zeta", "FStar.Pervasives.delta_attr", "Prims.string", "Prims.Nil", "FStar.Pervasives.delta_only", "FStar.Pervasives.primops", "FStar.Pervasives.simplify" ]
[]
false
false
false
true
false
let normal (#a: Type) (x: a) : a =
FStar.Pervasives.norm [ iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify ] x
false
Steel.ST.Printf.fst
Steel.ST.Printf.lmbuffer
val lmbuffer : a: Type0 -> l: FStar.UInt32.t -> Type0
let lmbuffer a l = b: A.array a { A.length b == U32.v l }
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 72, "start_col": 0, "start_line": 69 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l`
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> l: FStar.UInt32.t -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Steel.ST.Array.array", "Prims.eq2", "Prims.int", "Prims.l_or", "FStar.UInt.size", "FStar.UInt32.n", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Steel.ST.Array.length", "FStar.UInt32.v" ]
[]
false
false
false
true
true
let lmbuffer a l =
b: A.array a {A.length b == U32.v l}
false
Steel.ST.Printf.fst
Steel.ST.Printf.base_typ_as_type
val base_typ_as_type (b: base_typ) : Type0
val base_typ_as_type (b: base_typ) : Type0
let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 27, "end_line": 164, "start_col": 0, "start_line": 152 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Steel.ST.Printf.base_typ -> Type0
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.base_typ", "Prims.bool", "FStar.String.char", "Prims.string", "FStar.UInt8.t", "FStar.UInt16.t", "FStar.UInt32.t", "FStar.UInt64.t", "FStar.Int8.t", "FStar.Int16.t", "FStar.Int32.t", "FStar.Int64.t" ]
[]
false
false
false
true
true
let base_typ_as_type (b: base_typ) : Type0 =
match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t
false
Steel.ST.Printf.fst
Steel.ST.Printf.fragment_printer
val fragment_printer : Type
let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 56, "end_line": 361, "start_col": 0, "start_line": 359 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Steel.ST.Printf.frag_t", "Prims.unit", "Steel.ST.Printf.live_frags", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
true
let fragment_printer =
acc: list frag_t -> STT unit (live_frags acc) (fun _ -> live_frags acc)
false
FStar.UInt8.fst
FStar.UInt8.v
val v (x:t) : Tot (uint_t n)
val v (x:t) : Tot (uint_t n)
let v x = x.v
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 13, "end_line": 28, "start_col": 0, "start_line": 28 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> FStar.UInt.uint_t FStar.UInt8.n
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "FStar.UInt8.__proj__Mk__item__v", "FStar.UInt.uint_t", "FStar.UInt8.n" ]
[]
false
false
false
true
false
let v x =
x.v
false
Steel.ST.Printf.fst
Steel.ST.Printf.elim_unit_arrow
val elim_unit_arrow (#t: _) (f: (unit -> t)) : t
val elim_unit_arrow (#t: _) (f: (unit -> t)) : t
let elim_unit_arrow #t (f:unit -> t) : t = f ()
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 47, "end_line": 442, "start_col": 0, "start_line": 442 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Prims.unit -> t) -> t
Prims.Tot
[ "total" ]
[]
[ "Prims.unit" ]
[]
false
false
false
true
false
let elim_unit_arrow #t (f: (unit -> t)) : t =
f ()
false
Steel.ST.Printf.fst
Steel.ST.Printf.no_inst
val no_inst: #a: _ -> #b: (a -> Type) -> f: (#x: a -> b x) -> unit -> #x: a -> b x
val no_inst: #a: _ -> #b: (a -> Type) -> f: (#x: a -> b x) -> unit -> #x: a -> b x
let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 84, "end_line": 440, "start_col": 0, "start_line": 440 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: b x -> _: Prims.unit -> b x
Prims.Tot
[ "total" ]
[]
[ "Prims.unit" ]
[]
false
false
false
false
false
let no_inst #a (#b: (a -> Type)) (f: (#x: a -> b x)) : unit -> #x: a -> b x =
fun () -> f
false
Steel.ST.Printf.fst
Steel.ST.Printf.format_string
val format_string : Type0
let format_string = s:string{normal #bool (Some? (parse_format_string s))}
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 74, "end_line": 492, "start_col": 0, "start_line": 492 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "Prims.b2t", "Steel.ST.Printf.normal", "Prims.bool", "FStar.Pervasives.Native.uu___is_Some", "Steel.ST.Printf.fragments", "Steel.ST.Printf.parse_format_string" ]
[]
false
false
false
true
true
let format_string =
s: string{normal #bool (Some? (parse_format_string s))}
false
Steel.ST.Printf.fst
Steel.ST.Printf.live_frag0
val live_frag0 (f: frag_t) : vprop
val live_frag0 (f: frag_t) : vprop
let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 64, "end_line": 286, "start_col": 0, "start_line": 279 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Steel.ST.Printf.frag_t -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.frag_t", "Prims.string", "Steel.Effect.Common.emp", "Prims.dtuple2", "Steel.ST.Printf.arg", "Steel.ST.Printf.arg_t", "Steel.ST.Printf.base_typ", "Steel.ST.Printf.Base", "Steel.ST.Printf.Any", "FStar.UInt32.t", "Steel.ST.Printf.lmbuffer", "Steel.ST.Printf.base_typ_as_type", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop" ]
[]
false
false
false
true
false
let live_frag0 (f: frag_t) : vprop =
match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _ , _ |) -> emp | (| Any , _ |) -> emp | (| Array _ , Lift ((| _ , b |), p, v) |) -> A.pts_to b p v)
false
Steel.ST.Printf.fst
Steel.ST.Printf.live_frags
val live_frags (l: list frag_t) : vprop
val live_frags (l: list frag_t) : vprop
let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 298, "start_col": 0, "start_line": 295 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list Steel.ST.Printf.frag_t -> Steel.Effect.Common.vprop
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "Steel.ST.Printf.frag_t", "Steel.Effect.Common.emp", "Steel.Effect.Common.star", "Steel.ST.Printf.live_frag", "Steel.ST.Printf.live_frags", "Steel.Effect.Common.vprop" ]
[ "recursion" ]
false
false
false
true
false
let rec live_frags (l: list frag_t) : vprop =
match l with | [] -> emp | a :: q -> (live_frag a) `star` (live_frags q)
false
Steel.ST.Printf.fst
Steel.ST.Printf.printf
val printf : s:normal format_string -> normal (interpret_format_string s)
val printf : s:normal format_string -> normal (interpret_format_string s)
let printf = intro_normal_f #format_string interpret_format_string printf'
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 74, "end_line": 529, "start_col": 0, "start_line": 529 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type noextract inline_for_extraction let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f /// `printf`: The main function has type /// `s:normal format_string -> normal (interpret_format_string s)` /// Note: /// This is the type F* infers for it and it is best to leave it that way /// rather then writing it down and asking F* to re-check what it inferred. /// /// Annotating it results in a needless additional proof obligation to /// equate types after they are partially reduced, which is pointless. noextract inline_for_extraction
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Steel.ST.Printf.normal Steel.ST.Printf.format_string -> Steel.ST.Printf.normal (Steel.ST.Printf.interpret_format_string s)
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.intro_normal_f", "Steel.ST.Printf.format_string", "Steel.ST.Printf.interpret_format_string", "Steel.ST.Printf.printf'" ]
[]
false
false
false
false
false
let printf =
intro_normal_f #format_string interpret_format_string printf'
false
Steel.ST.Printf.fst
Steel.ST.Printf.arg_t
val arg_t (a: arg) : Type u#1
val arg_t (a: arg) : Type u#1
let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 48, "end_line": 270, "start_col": 0, "start_line": 266 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Steel.ST.Printf.arg -> Type
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.arg", "Steel.ST.Printf.base_typ", "Steel.ST.Printf.lift", "Steel.ST.Printf.base_typ_as_type", "FStar.Pervasives.Native.tuple3", "Prims.dtuple2", "FStar.UInt32.t", "Steel.ST.Printf.lmbuffer", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "FStar.Pervasives.dtuple3", "Prims.unit" ]
[ "recursion" ]
false
false
false
true
true
let rec arg_t (a: arg) : Type u#1 =
match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l: UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a: Type0 & (a -> StTrivial unit) & a)
false
FStar.UInt8.fst
FStar.UInt8.zero
val zero : x:t{v x = 0}
val zero : x:t{v x = 0}
let zero = uint_to_t 0
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 39, "start_col": 0, "start_line": 39 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x = 0}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.uint_to_t" ]
[]
false
false
false
false
false
let zero =
uint_to_t 0
false
Steel.ST.Printf.fst
Steel.ST.Printf.skip
val skip : s:normal format_string -> normal (interpret_format_string s)
val skip : s:normal format_string -> normal (interpret_format_string s)
let skip = intro_normal_f #format_string interpret_format_string skip'
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 543, "start_col": 0, "start_line": 543 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type noextract inline_for_extraction let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f /// `printf`: The main function has type /// `s:normal format_string -> normal (interpret_format_string s)` /// Note: /// This is the type F* infers for it and it is best to leave it that way /// rather then writing it down and asking F* to re-check what it inferred. /// /// Annotating it results in a needless additional proof obligation to /// equate types after they are partially reduced, which is pointless. noextract inline_for_extraction val printf : s:normal format_string -> normal (interpret_format_string s) let printf = intro_normal_f #format_string interpret_format_string printf' /// `skip`: We also provide `skip`, a function that has the same type as printf /// but normalizes to `()`, i.e., it prints nothing. This is useful for conditional /// printing in debug code, for instance. noextract inline_for_extraction let skip' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] (fun _ -> noop ())) noextract inline_for_extraction
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Steel.ST.Printf.normal Steel.ST.Printf.format_string -> Steel.ST.Printf.normal (Steel.ST.Printf.interpret_format_string s)
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.intro_normal_f", "Steel.ST.Printf.format_string", "Steel.ST.Printf.interpret_format_string", "Steel.ST.Printf.skip'" ]
[]
false
false
false
false
false
let skip =
intro_normal_f #format_string interpret_format_string skip'
false
FStar.UInt8.fst
FStar.UInt8.one
val one : x:t{v x = 1}
val one : x:t{v x = 1}
let one = uint_to_t 1
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 41, "start_col": 0, "start_line": 41 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t{FStar.UInt8.v x = 1}
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.uint_to_t" ]
[]
false
false
false
false
false
let one =
uint_to_t 1
false
FStar.UInt8.fst
FStar.UInt8.uint_to_t
val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x))
val uint_to_t (x:uint_t n) : Pure t (requires True) (ensures (fun y -> v y = x))
let uint_to_t x = Mk x
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 31, "start_col": 0, "start_line": 31 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt.uint_t FStar.UInt8.n -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt.uint_t", "FStar.UInt8.n", "FStar.UInt8.Mk", "FStar.UInt8.t" ]
[]
false
false
false
false
false
let uint_to_t x =
Mk x
false
FStar.UInt8.fst
FStar.UInt8.add_underspec
val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
val add_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a + v b) n ==> v a + v b = v c))
let add_underspec a b = Mk (add_underspec (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 45, "start_col": 0, "start_line": 45 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.add_underspec", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let add_underspec a b =
Mk (add_underspec (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.add
val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c))
val add (a:t) (b:t) : Pure t (requires (size (v a + v b) n)) (ensures (fun c -> v a + v b = v c))
let add a b = Mk (add (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 43, "start_col": 0, "start_line": 43 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.add", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let add a b =
Mk (add (v a) (v b))
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.fsub4
val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
let fsub4 f1 f2 = let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[0] -. c1 *. u64 38 in let out = r1.[0] <- b1 in SD.bn_upd_eval r1 b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[0] + v b1) % P.prime; (==) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[0] + (v r1.[0] - v c1 * 38)) % P.prime; (==) { } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; (==) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 249, "start_col": 0, "start_line": 231 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime) let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out val add4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f1 + SD.bn_v f2) let add4 f1 f2 = let c, out = SB.bn_add f1 f2 in SB.bn_add_lemma f1 f2; c, out val fadd4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fadd (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime)) let fadd4 f1 f2 = let c0, out0 = add4 f1 f2 in let out = carry_pass out0 c0 in carry_pass_lemma out0 c0; assert (SD.bn_v out % P.prime == (SD.bn_v f1 + SD.bn_v f2) % P.prime); Math.Lemmas.lemma_mod_plus_distr_l (SD.bn_v f1) (SD.bn_v f2) P.prime; Math.Lemmas.lemma_mod_plus_distr_r (SD.bn_v f1 % P.prime) (SD.bn_v f2) P.prime; out val sub4: f1:felem -> f2:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f1 - SD.bn_v f2) let sub4 f1 f2 = let c, out = SB.bn_sub f1 f2 in SB.bn_sub_lemma f1 f2; c, out val lemma_sub1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in v b1 == v r.[0] - v c * 38) let lemma_sub1_carry f cin = let c, r = sub1 f (cin *! u64 38) in let b1 = r.[0] -. c *. u64 38 in assert (SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) - v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) - v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] - v cin * 38) % pow2 64) val fsub4: f1:felem -> f2:felem -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == P.fsub (SD.bn_v f1 % P.prime) (SD.bn_v f2 % P.prime))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f1: Hacl.Spec.Curve25519.Field64.Core.felem -> f2: Hacl.Spec.Curve25519.Field64.Core.felem -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "Prims.op_Subtraction", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "Prims.pow2", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Pervasives.assert_norm", "Prims.b2t", "Prims.op_Equality", "Prims.squash", "Hacl.Spec.Curve25519.Field64.Core.lemma_sub1_carry", "Hacl.Spec.Curve25519.Field64.Lemmas.lemma_fsub4", "Hacl.Spec.Bignum.Definitions.bn_upd_eval", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.sub1", "Lib.IntTypes.op_Star_Bang", "Hacl.Spec.Curve25519.Field64.Core.sub4" ]
[]
false
false
false
false
false
let fsub4 f1 f2 =
let c0, r0 = sub4 f1 f2 in let c1, r1 = sub1 r0 (c0 *! u64 38) in let b1 = r1.[ 0 ] -. c1 *. u64 38 in let out = r1.[ 0 ] <- b1 in SD.bn_upd_eval r1 b1 0; calc ( == ) { SD.bn_v out % P.prime; ( == ) { assert_norm (pow2 0 = 1) } (SD.bn_v r1 - v r1.[ 0 ] + v b1) % P.prime; ( == ) { lemma_sub1_carry r0 c0 } (SD.bn_v r1 - v r1.[ 0 ] + (v r1.[ 0 ] - v c1 * 38)) % P.prime; ( == ) { () } (SD.bn_v f1 - SD.bn_v f2 + v c0 * pow2 256 - v c0 * 38 + v c1 * pow2 256 - v c1 * 38) % P.prime; ( == ) { Lemmas.lemma_fsub4 (SD.bn_v f1) (SD.bn_v f2) (v c0) (v c1) } (SD.bn_v f1 % P.prime - SD.bn_v f2 % P.prime) % P.prime; }; out
false
FStar.UInt8.fst
FStar.UInt8.add_mod
val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
val add_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.add_mod (v a) (v b) = v c))
let add_mod a b = Mk (add_mod (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 47, "start_col": 0, "start_line": 47 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.add_mod", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let add_mod a b =
Mk (add_mod (v a) (v b))
false
Steel.ST.Printf.fst
Steel.ST.Printf.coerce
val coerce (x: 'a{'a == 'b}) : 'b
val coerce (x: 'a{'a == 'b}) : 'b
let coerce (x:'a{'a == 'b}) : 'b = x
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 36, "end_line": 355, "start_col": 0, "start_line": 355 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: 'a{'a == 'b} -> 'b
Prims.Tot
[ "total" ]
[]
[ "Prims.eq2" ]
[]
false
false
false
false
false
let coerce (x: 'a{'a == 'b}) : 'b =
x
false
FStar.UInt8.fst
FStar.UInt8.sub
val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
val sub (a:t) (b:t) : Pure t (requires (size (v a - v b) n)) (ensures (fun c -> v a - v b = v c))
let sub a b = Mk (sub (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 49, "start_col": 0, "start_line": 49 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.sub", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let sub a b =
Mk (sub (v a) (v b))
false
Steel.ST.Printf.fst
Steel.ST.Printf.parse_format
val parse_format (s: list char) : Tot (option fragments) (decreases (L.length s))
val parse_format (s: list char) : Tot (option fragments) (decreases (L.length s))
let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s')
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 34, "end_line": 238, "start_col": 0, "start_line": 182 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Prims.list FStar.String.char -> Prims.Tot (FStar.Pervasives.Native.option Steel.ST.Printf.fragments)
Prims.Tot
[ "total", "" ]
[]
[ "Prims.list", "FStar.String.char", "FStar.Pervasives.Native.Some", "Steel.ST.Printf.fragments", "Prims.Nil", "Steel.ST.Printf.fragment", "FStar.Pervasives.Native.None", "Steel.ST.Printf.Any", "Steel.ST.Printf.parse_format", "Prims.Cons", "Steel.ST.Printf.Base", "Steel.ST.Printf.U8", "Steel.ST.Printf.U16", "Steel.ST.Printf.U32", "Steel.ST.Printf.U64", "FStar.Pervasives.Native.option", "Steel.ST.Printf.Bool", "Steel.ST.Printf.Char", "Steel.ST.Printf.String", "Steel.ST.Printf.I8", "Steel.ST.Printf.I16", "Steel.ST.Printf.I32", "Steel.ST.Printf.I64", "FStar.Char.char", "Prims.string", "Steel.ST.Printf.Frag", "FStar.String.string_of_list", "FStar.String.list_of_string", "Steel.ST.Printf.base_typ", "Steel.ST.Printf.Interpolate", "Steel.ST.Printf.Array", "Steel.ST.Printf.arg" ]
[ "recursion" ]
false
false
false
true
false
let rec parse_format (s: list char) : Tot (option fragments) (decreases (L.length s)) =
let add_dir (d: arg) (ods: option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d :: ds) in let head_buffer (ods: option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c: char) (ods: option fragments) = match ods with | Some (Frag s :: rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None | '%' :: 'a' :: s' -> add_dir Any (parse_format s') | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) | '%' :: 'u' :: s' -> (match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None) | '%' :: c :: s' -> (match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None) | c :: s' -> cons_frag c (parse_format s')
false
FStar.UInt8.fst
FStar.UInt8.sub_underspec
val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
val sub_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a - v b) n ==> v a - v b = v c))
let sub_underspec a b = Mk (sub_underspec (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 51, "start_col": 0, "start_line": 51 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.sub_underspec", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let sub_underspec a b =
Mk (sub_underspec (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.mul
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
val mul (a:t) (b:t) : Pure t (requires (size (v a * v b) n)) (ensures (fun c -> v a * v b = v c))
let mul a b = Mk (mul (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 55, "start_col": 0, "start_line": 55 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.mul", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let mul a b =
Mk (mul (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.mul_underspec
val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c))
val mul_underspec (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> size (v a * v b) n ==> v a * v b = v c))
let mul_underspec a b = Mk (mul_underspec (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 57, "start_col": 0, "start_line": 57 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.mul_underspec", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let mul_underspec a b =
Mk (mul_underspec (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.sub_mod
val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
val sub_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.sub_mod (v a) (v b) = v c))
let sub_mod a b = Mk (sub_mod (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 53, "start_col": 0, "start_line": 53 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.sub_mod", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let sub_mod a b =
Mk (sub_mod (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.mul_mod
val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
val mul_mod (a:t) (b:t) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mul_mod (v a) (v b) = v c))
let mul_mod a b = Mk (mul_mod (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 59, "start_col": 0, "start_line": 59 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.mul_mod", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let mul_mod a b =
Mk (mul_mod (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.rem
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
val rem (a:t) (b:t{v b <> 0}) : Pure t (requires True) (ensures (fun c -> FStar.UInt.mod (v a) (v b) = v c))
let rem a b = Mk (mod (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 63, "start_col": 0, "start_line": 63 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.UInt8.v", "FStar.UInt8.Mk", "FStar.UInt.mod", "FStar.UInt8.n" ]
[]
false
false
false
false
false
let rem a b =
Mk (mod (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.logxor
val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z))
val logxor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logxor` v y == v z))
let logxor x y = Mk (logxor (v x) (v y))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 67, "start_col": 0, "start_line": 67 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.logxor", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let logxor x y =
Mk (logxor (v x) (v y))
false
FStar.UInt8.fst
FStar.UInt8.logor
val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z))
val logor (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logor` v y == v z))
let logor x y = Mk (logor (v x) (v y))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 69, "start_col": 0, "start_line": 69 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.logor", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let logor x y =
Mk (logor (v x) (v y))
false
FStar.UInt8.fst
FStar.UInt8.div
val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c))
val div (a:t) (b:t{v b <> 0}) : Pure t (requires (True)) (ensures (fun c -> v a / v b = v c))
let div a b = Mk (div (v a) (v b))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 61, "start_col": 0, "start_line": 61 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t{FStar.UInt8.v b <> 0} -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "Prims.b2t", "Prims.op_disEquality", "Prims.int", "FStar.UInt8.v", "FStar.UInt8.Mk", "FStar.UInt.div", "FStar.UInt8.n" ]
[]
false
false
false
false
false
let div a b =
Mk (div (v a) (v b))
false
FStar.UInt8.fst
FStar.UInt8.logand
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
val logand (x:t) (y:t) : Pure t (requires True) (ensures (fun z -> v x `logand` v y = v z))
let logand x y = Mk (logand (v x) (v y))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 40, "end_line": 65, "start_col": 0, "start_line": 65 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> y: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.logand", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let logand x y =
Mk (logand (v x) (v y))
false
FStar.UInt8.fst
FStar.UInt8.shift_right
val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
val shift_right (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_right (v a) (UInt32.v s) = v c))
let shift_right a s = Mk (shift_right (v a) (UInt32.v s))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 73, "start_col": 0, "start_line": 73 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "FStar.UInt8.Mk", "FStar.UInt.shift_right", "FStar.UInt8.n", "FStar.UInt8.v", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let shift_right a s =
Mk (shift_right (v a) (UInt32.v s))
false
FStar.UInt8.fst
FStar.UInt8.lognot
val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z))
val lognot (x:t) : Pure t (requires True) (ensures (fun z -> lognot (v x) == v z))
let lognot x = Mk (lognot (v x))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 71, "start_col": 0, "start_line": 71 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt8.Mk", "FStar.UInt.lognot", "FStar.UInt8.n", "FStar.UInt8.v" ]
[]
false
false
false
false
false
let lognot x =
Mk (lognot (v x))
false
FStar.UInt8.fst
FStar.UInt8.shift_left
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
val shift_left (a:t) (s:UInt32.t) : Pure t (requires (UInt32.v s < n)) (ensures (fun c -> FStar.UInt.shift_left (v a) (UInt32.v s) = v c))
let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 77, "start_col": 0, "start_line": 77 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s)) #push-options "--z3rlimit 80 --fuel 1" //AR: working around the interleaving semantics of pragmas
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> s: FStar.UInt32.t -> Prims.Pure FStar.UInt8.t
Prims.Pure
[]
[]
[ "FStar.UInt8.t", "FStar.UInt32.t", "FStar.UInt8.Mk", "FStar.UInt.shift_left", "FStar.UInt8.n", "FStar.UInt8.v", "FStar.UInt32.v" ]
[]
false
false
false
false
false
let shift_left a s =
Mk (shift_left (v a) (UInt32.v s))
false
Steel.ST.Printf.fst
Steel.ST.Printf.intro_normal_f
val intro_normal_f (#a: Type) (b: (a -> Type)) (f: (x: a -> b x)) : (x: (normal a) -> normal (b x))
val intro_normal_f (#a: Type) (b: (a -> Type)) (f: (x: a -> b x)) : (x: (normal a) -> normal (b x))
let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 5, "end_line": 517, "start_col": 0, "start_line": 515 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: (_: a -> Type) -> f: (x: a -> b x) -> x: Steel.ST.Printf.normal a -> Steel.ST.Printf.normal (b x)
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.normal" ]
[]
false
false
false
false
false
let intro_normal_f (#a: Type) (b: (a -> Type)) (f: (x: a -> b x)) : (x: (normal a) -> normal (b x)) =
f
false
FStar.UInt8.fst
FStar.UInt8.lemma_sub_msbs
val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
val lemma_sub_msbs (a:t) (b:t) : Lemma ((msb (v a) = msb (v b)) ==> (v a < v b <==> msb (v (sub_mod a b))))
let lemma_sub_msbs a b = from_vec_propriety (to_vec (v a)) 1; from_vec_propriety (to_vec (v b)) 1; from_vec_propriety (to_vec (v (sub_mod a b))) 1
{ "file_name": "ulib/FStar.UInt8.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 82, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.UInt8 (**** THIS MODULE IS GENERATED AUTOMATICALLY USING [mk_int.sh], DO NOT EDIT DIRECTLY ****) open FStar.UInt open FStar.Mul #set-options "--max_fuel 0 --max_ifuel 0" type t : eqtype = | Mk: v:uint_t n -> t let v x = x.v irreducible let uint_to_t x = Mk x let uv_inv _ = () let vu_inv _ = () let v_inj _ _ = () let zero = uint_to_t 0 let one = uint_to_t 1 let add a b = Mk (add (v a) (v b)) let add_underspec a b = Mk (add_underspec (v a) (v b)) let add_mod a b = Mk (add_mod (v a) (v b)) let sub a b = Mk (sub (v a) (v b)) let sub_underspec a b = Mk (sub_underspec (v a) (v b)) let sub_mod a b = Mk (sub_mod (v a) (v b)) let mul a b = Mk (mul (v a) (v b)) let mul_underspec a b = Mk (mul_underspec (v a) (v b)) let mul_mod a b = Mk (mul_mod (v a) (v b)) let div a b = Mk (div (v a) (v b)) let rem a b = Mk (mod (v a) (v b)) let logand x y = Mk (logand (v x) (v y)) let logxor x y = Mk (logxor (v x) (v y)) let logor x y = Mk (logor (v x) (v y)) let lognot x = Mk (lognot (v x)) let shift_right a s = Mk (shift_right (v a) (UInt32.v s)) #push-options "--z3rlimit 80 --fuel 1" //AR: working around the interleaving semantics of pragmas let shift_left a s = Mk (shift_left (v a) (UInt32.v s))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt32.fsti.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": true, "source_file": "FStar.UInt8.fst" }
[ { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 1, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 80, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: FStar.UInt8.t -> b: FStar.UInt8.t -> FStar.Pervasives.Lemma (ensures FStar.UInt.msb (FStar.UInt8.v a) = FStar.UInt.msb (FStar.UInt8.v b) ==> (FStar.UInt8.v a < FStar.UInt8.v b <==> FStar.UInt.msb (FStar.UInt8.v (FStar.UInt8.sub_mod a b))))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt8.t", "FStar.UInt.from_vec_propriety", "FStar.UInt8.n", "FStar.UInt.to_vec", "FStar.UInt8.v", "FStar.UInt8.sub_mod", "Prims.unit" ]
[]
true
false
true
false
false
let lemma_sub_msbs a b =
from_vec_propriety (to_vec (v a)) 1; from_vec_propriety (to_vec (v b)) 1; from_vec_propriety (to_vec (v (sub_mod a b))) 1
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.carry_wide
val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime)
val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime)
let carry_wide f = let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc (==) { SD.bn_v out % P.prime; (==) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; (==) { } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; (==) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; (==) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 160, "start_col": 0, "start_line": 138 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime) let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; } val carry_wide: f:felem_wide -> Pure felem (requires True) (ensures fun out -> SD.bn_v out % P.prime == SD.bn_v f % P.prime)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem_wide -> Prims.Pure Hacl.Spec.Curve25519.Field64.Core.felem
Prims.Pure
[]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem_wide", "Lib.IntTypes.uint64", "Hacl.Spec.Curve25519.Field64.Core.felem", "Prims.unit", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Lib.IntTypes.U64", "Spec.Curve25519.prime", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Lib.Sequence.concat", "Hacl.Spec.Bignum.Definitions.limb", "Lib.Sequence.sub", "Prims.op_Addition", "FStar.Mul.op_Star", "Prims.pow2", "Lib.IntTypes.v", "Lib.IntTypes.SEC", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Hacl.Spec.Curve25519.Field64.Core.carry_pass_lemma", "Prims.squash", "Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_pow256_add", "Hacl.Spec.Bignum.Definitions.bn_concat_lemma", "Lib.Sequence.eq_intro", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.carry_pass", "Hacl.Spec.Curve25519.Field64.Lemmas.carry_wide_bound", "Hacl.Spec.Bignum.Definitions.bn_eval_bound", "Prims._assert", "FStar.Pervasives.Native.tuple2", "Lib.IntTypes.int_t", "Hacl.Spec.Curve25519.Field64.Core.mul1_add", "Lib.IntTypes.u64" ]
[]
false
false
false
false
false
let carry_wide f =
let c, r0 = mul1_add (sub f 4 4) (u64 38) (sub f 0 4) in assert (SD.bn_v r0 + v c * pow2 256 == SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38); SD.bn_eval_bound (sub f 0 4) 4; SD.bn_eval_bound (sub f 4 4) 4; SD.bn_eval_bound r0 4; Lemmas.carry_wide_bound (SD.bn_v r0) (v c) (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)); let out = carry_pass r0 c in calc ( == ) { SD.bn_v out % P.prime; ( == ) { carry_pass_lemma r0 c } (SD.bn_v r0 + v c * pow2 256) % P.prime; ( == ) { () } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * 38) % P.prime; ( == ) { Lemmas.lemma_mul_pow256_add (SD.bn_v (sub f 0 4)) (SD.bn_v (sub f 4 4)) } (SD.bn_v (sub f 0 4) + SD.bn_v (sub f 4 4) * pow2 256) % P.prime; ( == ) { SD.bn_concat_lemma (sub f 0 4) (sub f 4 4) } SD.bn_v (concat (sub f 0 4) (sub f 4 4)) % P.prime; ( == ) { eq_intro f (concat (sub f 0 4) (sub f 4 4)) } SD.bn_v f % P.prime; }; out
false
Hacl.Spec.Curve25519.Field64.Core.fst
Hacl.Spec.Curve25519.Field64.Core.carry_pass_lemma
val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime)
val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime)
let carry_pass_lemma f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in SD.bn_upd_eval r b1 0; calc (==) { SD.bn_v out % P.prime; (==) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[0] + v b1) % P.prime; (==) { lemma_add1_carry f cin } (SD.bn_v r - v r.[0] + (v r.[0] + v c * 38)) % P.prime; (==) { } (SD.bn_v r + v c * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; (==) { } (SD.bn_v f + v cin * 38) % P.prime; (==) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; }
{ "file_name": "code/curve25519/Hacl.Spec.Curve25519.Field64.Core.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 129, "start_col": 0, "start_line": 109 }
module Hacl.Spec.Curve25519.Field64.Core open FStar.Mul open Lib.IntTypes open Lib.Sequence open Hacl.Spec.Curve25519.Field64.Definition module P = Spec.Curve25519 module CL = Hacl.Spec.Curve25519.Field64.Lemmas module SD = Hacl.Spec.Bignum.Definitions module SB = Hacl.Spec.Bignum #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let felem = SD.lbignum U64 4 unfold let felem_wide = SD.lbignum U64 8 // let as_felem4 (e:felem) : felem4 = // (e.[0], e.[1], e.[2], e.[3]) // let as_nat (e:felem) = as_nat4 (as_felem4 e) val add1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin) let add1 f cin = let (c, out) = SB.bn_add1 f cin in SB.bn_add1_lemma f cin; (c, out) val sub1: f:felem -> cin:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> v c <= 1 /\ SD.bn_v r - v c * pow2 256 == SD.bn_v f - v cin) let sub1 f cin = let c, out = SB.bn_sub1 f cin in SB.bn_sub1_lemma f cin; c, out val mul1: f:felem -> u:uint64 -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f * v u) let mul1 f u = let c, out = SB.bn_mul1 f u in SB.bn_mul1_lemma f u; c, out val mul1_add: f1:felem -> u2:uint64 -> f3:felem -> Pure (uint64 & felem) (requires True) (ensures fun (c, r) -> SD.bn_v r + v c * pow2 256 == SD.bn_v f3 + SD.bn_v f1 * v u2) let mul1_add f1 u2 f3 = let c, out = SB.bn_mul1_lshift_add f1 u2 0 f3 in SB.bn_mul1_lshift_add_lemma f1 u2 0 f3; c, out val carry_pass: f:felem -> cin:uint64 -> felem let carry_pass f cin = let c, r = add1 f (cin *. u64 38) in let b1 = r.[0] +. c *. u64 38 in let out = r.[0] <- b1 in out val lemma_add1_carry: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in v b1 == v r.[0] + v c * 38) let lemma_add1_carry f cin = let c, r = add1 f (cin *! u64 38) in let b1 = r.[0] +. c *. u64 38 in assert (SD.bn_v r + v c * pow2 256 == SD.bn_v f + v cin * 38); SD.bn_eval_split_i f 1; SD.bn_eval1 (slice f 0 1); //assert (SD.bn_v f == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4)); SD.bn_eval_split_i r 1; SD.bn_eval1 (slice r 0 1); assert (v r.[0] + pow2 64 * SD.bn_v (slice r 1 4) + v c * pow2 256 == v f.[0] + pow2 64 * SD.bn_v (slice f 1 4) + v cin * 38); SD.bn_eval_bound (slice f 1 4) 3; SD.bn_eval_bound (slice r 1 4) 3; Math.Lemmas.pow2_plus 64 192; assert (v r.[0] == (v f.[0] + v cin * 38) % pow2 64) val carry_pass_lemma: f:felem -> cin:uint64{v cin * 38 < pow2 63} -> Lemma (SD.bn_v (carry_pass f cin) % P.prime == (SD.bn_v f + v cin * pow2 256) % P.prime)
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.IntTypes.fsti.checked", "Hacl.Spec.Curve25519.Field64.Lemmas.fst.checked", "Hacl.Spec.Curve25519.Field64.Definition.fst.checked", "Hacl.Spec.Bignum.Definitions.fst.checked", "Hacl.Spec.Bignum.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "Hacl.Spec.Curve25519.Field64.Core.fst" }
[ { "abbrev": true, "full_module": "Hacl.Spec.Bignum", "short_module": "SB" }, { "abbrev": true, "full_module": "Hacl.Spec.Bignum.Definitions", "short_module": "SD" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Field64.Lemmas", "short_module": "CL" }, { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64.Definition", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Spec.Curve25519.Field64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: Hacl.Spec.Curve25519.Field64.Core.felem -> cin: Lib.IntTypes.uint64{Lib.IntTypes.v cin * 38 < Prims.pow2 63} -> FStar.Pervasives.Lemma (ensures Hacl.Spec.Bignum.Definitions.bn_v (Hacl.Spec.Curve25519.Field64.Core.carry_pass f cin) % Spec.Curve25519.prime == (Hacl.Spec.Bignum.Definitions.bn_v f + Lib.IntTypes.v cin * Prims.pow2 256) % Spec.Curve25519.prime)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Hacl.Spec.Curve25519.Field64.Core.felem", "Lib.IntTypes.uint64", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U64", "Lib.IntTypes.SEC", "Prims.pow2", "FStar.Calc.calc_finish", "Prims.int", "Prims.eq2", "Prims.op_Modulus", "Hacl.Spec.Bignum.Definitions.bn_v", "Spec.Curve25519.prime", "Prims.op_Addition", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "Prims.unit", "FStar.Calc.calc_step", "Prims.op_Subtraction", "Lib.Sequence.op_String_Access", "Hacl.Spec.Bignum.Definitions.limb", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.squash", "Hacl.Spec.Curve25519.Field64.Core.lemma_add1_carry", "Hacl.Spec.Curve25519.Field64.Lemmas.lemma_mul_pow256_add", "Hacl.Spec.Bignum.Definitions.bn_upd_eval", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_LessThanOrEqual", "Prims.l_imp", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.int_t", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.u64", "FStar.Pervasives.Native.tuple2", "Hacl.Spec.Bignum.Definitions.lbignum", "Hacl.Spec.Curve25519.Field64.Core.add1", "Lib.IntTypes.op_Star_Bang" ]
[]
false
false
true
false
false
let carry_pass_lemma f cin =
let c, r = add1 f (cin *! u64 38) in let b1 = r.[ 0 ] +. c *. u64 38 in let out = r.[ 0 ] <- b1 in SD.bn_upd_eval r b1 0; calc ( == ) { SD.bn_v out % P.prime; ( == ) { assert_norm (pow2 0 = 1) } (SD.bn_v r - v r.[ 0 ] + v b1) % P.prime; ( == ) { lemma_add1_carry f cin } (SD.bn_v r - v r.[ 0 ] + (v r.[ 0 ] + v c * 38)) % P.prime; ( == ) { () } (SD.bn_v r + v c * 38) % P.prime; ( == ) { Lemmas.lemma_mul_pow256_add (SD.bn_v r) (v c) } (SD.bn_v r + v c * pow2 256) % P.prime; ( == ) { () } (SD.bn_v f + v cin * 38) % P.prime; ( == ) { Lemmas.lemma_mul_pow256_add (SD.bn_v f) (v cin) } (SD.bn_v f + v cin * pow2 256) % P.prime; }
false
Steel.ST.Printf.fst
Steel.ST.Printf.interpret_frags
val interpret_frags (l: fragments) (acc: list frag_t) : Type u#1
val interpret_frags (l: fragments) (acc: list frag_t) : Type u#1
let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 39, "end_line": 338, "start_col": 0, "start_line": 305 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__]
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Steel.ST.Printf.fragments -> acc: Prims.list Steel.ST.Printf.frag_t -> Type
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.fragments", "Prims.list", "Steel.ST.Printf.frag_t", "Steel.ST.Printf.lift", "Prims.unit", "Steel.ST.Printf.live_frags", "Steel.Effect.Common.vprop", "Steel.ST.Printf.base_typ", "Steel.ST.Printf.fragment", "Steel.ST.Printf.base_typ_as_type", "Steel.ST.Printf.interpret_frags", "Prims.Cons", "FStar.Pervasives.Inr", "Prims.string", "Prims.dtuple2", "Steel.ST.Printf.arg", "Steel.ST.Printf.arg_t", "Prims.Mkdtuple2", "Steel.ST.Printf.Base", "Steel.ST.Printf.Lift", "FStar.UInt32.t", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.Printf.lmbuffer", "Steel.ST.Printf.Array", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "Steel.ST.Printf.Any", "FStar.Pervasives.Mkdtuple3", "FStar.Pervasives.Inl" ]
[ "recursion" ]
false
false
false
true
true
let rec interpret_frags (l: fragments) (acc: list frag_t) : Type u#1 =
match l with | [] -> lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> x: base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> l: UInt32.t -> #p: perm -> #v: Ghost.erased (Seq.seq (base_typ_as_type t)) -> b: lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a: Type0 -> p: (a -> StTrivial unit) -> x: a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> interpret_frags args (Inl s :: acc)
false
Steel.ST.Printf.fst
Steel.ST.Printf.printf'
val printf' (s: format_string) : interpret_format_string s
val printf' (s: format_string) : interpret_format_string s
let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags)
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 45, "end_line": 510, "start_col": 0, "start_line": 507 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time.
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Steel.ST.Printf.format_string -> Steel.ST.Printf.interpret_format_string s
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.format_string", "FStar.Pervasives.normalize_term", "Steel.ST.Printf.interpret_format_string", "Steel.ST.Printf.parse_format_string", "Steel.ST.Printf.fragments", "Steel.ST.Printf.aux", "Prims.Nil", "Steel.ST.Printf.frag_t", "Steel.ST.Printf.print_frags" ]
[]
false
false
false
false
false
let printf' (s: format_string) : interpret_format_string s =
normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags)
false
Steel.ST.Printf.fst
Steel.ST.Printf.skip'
val skip' (s: format_string) : interpret_format_string s
val skip' (s: format_string) : interpret_format_string s
let skip' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] (fun _ -> noop ()))
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 52, "end_line": 539, "start_col": 0, "start_line": 536 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type noextract inline_for_extraction let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f /// `printf`: The main function has type /// `s:normal format_string -> normal (interpret_format_string s)` /// Note: /// This is the type F* infers for it and it is best to leave it that way /// rather then writing it down and asking F* to re-check what it inferred. /// /// Annotating it results in a needless additional proof obligation to /// equate types after they are partially reduced, which is pointless. noextract inline_for_extraction val printf : s:normal format_string -> normal (interpret_format_string s) let printf = intro_normal_f #format_string interpret_format_string printf' /// `skip`: We also provide `skip`, a function that has the same type as printf /// but normalizes to `()`, i.e., it prints nothing. This is useful for conditional /// printing in debug code, for instance.
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Steel.ST.Printf.format_string -> Steel.ST.Printf.interpret_format_string s
Prims.Tot
[ "total" ]
[]
[ "Steel.ST.Printf.format_string", "FStar.Pervasives.normalize_term", "Steel.ST.Printf.interpret_format_string", "Steel.ST.Printf.parse_format_string", "Steel.ST.Printf.fragments", "Steel.ST.Printf.aux", "Prims.Nil", "Steel.ST.Printf.frag_t", "Prims.list", "Steel.ST.Util.noop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Prims.unit" ]
[]
false
false
false
false
false
let skip' (s: format_string) : interpret_format_string s =
normalize_term (match parse_format_string s with | Some frags -> aux frags [] (fun _ -> noop ()))
false
Hacl.Impl.Curve25519.Finv.fst
Hacl.Impl.Curve25519.Finv.fsquare_times_inv
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0
let fsquare_times_inv #s h f = match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 26, "start_col": 0, "start_line": 23 }
module Hacl.Impl.Curve25519.Finv open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module C = Hacl.Impl.Curve25519.Fields.Core module S = Hacl.Spec.Curve25519.Finv module P = Spec.Curve25519 let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options" noextract
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Loops.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Impl.Curve25519.Fields.Core.fsti.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Finv.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Finv", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> f: Hacl.Impl.Curve25519.Fields.Core.felem s -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.f51_felem_fits", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.l_True" ]
[]
false
false
false
false
true
let fsquare_times_inv #s h f =
match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True
false
Hacl.Impl.Curve25519.Finv.fst
Hacl.Impl.Curve25519.Finv.fmuls_pre
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0
let fmuls_pre #s h f1 f2 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 55, "start_col": 0, "start_line": 52 }
module Hacl.Impl.Curve25519.Finv open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module C = Hacl.Impl.Curve25519.Fields.Core module S = Hacl.Spec.Curve25519.Finv module P = Spec.Curve25519 let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options" noextract val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 let fsquare_times_inv #s h f = match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) [@ Meta.Attribute.inline_ ] let fsqr_s #s out f1 tmp = C.fsqr #s out f1 tmp noextract
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Loops.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Impl.Curve25519.Fields.Core.fsti.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Finv.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Finv", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> f1: Hacl.Impl.Curve25519.Fields.Core.felem s -> f2: Hacl.Impl.Curve25519.Fields.Core.felem s -> Type0
Prims.Tot
[ "total" ]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Curve25519.Fields.Core.felem", "Prims.l_and", "Hacl.Impl.Curve25519.Fields.Core.f51_felem_fits", "FStar.Pervasives.Native.Mktuple5", "Prims.nat", "Prims.l_True" ]
[]
false
false
false
false
true
let fmuls_pre #s h f1 f2 =
match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True
false
Hacl.Impl.Curve25519.Finv.fst
Hacl.Impl.Curve25519.Finv.fsqr_s
val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
let fsqr_s #s out f1 tmp = C.fsqr #s out f1 tmp
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 47, "start_col": 0, "start_line": 46 }
module Hacl.Impl.Curve25519.Finv open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module C = Hacl.Impl.Curve25519.Fields.Core module S = Hacl.Spec.Curve25519.Finv module P = Spec.Curve25519 let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options" noextract val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 let fsquare_times_inv #s h f = match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Loops.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Impl.Curve25519.Fields.Core.fsti.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Finv.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Finv", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Impl.Curve25519.Fields.Core.felem s -> f1: Hacl.Impl.Curve25519.Fields.Core.felem s -> tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide s -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.felem_wide", "Hacl.Impl.Curve25519.Fields.Core.fsqr", "Prims.unit" ]
[]
false
true
false
false
false
let fsqr_s #s out f1 tmp =
C.fsqr #s out f1 tmp
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_rl_f
val exp_rl_f : k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 17, "start_col": 0, "start_line": 14 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.mul", "Prims.op_Equality", "Prims.int", "Lib.Exponentiation.get_ith_bit", "Prims.bool" ]
[]
false
false
false
false
false
let exp_rl_f (#t: Type) (k: comm_monoid t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (acc, c: tuple2 t t) : tuple2 t t =
let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c)
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_rl
val exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
val exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 21, "start_col": 0, "start_line": 19 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_rl_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one" ]
[]
false
false
false
false
false
let exp_rl (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t =
let acc, c = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_lr
val exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
val exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 48, "end_line": 34, "start_col": 0, "start_line": 33 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_lr_f", "Lib.Exponentiation.Definition.one" ]
[]
false
false
false
false
false
let exp_lr (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t =
Loops.repeati bBits (exp_lr_f k a bBits b) one
false
Hacl.Impl.Curve25519.Finv.fst
Hacl.Impl.Curve25519.Finv.fmul_s
val fmul_s: #s:field_spec -> out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmuls_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
val fmul_s: #s:field_spec -> out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmuls_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
let fmul_s #s out f1 f2 tmp = C.fmul #s out f1 f2 tmp
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 79, "start_col": 0, "start_line": 78 }
module Hacl.Impl.Curve25519.Finv open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module C = Hacl.Impl.Curve25519.Fields.Core module S = Hacl.Spec.Curve25519.Finv module P = Spec.Curve25519 let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options" noextract val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 let fsquare_times_inv #s h f = match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) [@ Meta.Attribute.inline_ ] let fsqr_s #s out f1 tmp = C.fsqr #s out f1 tmp noextract val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0 let fmuls_pre #s h f1 f2 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True val fmul_s: #s:field_spec -> out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmuls_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Loops.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Impl.Curve25519.Fields.Core.fsti.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Finv.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Finv", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
out: Hacl.Impl.Curve25519.Fields.Core.felem s -> f1: Hacl.Impl.Curve25519.Fields.Core.felem s -> f2: Hacl.Impl.Curve25519.Fields.Core.felem s -> tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide2 s -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.felem_wide2", "Hacl.Impl.Curve25519.Fields.Core.fmul", "Prims.unit" ]
[]
false
true
false
false
false
let fmul_s #s out f1 f2 tmp =
C.fmul #s out f1 f2 tmp
false
Lib.Exponentiation.fsti
Lib.Exponentiation.get_ith_bit
val get_ith_bit : bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> Prims.int
let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 11, "start_col": 0, "start_line": 10 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Modulus", "Prims.op_Division", "Prims.int" ]
[]
false
false
false
false
false
let get_ith_bit (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) =
b / pow2 i % 2
false
Lib.Exponentiation.fsti
Lib.Exponentiation.cswap
val cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t
val cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t
let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 57, "start_col": 0, "start_line": 56 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sw: Prims.nat -> r0: t -> r1: t -> t * t
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
true
false
let cswap (#t: Type) (sw: nat) (r0 r1: t) : tuple2 t t =
if sw = 1 then (r1, r0) else (r0, r1)
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder
val exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
val exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 49, "start_col": 0, "start_line": 47 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_mont_ladder_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one" ]
[]
false
false
false
false
false
let exp_mont_ladder (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t =
let r0, r1 = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder_swap2
val exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
val exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 69, "start_col": 0, "start_line": 67 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_mont_ladder_swap2_f", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.one" ]
[]
false
false
false
false
false
let exp_mont_ladder_swap2 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t =
let r0, r1 = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_lr_f
val exp_lr_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (acc: t) : t
val exp_lr_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (acc: t) : t
let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 31, "start_col": 0, "start_line": 28 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> acc: t -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.op_Equality", "Prims.int", "Lib.Exponentiation.get_ith_bit", "Prims.op_Subtraction", "Prims.bool", "Lib.Exponentiation.Definition.mul" ]
[]
false
false
false
false
false
let exp_lr_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (acc: t) : t =
let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder_f
val exp_mont_ladder_f : k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 45, "start_col": 0, "start_line": 41 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Prims.op_Equality", "Prims.int", "Lib.Exponentiation.get_ith_bit", "Prims.op_Subtraction", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.mul", "Prims.bool" ]
[]
false
false
false
false
false
let exp_mont_ladder_f (#t: Type) (k: comm_monoid t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (r0, r1: tuple2 t t) : tuple2 t t =
if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1)
false
Steel.ST.Printf.fst
Steel.ST.Printf.test2_printf
val test2_printf (x: (int * int)) (print_pair: ((int * int) -> StTrivial unit)) : STT unit emp (fun _ -> emp)
val test2_printf (x: (int * int)) (print_pair: ((int * int) -> StTrivial unit)) : STT unit emp (fun _ -> emp)
let test2_printf (x:(int * int)) (print_pair:(int * int) -> StTrivial unit) : STT unit emp (fun _ -> emp) = printf "Hello pair %a" print_pair x done
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 570, "start_col": 0, "start_line": 568 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type noextract inline_for_extraction let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f /// `printf`: The main function has type /// `s:normal format_string -> normal (interpret_format_string s)` /// Note: /// This is the type F* infers for it and it is best to leave it that way /// rather then writing it down and asking F* to re-check what it inferred. /// /// Annotating it results in a needless additional proof obligation to /// equate types after they are partially reduced, which is pointless. noextract inline_for_extraction val printf : s:normal format_string -> normal (interpret_format_string s) let printf = intro_normal_f #format_string interpret_format_string printf' /// `skip`: We also provide `skip`, a function that has the same type as printf /// but normalizes to `()`, i.e., it prints nothing. This is useful for conditional /// printing in debug code, for instance. noextract inline_for_extraction let skip' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] (fun _ -> noop ())) noextract inline_for_extraction val skip : s:normal format_string -> normal (interpret_format_string s) let skip = intro_normal_f #format_string interpret_format_string skip' /// `test`: A small test function /// Running `fstar --codegen OCaml Steel.ST.Printf.fst --extract Steel.ST.Printf` /// produces the following for the body of this function /// ``` /// print_string "Hello "; /// print_bool true; /// print_string " Steel.ST "; /// print_u64 m; /// print_string " Printf "; /// print_lmbuffer_bool l x () (); /// print_string " "; /// print_string "bye" /// ``` let test_printf (m:UInt64.t) (l:UInt32.t) (x:A.array bool {A.length x == U32.v l}) (v: Ghost.erased (Seq.seq bool)) : STT unit (A.pts_to x full_perm v) (fun _ -> A.pts_to x full_perm v) = printf "Hello %b Steel.ST %uL Printf %xb %s" true //%b boolean m //%uL u64 l x //%xb (buffer bool) "bye" done //dummy universe coercion
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: (Prims.int * Prims.int) -> print_pair: (_: (Prims.int * Prims.int) -> Steel.ST.Printf.StTrivial Prims.unit) -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "FStar.Pervasives.Native.tuple2", "Prims.int", "Prims.unit", "Steel.ST.Printf.printf", "Steel.ST.Printf.done", "Steel.Effect.Common.emp", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let test2_printf (x: (int * int)) (print_pair: ((int * int) -> StTrivial unit)) : STT unit emp (fun _ -> emp) =
printf "Hello pair %a" print_pair x done
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder_swap
val exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
val exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t
let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 86, "start_col": 0, "start_line": 83 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "Lib.Exponentiation.cswap", "FStar.Pervasives.Native.tuple3", "Lib.LoopCombinators.repeati", "Lib.Exponentiation.exp_mont_ladder_swap_f", "FStar.Pervasives.Native.Mktuple3", "Lib.Exponentiation.Definition.one" ]
[]
false
false
false
false
false
let exp_mont_ladder_swap (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) : t =
let r0, r1, sw = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let r0, r1 = cswap sw r0 r1 in r0
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_pow2
val exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t
val exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t
let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 94, "start_col": 0, "start_line": 93 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> b: Prims.nat -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Lib.LoopCombinators.repeat", "Lib.Exponentiation.Definition.sqr" ]
[]
false
false
false
true
false
let exp_pow2 (#t: Type) (k: comm_monoid t) (a: t) (b: nat) : t =
Loops.repeat b (sqr k) a
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder_swap2_f
val exp_mont_ladder_swap2_f : k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 65, "start_col": 0, "start_line": 60 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: (t * t) -> t * t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.cswap", "Lib.Exponentiation.Definition.mul", "Prims.int", "Lib.Exponentiation.get_ith_bit", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let exp_mont_ladder_swap2_f (#t: Type) (k: comm_monoid t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (r0, r1: tuple2 t t) : tuple2 t t =
let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1)
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_mont_ladder_swap_f
val exp_mont_ladder_swap_f : k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: ((t * t) * Prims.nat) -> (t * t) * Prims.nat
let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 81, "start_col": 0, "start_line": 76 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> _: ((t * t) * Prims.nat) -> (t * t) * Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "FStar.Pervasives.Native.tuple3", "FStar.Pervasives.Native.Mktuple3", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.cswap", "Prims.int", "Prims.op_Modulus", "Prims.op_Addition", "Lib.Exponentiation.get_ith_bit", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let exp_mont_ladder_swap_f (#t: Type) (k: comm_monoid t) (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (r0, r1, privbit: tuple3 t t nat) : tuple3 t t nat =
let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit)
false
Lib.Exponentiation.fsti
Lib.Exponentiation.get_ith_lbits
val get_ith_lbits : bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> l: Prims.pos -> Prims.int
let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 101, "start_col": 0, "start_line": 100 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> i: Prims.nat{i < bBits} -> l: Prims.pos -> Prims.int
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Modulus", "Prims.op_Division", "Prims.int" ]
[]
false
false
false
false
false
let get_ith_lbits (bBits: nat) (b: nat{b < pow2 bBits}) (i: nat{i < bBits}) (l: pos) =
b / pow2 i % pow2 l
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_fw_acc0
val exp_fw_acc0 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
val exp_fw_acc0 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 16, "end_line": 119, "start_col": 0, "start_line": 117 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos{bBits % l <> 0} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.get_ith_lbits", "FStar.Mul.op_Star", "Prims.op_Division" ]
[]
false
false
false
false
false
let exp_fw_acc0 (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos{bBits % l <> 0}) : t =
let bits_c = get_ith_lbits bBits b ((bBits / l) * l) l in pow k a bits_c
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_fw
val exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t
val exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t
let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 124, "start_col": 0, "start_line": 121 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Lib.LoopCombinators.repeati", "Prims.op_Division", "Lib.Exponentiation.exp_fw_f", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_fw_acc0" ]
[]
false
false
false
false
false
let exp_fw (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) : t =
let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res
false
Lib.Exponentiation.fsti
Lib.Exponentiation.mul_acc_pow_a_bits_l
val mul_acc_pow_a_bits_l (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
val mul_acc_pow_a_bits_l (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l)
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 110, "start_col": 0, "start_line": 108 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i < bBits / l} -> acc: t -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Division", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.Definition.pow", "Lib.Exponentiation.get_bits_l" ]
[]
false
false
false
false
false
let mul_acc_pow_a_bits_l (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t =
let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l)
false
Lib.Exponentiation.fsti
Lib.Exponentiation.get_bits_l
val get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) : r: nat{r < pow2 l}
val get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) : r: nat{r < pow2 l}
let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 106, "start_col": 0, "start_line": 103 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i < bBits / l} -> r: Prims.nat{r < Prims.pow2 l}
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Division", "Lib.Exponentiation.get_ith_lbits", "Prims.op_Subtraction", "Prims.op_Modulus", "FStar.Mul.op_Star", "Prims.unit", "Prims._assert", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Math.Lemmas.lemma_mult_le_left" ]
[]
false
false
false
false
false
let get_bits_l (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) : r: nat{r < pow2 l} =
Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_double_fw_f
val exp_double_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
val exp_double_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 45, "end_line": 141, "start_col": 0, "start_line": 135 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //-------------------------------------------
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i < bBits / l} -> acc: t -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Division", "Lib.Exponentiation.mul_acc_pow_a_bits_l", "Lib.Exponentiation.exp_fw_f" ]
[]
false
false
false
false
false
let exp_double_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t =
let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_double_fw_acc0
val exp_double_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
val exp_double_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 148, "start_col": 0, "start_line": 143 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos{bBits % l <> 0} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.exp_fw_acc0" ]
[]
false
false
false
false
false
let exp_double_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t =
let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_fw_f
val exp_fw_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
val exp_fw_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 114, "start_col": 0, "start_line": 112 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a: t -> bBits: Prims.nat -> b: Prims.nat{b < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i < bBits / l} -> acc: t -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Division", "Lib.Exponentiation.mul_acc_pow_a_bits_l", "Lib.Exponentiation.exp_pow2" ]
[]
false
false
false
false
false
let exp_fw_f (#t: Type) (k: comm_monoid t) (a: t) (bBits: nat) (b: nat{b < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t =
let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_double_fw
val exp_double_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) : t
val exp_double_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) : t
let exp_double_fw (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 155, "start_col": 0, "start_line": 151 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 20, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> l: Prims.pos -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Lib.LoopCombinators.repeati", "Prims.op_Division", "Lib.Exponentiation.exp_double_fw_f", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_double_fw_acc0" ]
[]
false
false
false
false
false
let exp_double_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (l: pos) : t =
let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0
false
Hacl.Impl.Curve25519.Finv.fst
Hacl.Impl.Curve25519.Finv.fsquare_times
val fsquare_times: #s:field_spec -> o:felem s -> i:felem s -> tmp:felem_wide s -> n:size_t{v n > 0} -> Stack unit (requires fun h0 -> live h0 o /\ live h0 i /\ live h0 tmp /\ (disjoint o i \/ o == i) /\ disjoint o tmp /\ disjoint tmp i /\ fsquare_times_inv h0 i) (ensures fun h0 _ h1 -> modifies (loc o |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 o /\ feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
val fsquare_times: #s:field_spec -> o:felem s -> i:felem s -> tmp:felem_wide s -> n:size_t{v n > 0} -> Stack unit (requires fun h0 -> live h0 o /\ live h0 i /\ live h0 tmp /\ (disjoint o i \/ o == i) /\ disjoint o tmp /\ disjoint tmp i /\ fsquare_times_inv h0 i) (ensures fun h0 _ h1 -> modifies (loc o |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 o /\ feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
let fsquare_times #s o inp tmp n = let h0 = ST.get() in fsqr_s #s o inp tmp; S.lemma_pow_one (feval h0 inp); S.lemma_pow_add (feval h0 inp) 1 1; assert_norm (pow2 1 = 2); let inv (h:mem) (i:nat{i < v n}) = modifies (loc o |+| loc tmp) h0 h /\ fsquare_times_inv #s h o /\ feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in let h1 = ST.get () in assert (inv h1 0); Lib.Loops.for 0ul (n -! 1ul) inv (fun i -> let h2 = ST.get () in fsqr_s #s o o tmp; S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1)); Math.Lemmas.pow2_double_sum (v i + 1))
{ "file_name": "code/curve25519/Hacl.Impl.Curve25519.Finv.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 120, "start_col": 0, "start_line": 100 }
module Hacl.Impl.Curve25519.Finv open FStar.HyperStack open FStar.HyperStack.All open FStar.Mul open Lib.IntTypes open Lib.Buffer open Hacl.Impl.Curve25519.Fields module ST = FStar.HyperStack.ST module C = Hacl.Impl.Curve25519.Fields.Core module S = Hacl.Spec.Curve25519.Finv module P = Spec.Curve25519 let _: squash (inversion field_spec) = allow_inversion field_spec #reset-options "--z3rlimit 50 --fuel 0 --ifuel 0 --record_options" noextract val fsquare_times_inv: #s:field_spec -> h:mem -> f:felem s -> Type0 let fsquare_times_inv #s h f = match s with | M51 -> C.f51_felem_fits h f (1, 2, 1, 1, 1) | M64 -> True val fsqr_s: #s:field_spec -> out:felem s -> f1:felem s -> tmp:felem_wide s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out tmp) /\ disjoint tmp f1 /\ fsquare_times_inv h f1) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f1)) [@ Meta.Attribute.inline_ ] let fsqr_s #s out f1 tmp = C.fsqr #s out f1 tmp noextract val fmuls_pre: #s:field_spec -> h:mem -> f1:felem s -> f2:felem s -> Type0 let fmuls_pre #s h f1 f2 = match s with | M51 -> f51_felem_fits h f1 (1, 2, 1, 1, 1) /\ f51_felem_fits h f2 (1, 2, 1, 1, 1) | M64 -> True val fmul_s: #s:field_spec -> out:felem s -> f1:felem s -> f2:felem s -> tmp:felem_wide2 s -> Stack unit (requires fun h -> live h out /\ live h f1 /\ live h f2 /\ live h tmp /\ (disjoint out f1 \/ out == f1) /\ (disjoint out f2 \/ out == f2) /\ (disjoint out tmp) /\ (disjoint f1 f2 \/ f1 == f2) /\ disjoint f1 tmp /\ disjoint f2 tmp /\ fmuls_pre h f1 f2) (ensures fun h0 _ h1 -> modifies (loc out |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 out /\ feval h1 out == P.fmul (feval h0 f1) (feval h0 f2)) [@ Meta.Attribute.inline_ ] let fmul_s #s out f1 f2 tmp = C.fmul #s out f1 f2 tmp val fsquare_times: #s:field_spec -> o:felem s -> i:felem s -> tmp:felem_wide s -> n:size_t{v n > 0} -> Stack unit (requires fun h0 -> live h0 o /\ live h0 i /\ live h0 tmp /\ (disjoint o i \/ o == i) /\ disjoint o tmp /\ disjoint tmp i /\ fsquare_times_inv h0 i) (ensures fun h0 _ h1 -> modifies (loc o |+| loc tmp) h0 h1 /\ fsquare_times_inv h1 o /\ feval h1 o == S.pow (feval #s h0 i) (pow2 (v n)))
{ "checked_file": "/", "dependencies": [ "Spec.Curve25519.fst.checked", "prims.fst.checked", "Meta.Attribute.fst.checked", "Lib.Loops.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.Buffer.fsti.checked", "Hacl.Spec.Curve25519.Finv.fst.checked", "Hacl.Impl.Curve25519.Fields.Core.fsti.checked", "Hacl.Impl.Curve25519.Fields.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.All.fst.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Curve25519.Finv.fst" }
[ { "abbrev": true, "full_module": "Spec.Curve25519", "short_module": "P" }, { "abbrev": true, "full_module": "Hacl.Spec.Curve25519.Finv", "short_module": "S" }, { "abbrev": true, "full_module": "Hacl.Impl.Curve25519.Fields.Core", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519.Fields", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.All", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl.Curve25519", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
o: Hacl.Impl.Curve25519.Fields.Core.felem s -> i: Hacl.Impl.Curve25519.Fields.Core.felem s -> tmp: Hacl.Impl.Curve25519.Fields.Core.felem_wide s -> n: Lib.IntTypes.size_t{Lib.IntTypes.v n > 0} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Hacl.Impl.Curve25519.Fields.Core.field_spec", "Hacl.Impl.Curve25519.Fields.Core.felem", "Hacl.Impl.Curve25519.Fields.Core.felem_wide", "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_GreaterThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.Loops.for", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.op_Subtraction_Bang", "Prims.l_and", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Math.Lemmas.pow2_double_sum", "Prims.op_Addition", "Prims.unit", "Hacl.Spec.Curve25519.Finv.lemma_pow_add", "Hacl.Impl.Curve25519.Fields.Core.feval", "Prims.pow2", "Hacl.Impl.Curve25519.Finv.fsqr_s", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims._assert", "Prims.nat", "Prims.logical", "Lib.Buffer.modifies", "Lib.Buffer.op_Bar_Plus_Bar", "Lib.Buffer.loc", "Lib.Buffer.MUT", "Hacl.Impl.Curve25519.Fields.Core.limb", "Hacl.Impl.Curve25519.Fields.Core.wide", "Hacl.Impl.Curve25519.Finv.fsquare_times_inv", "Prims.eq2", "Spec.Curve25519.elem", "Hacl.Spec.Curve25519.Finv.pow", "FStar.Pervasives.assert_norm", "Prims.op_Equality", "Prims.int", "Hacl.Spec.Curve25519.Finv.lemma_pow_one" ]
[]
false
true
false
false
false
let fsquare_times #s o inp tmp n =
let h0 = ST.get () in fsqr_s #s o inp tmp; S.lemma_pow_one (feval h0 inp); S.lemma_pow_add (feval h0 inp) 1 1; assert_norm (pow2 1 = 2); let inv (h: mem) (i: nat{i < v n}) = modifies (loc o |+| loc tmp) h0 h /\ fsquare_times_inv #s h o /\ feval h o == S.pow (feval #s h0 inp) (pow2 (i + 1)) in let h1 = ST.get () in assert (inv h1 0); Lib.Loops.for 0ul (n -! 1ul) inv (fun i -> let h2 = ST.get () in fsqr_s #s o o tmp; S.lemma_pow_add (feval #s h0 inp) (pow2 (v i + 1)) (pow2 (v i + 1)); Math.Lemmas.pow2_double_sum (v i + 1))
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_four_fw_f
val exp_four_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
val exp_four_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t
let exp_four_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc = exp_fw_f k a4 bBits b4 l i acc in let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in acc
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 178, "start_col": 0, "start_line": 167 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2 #push-options "--z3rlimit 20" let exp_double_fw (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 #pop-options val exp_double_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2)) // [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4] //----------------------------------------------
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos -> i: Prims.nat{i < bBits / l} -> acc: t -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_Division", "Lib.Exponentiation.mul_acc_pow_a_bits_l", "Lib.Exponentiation.exp_fw_f" ]
[]
false
false
false
false
false
let exp_four_fw_f (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) (i: nat{i < bBits / l}) (acc: t) : t =
let acc = exp_fw_f k a4 bBits b4 l i acc in let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in acc
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_four_fw
val exp_four_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) : t
val exp_four_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) : t
let exp_four_fw (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in Loops.repeati (bBits / l) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 200, "start_col": 0, "start_line": 190 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2 #push-options "--z3rlimit 20" let exp_double_fw (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 #pop-options val exp_double_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2)) // [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4] //---------------------------------------------- let exp_four_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc = exp_fw_f k a4 bBits b4 l i acc in let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in acc let exp_four_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in mul acc_a12 acc_a34
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Lib.LoopCombinators.repeati", "Prims.op_Division", "Lib.Exponentiation.exp_four_fw_f", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.one", "Prims.bool", "Lib.Exponentiation.exp_four_fw_acc0" ]
[]
false
false
false
false
false
let exp_four_fw (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos) : t =
let acc0 = if bBits % l = 0 then one else exp_four_fw_acc0 k a1 bBits b1 a2 b2 a3 b3 a4 b4 l in Loops.repeati (bBits / l) (exp_four_fw_f k a1 bBits b1 a2 b2 a3 b3 a4 b4 l) acc0
false
Lib.Exponentiation.fsti
Lib.Exponentiation.exp_four_fw_acc0
val exp_four_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
val exp_four_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t
let exp_four_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in mul acc_a12 acc_a34
{ "file_name": "lib/Lib.Exponentiation.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 188, "start_col": 0, "start_line": 180 }
module Lib.Exponentiation open FStar.Mul module Loops = Lib.LoopCombinators include Lib.Exponentiation.Definition #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" let get_ith_bit (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) = b / pow2 i % 2 //a right-to-left binary method let exp_rl_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((acc, c) : tuple2 t t) : tuple2 t t = let acc = if (get_ith_bit bBits b i = 0) then acc else mul acc c in let c = mul c c in (acc, c) let exp_rl (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (acc, c) = Loops.repeati bBits (exp_rl_f k bBits b) (one, a) in acc val exp_rl_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_rl k a bBits b == pow k a b) //a left-to-right binary method let exp_lr_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (acc:t) : t = let acc = mul acc acc in let acc = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then acc else mul acc a in acc let exp_lr (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = Loops.repeati bBits (exp_lr_f k a bBits b) one val exp_lr_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_lr k a bBits b == pow k a b) // Montgomery ladder for exponentiation let exp_mont_ladder_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = if (get_ith_bit bBits b (bBits - 1 - i) = 0) then (mul r0 r0, mul r1 r0) else (mul r0 r1, mul r1 r1) let exp_mont_ladder (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_f k bBits b) (one, a) in r0 val exp_mont_ladder_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder k a bBits b == pow k a b) // Montgomery ladder for exponentiation with cswap let cswap (#t:Type) (sw:nat) (r0:t) (r1:t) : tuple2 t t = if sw = 1 then (r1, r0) else (r0, r1) // cswap -> step -> cswap -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap2_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1) : tuple2 t t) : tuple2 t t = let bit = get_ith_bit bBits b (bBits - 1 - i) in let r0, r1 = cswap bit r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in let r0, r1 = cswap bit r0 r1 in (r0, r1) let exp_mont_ladder_swap2 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1) = Loops.repeati bBits (exp_mont_ladder_swap2_f k bBits b) (one, a) in r0 val exp_mont_ladder_swap2_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap2 k a bBits b == exp_mont_ladder k a bBits b) // cswap -> step -> cswap -> step -> cswap -> .. let exp_mont_ladder_swap_f (#t:Type) (k:comm_monoid t) (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) ((r0, r1, privbit) : tuple3 t t nat) : tuple3 t t nat = let bit = get_ith_bit bBits b (bBits - 1 - i) in let sw = (bit + privbit) % 2 in let r0, r1 = cswap sw r0 r1 in let r0, r1 = (mul r0 r0, mul r1 r0) in (r0, r1, bit) let exp_mont_ladder_swap (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) : t = let (r0, r1, sw) = Loops.repeati bBits (exp_mont_ladder_swap_f k bBits b) (one, a, 0) in let (r0, r1) = cswap sw r0 r1 in r0 val exp_mont_ladder_swap_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> Lemma (exp_mont_ladder_swap k a bBits b == exp_mont_ladder k a bBits b) // a fixed window method let exp_pow2 (#t:Type) (k:comm_monoid t) (a:t) (b:nat) : t = Loops.repeat b (sqr k) a val exp_pow2_lemma: #t:Type -> k:comm_monoid t -> a:t -> b:nat -> Lemma (exp_pow2 k a b == pow k a (pow2 b)) let get_ith_lbits (bBits:nat) (b:nat{b < pow2 bBits}) (i:nat{i < bBits}) (l:pos) = b / pow2 i % pow2 l let get_bits_l (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) : r:nat{r < pow2 l} = Math.Lemmas.lemma_mult_le_left l (i + 1) (bBits / l); assert (l * (i + 1) <= l * (bBits / l)); get_ith_lbits bBits b (bBits - bBits % l - l * i - l) l let mul_acc_pow_a_bits_l (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let bits_l = get_bits_l bBits b l i in mul acc (pow k a bits_l) let exp_fw_f (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_pow2 k acc l in mul_acc_pow_a_bits_l k a bBits b l i acc1 let exp_fw_acc0 (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let bits_c = get_ith_lbits bBits b (bBits / l * l) l in pow k a bits_c let exp_fw (#t:Type) (k:comm_monoid t) (a:t) (bBits:nat) (b:nat{b < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_fw_acc0 k a bBits b l in let res = Loops.repeati (bBits / l) (exp_fw_f k a bBits b l) acc0 in res val exp_fw_lemma: #t:Type -> k:comm_monoid t -> a:t -> bBits:nat -> b:nat{b < pow2 bBits} -> l:pos -> Lemma (exp_fw k a bBits b l == pow k a b) /// Multi-Exponentiation // Double exponentiation [a1^b1 `mul` a2^b2] //------------------------------------------- let exp_double_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc1 = exp_fw_f k a2 bBits b2 l i acc in mul_acc_pow_a_bits_l k a1 bBits b1 l i acc1 let exp_double_fw_acc0 (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos{bBits % l <> 0}) : t = let acc_a1 = exp_fw_acc0 k a1 bBits b1 l in let acc_a2 = exp_fw_acc0 k a2 bBits b2 l in mul acc_a1 acc_a2 #push-options "--z3rlimit 20" let exp_double_fw (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (l:pos) : t = let acc0 = if bBits % l = 0 then one else exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in Loops.repeati (bBits / l) (exp_double_fw_f k a1 bBits b1 a2 b2 l) acc0 #pop-options val exp_double_fw_lemma: #t:Type -> k:comm_monoid t -> a1:t -> bBits:nat -> b1:nat{b1 < pow2 bBits} -> a2:t -> b2:nat{b2 < pow2 bBits} -> l:pos -> Lemma (exp_double_fw k a1 bBits b1 a2 b2 l == mul (pow k a1 b1) (pow k a2 b2)) // [a1^b1 `mul` a2^b2 `mul` a3^b3 `mul` a4^b4] //---------------------------------------------- let exp_four_fw_f (#t:Type) (k:comm_monoid t) (a1:t) (bBits:nat) (b1:nat{b1 < pow2 bBits}) (a2:t) (b2:nat{b2 < pow2 bBits}) (a3:t) (b3:nat{b3 < pow2 bBits}) (a4:t) (b4:nat{b4 < pow2 bBits}) (l:pos) (i:nat{i < bBits / l}) (acc:t) : t = let acc = exp_fw_f k a4 bBits b4 l i acc in let acc = mul_acc_pow_a_bits_l k a3 bBits b3 l i acc in let acc = mul_acc_pow_a_bits_l k a2 bBits b2 l i acc in let acc = mul_acc_pow_a_bits_l k a1 bBits b1 l i acc in acc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.LoopCombinators.fsti.checked", "Lib.Exponentiation.Definition.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Exponentiation.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Exponentiation.Definition", "short_module": null }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "Lib", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Lib.Exponentiation.Definition.comm_monoid t -> a1: t -> bBits: Prims.nat -> b1: Prims.nat{b1 < Prims.pow2 bBits} -> a2: t -> b2: Prims.nat{b2 < Prims.pow2 bBits} -> a3: t -> b3: Prims.nat{b3 < Prims.pow2 bBits} -> a4: t -> b4: Prims.nat{b4 < Prims.pow2 bBits} -> l: Prims.pos{bBits % l <> 0} -> t
Prims.Tot
[ "total" ]
[]
[ "Lib.Exponentiation.Definition.comm_monoid", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Prims.pow2", "Prims.pos", "Prims.op_disEquality", "Prims.int", "Prims.op_Modulus", "Lib.Exponentiation.Definition.mul", "Lib.Exponentiation.exp_double_fw_acc0" ]
[]
false
false
false
false
false
let exp_four_fw_acc0 (#t: Type) (k: comm_monoid t) (a1: t) (bBits: nat) (b1: nat{b1 < pow2 bBits}) (a2: t) (b2: nat{b2 < pow2 bBits}) (a3: t) (b3: nat{b3 < pow2 bBits}) (a4: t) (b4: nat{b4 < pow2 bBits}) (l: pos{bBits % l <> 0}) : t =
let acc_a12 = exp_double_fw_acc0 k a1 bBits b1 a2 b2 l in let acc_a34 = exp_double_fw_acc0 k a3 bBits b3 a4 b4 l in mul acc_a12 acc_a34
false
Vale.Poly1305.Bitvectors.fsti
Vale.Poly1305.Bitvectors.lowerUpper128u
val lowerUpper128u (l u: uint_t 64) : uint_t 128
val lowerUpper128u (l u: uint_t 64) : uint_t 128
let lowerUpper128u (l:uint_t 64) (u:uint_t 64) : uint_t 128 = 0x10000000000000000 * u + l
{ "file_name": "vale/code/crypto/poly1305/x64/Vale.Poly1305.Bitvectors.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 57, "start_col": 0, "start_line": 56 }
module Vale.Poly1305.Bitvectors open FStar.BV open FStar.Mul open FStar.UInt val lemma_shr2: (x:uint_t 64) -> Lemma ((shift_right #64 x 2 == udiv #64 x 4)) [SMTPat (shift_right #64 x 2)] val lemma_shr4: x:uint_t 64 -> Lemma (shift_right #64 x 4 == udiv #64 x 16) [SMTPat (shift_right #64 x 4)] val lemma_and_mod_n: x:uint_t 64 -> Lemma (logand #64 x 3 == mod #64 x 4 /\ logand #64 x 15 == mod #64 x 16) [SMTPat (logand #64 x 3); SMTPat (logand #64 x 15)] val lemma_clear_lower_2: x:uint_t 64 -> Lemma (logand #64 x 0xfffffffffffffffc == mul_mod #64 (udiv #64 x 4) 4) [SMTPat (logand #64 x 0xfffffffffffffffc)] val lemma_and_constants: x:uint_t 64 -> Lemma (logand #64 x 0 == 0 /\ logand #64 x 0xffffffffffffffff == x) [SMTPat (logand #64 x 0); SMTPat (logand #64 x 0xffffffffffffffff)] val lemma_poly_constants: x:uint_t 64 -> Lemma (logand #64 x 0x0ffffffc0fffffff < 0x1000000000000000 /\ logand #64 x 0x0ffffffc0ffffffc < 0x1000000000000000 /\ mod #64 (logand #64 x 0x0ffffffc0ffffffc) 4 == 0) [SMTPat (logand #64 x 0x0ffffffc0fffffff); SMTPat (logand #64 x 0x0ffffffc0ffffffc); SMTPat (logand #64 x 0x0ffffffc0ffffffc)] val lemma_and_commutes: x:uint_t 64 -> y:uint_t 64 -> Lemma (logand #64 x y == logand #64 y x) val lemma_bv128_64_64_and_helper: x:bv_t 128 -> x0:bv_t 64 -> x1:bv_t 64 -> y:bv_t 128 -> y0:bv_t 64 -> y1:bv_t 64 -> z:bv_t 128 -> z0:bv_t 64 -> z1:bv_t 64 -> Lemma (requires (z0 == bvand #64 x0 y0 /\ z1 == bvand #64 x1 y1 /\ x == bvor #128 (bvshl #128 (bv_uext #64 #64 x1) 64) (bv_uext #64 #64 x0) /\ y == bvor #128 (bvshl #128 (bv_uext #64 #64 y1) 64) (bv_uext #64 #64 y0) /\ z == bvor #128 (bvshl #128 (bv_uext #64 #64 z1) 64) (bv_uext #64 #64 z0))) (ensures (z == bvand #128 x y)) val bv128_64_64: x1:bv_t 64 -> x0:bv_t 64 -> Tot (bv_t 128) val lemma_bv128_64_64_and: x:bv_t 128 -> x0:bv_t 64 -> x1:bv_t 64 -> y:bv_t 128 -> y0:bv_t 64 -> y1:bv_t 64 -> z:bv_t 128 -> z0:bv_t 64 -> z1:bv_t 64 -> Lemma (requires (z0 == bvand #64 x0 y0 /\ z1 == bvand #64 x1 y1 /\ x == bv128_64_64 x0 x1 /\ y == bv128_64_64 y0 y1 /\ z == bv128_64_64 z0 z1)) (ensures (z == bvand #128 x y))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.UInt.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BV.fsti.checked" ], "interface_file": false, "source_file": "Vale.Poly1305.Bitvectors.fsti" }
[ { "abbrev": false, "full_module": "Vale.Math.Bits", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Bv_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.Math.Lemmas", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.BV", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics.Derived", "short_module": null }, { "abbrev": false, "full_module": "FStar.Tactics", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": false, "full_module": "FStar.UInt", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.BV", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: FStar.UInt.uint_t 64 -> u33: FStar.UInt.uint_t 64 -> FStar.UInt.uint_t 128
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt.uint_t", "Prims.op_Addition", "FStar.Mul.op_Star" ]
[]
false
false
false
false
false
let lowerUpper128u (l u: uint_t 64) : uint_t 128 =
0x10000000000000000 * u + l
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.serialize32_bounded_integer
val serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz))
val serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz))
let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 57, "start_col": 0, "start_line": 50 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: LowParse.Spec.BoundedInt.integer_size -> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_integer sz)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_1", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_2", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_3", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_4", "LowParse.SLow.Base.serializer32", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer", "LowParse.Spec.BoundedInt.serialize_bounded_integer" ]
[]
false
false
false
false
false
let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) =
match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4
false
Steel.ST.Printf.fst
Steel.ST.Printf.test_printf
val test_printf (m: UInt64.t) (l: UInt32.t) (x: A.array bool {A.length x == U32.v l}) (v: Ghost.erased (Seq.seq bool)) : STT unit (A.pts_to x full_perm v) (fun _ -> A.pts_to x full_perm v)
val test_printf (m: UInt64.t) (l: UInt32.t) (x: A.array bool {A.length x == U32.v l}) (v: Ghost.erased (Seq.seq bool)) : STT unit (A.pts_to x full_perm v) (fun _ -> A.pts_to x full_perm v)
let test_printf (m:UInt64.t) (l:UInt32.t) (x:A.array bool {A.length x == U32.v l}) (v: Ghost.erased (Seq.seq bool)) : STT unit (A.pts_to x full_perm v) (fun _ -> A.pts_to x full_perm v) = printf "Hello %b Steel.ST %uL Printf %xb %s" true //%b boolean m //%uL u64 l x //%xb (buffer bool) "bye" done
{ "file_name": "lib/steel/Steel.ST.Printf.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 566, "start_col": 0, "start_line": 559 }
(* Copyright 2008-2022 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.ST.Printf /// This module provides Steel.ST imperative printing functions for several /// primitive Low* types, including /// -- booleans (%b) /// -- characters (%c) /// -- strings (%s) /// -- machine integers /// (UInt8.t as %uy, UInt16.t as %us, UInt32.t as %ul, and UInt64.t as %uL; /// Int8.t as %y, Int16.t as %i, Int32.t as %l , and Int64.t as %L) /// -- and arrays of these base types formatted /// as %xN, where N is the format specifier for the array element type /// e.g., %xuy for buffers of UInt8.t /// The main function of this module is `printf` /// There are a few main differences relative to C printf /// -- The format specifiers are different (see above) /// /// -- For technical reasons explained below, an extra dummy /// argument `done` has to be provided at the end for the /// computation to have any effect. /// /// E.g., one must write /// `printf "%b %c" true 'c' done` /// rather than just /// `printf "%b %c" true 'c'` /// /// -- When printing arrays, two arguments must be passed; the /// length of the array fragment to be formatted and the array /// itself /// /// -- When extracted, rather than producing a C `printf` (which /// does not, e.g., support printing of dynamically sized /// arrays), our `printf` is specialized to a sequence of calls /// to primitive printers for each supported type /// /// Before diving into the technical details of how this module works, /// you might want to see a sample usage at the very end of this file. open FStar.Char open FStar.String open Steel.ST.Util module L = FStar.List.Tot module A = Steel.ST.Array module U32 = FStar.UInt32 #set-options "--ide_id_info_off" /// `lmbuffer a l` is /// - an array of `a` /// - governed by preorders `r` and `s` /// - with length `l` inline_for_extraction let lmbuffer a l = b: A.array a { A.length b == U32.v l } /// `StTrivial`: A effect abbreviation for a stateful computation /// with no precondition, and which does not read or change the state effect StTrivial (a:Type) = STT a emp (fun _ -> emp) /// `StBuf a b`: A effect abbreviation for a stateful computation /// that may read `b` but does not change the state /// /// NOTE: I need to provide those primitives operating on /// Steel.ST.Array.ptr instead of Steel.ST.Array.array, otherwise /// Karamel will complain about arity mismatch inline_for_extraction let stBuf (t:Type) : Type = (l: U32.t) -> (p: Ghost.erased (lmbuffer t l & perm)) -> (x: Ghost.erased (Seq.seq t)) -> (b: A.ptr t) -> ST unit (A.pts_to (fst p) (snd p) x) (fun _ -> A.pts_to (fst p) (snd p) x) (A.ptr_of (fst p) == b) (fun _ -> True) /// Primitive printers for all the types supported by this module assume val print_string: string -> StTrivial unit assume val print_char : char -> StTrivial unit assume val print_u8 : UInt8.t -> StTrivial unit assume val print_u16 : UInt16.t -> StTrivial unit assume val print_u32 : UInt32.t -> StTrivial unit assume val print_u64 : UInt64.t -> StTrivial unit assume val print_i8 : Int8.t -> StTrivial unit assume val print_i16 : Int16.t -> StTrivial unit assume val print_i32 : Int32.t -> StTrivial unit assume val print_i64 : Int64.t -> StTrivial unit assume val print_bool : bool -> StTrivial unit assume val print_lmbuffer_bool : stBuf bool assume val print_lmbuffer_char : stBuf char assume val print_lmbuffer_string : stBuf string assume val print_lmbuffer_u8 : stBuf UInt8.t assume val print_lmbuffer_u16 : stBuf UInt16.t assume val print_lmbuffer_u32 : stBuf UInt32.t assume val print_lmbuffer_u64 : stBuf UInt64.t assume val print_lmbuffer_i8 : stBuf Int8.t assume val print_lmbuffer_i16 : stBuf Int16.t assume val print_lmbuffer_i32 : stBuf Int32.t assume val print_lmbuffer_i64 : stBuf Int64.t /// An attribute to control reduction noextract irreducible let __printf_reduce__ = unit /// Base types supported so far noextract type base_typ = | Bool | Char | String | U8 | U16 | U32 | U64 | I8 | I16 | I32 | I64 /// Argument types are base types and arrays thereof /// Or polymorphic arguments specified by "%a" noextract type arg = | Base of base_typ | Array of base_typ | Any /// Interpreting a `base_typ` as a type [@@__printf_reduce__] noextract let base_typ_as_type (b:base_typ) : Type0 = match b with | Bool -> bool | Char -> char | String -> string | U8 -> FStar.UInt8.t | U16 -> FStar.UInt16.t | U32 -> FStar.UInt32.t | U64 -> FStar.UInt64.t | I8 -> FStar.Int8.t | I16 -> FStar.Int16.t | I32 -> FStar.Int32.t | I64 -> FStar.Int64.t /// `fragment`: A format string is parsed into a list of fragments of /// string literals and other arguments that need to be spliced in /// (interpolated) noextract type fragment = | Frag of string | Interpolate of arg noextract let fragments = list fragment /// `parse_format s`: /// Parses a list of characters in a format string into a list of fragments /// Or None, in case the format string is invalid [@@__printf_reduce__] noextract inline_for_extraction let rec parse_format (s:list char) : Tot (option fragments) (decreases (L.length s)) = let add_dir (d:arg) (ods : option fragments) = match ods with | None -> None | Some ds -> Some (Interpolate d::ds) in let head_buffer (ods:option fragments) = match ods with | Some (Interpolate (Base t) :: rest) -> Some (Interpolate (Array t) :: rest) | _ -> None in let cons_frag (c:char) (ods:option fragments) = match ods with | Some (Frag s::rest) -> Some (Frag (string_of_list (c :: list_of_string s)) :: rest) | Some rest -> Some (Frag (string_of_list [c]) :: rest) | _ -> None in match s with | [] -> Some [] | ['%'] -> None // %a... polymorphic arguments and preceded by their printers | '%' :: 'a' :: s' -> add_dir Any (parse_format s') // %x... arrays of base types | '%' :: 'x' :: s' -> head_buffer (parse_format ('%' :: s')) // %u ... Unsigned integers | '%' :: 'u' :: s' -> begin match s' with | 'y' :: s'' -> add_dir (Base U8) (parse_format s'') | 's' :: s'' -> add_dir (Base U16) (parse_format s'') | 'l' :: s'' -> add_dir (Base U32) (parse_format s'') | 'L' :: s'' -> add_dir (Base U64) (parse_format s'') | _ -> None end | '%' :: c :: s' -> begin match c with | '%' -> cons_frag '%' (parse_format s') | 'b' -> add_dir (Base Bool) (parse_format s') | 'c' -> add_dir (Base Char) (parse_format s') | 's' -> add_dir (Base String) (parse_format s') | 'y' -> add_dir (Base I8) (parse_format s') | 'i' -> add_dir (Base I16) (parse_format s') | 'l' -> add_dir (Base I32) (parse_format s') | 'L' -> add_dir (Base I64) (parse_format s') | _ -> None end | c :: s' -> cons_frag c (parse_format s') /// `parse_format_string`: a wrapper around `parse_format` [@@__printf_reduce__] noextract inline_for_extraction let parse_format_string (s:string) : option fragments = parse_format (list_of_string s) /// `lift a` lifts the type `a` to a higher universe noextract type lift (a:Type u#a) : Type u#(max a b) = | Lift : a -> lift a /// `done` is a `unit` in universe 1 noextract let done : lift unit = Lift u#0 u#1 () /// `arg_t`: interpreting an argument as a type /// (in universe 1) since it is polymorphic in the argument type of Any (%a) printers. /// GM: Somehow, this needs to be a `let rec` (even if it not really recursive) /// or print_frags fails to verify. I don't know why; the generated /// VC and its encoding seem identical (modulo hash consing in the /// latter). [@@__printf_reduce__] noextract let rec arg_t (a:arg) : Type u#1 = match a with | Base t -> lift (base_typ_as_type t) | Array t -> lift ((l:UInt32.t & lmbuffer (base_typ_as_type t) l) & perm & Ghost.erased (Seq.seq (base_typ_as_type t))) | Any -> (a:Type0 & (a -> StTrivial unit) & a) /// `frag_t`: a fragment is either a string literal or a argument to be interpolated noextract let frag_t = either string (a:arg & arg_t a) /// `live_frags h l` is a separation logic predicate asserting ownership of all the arrays in `l` [@@__printf_reduce__; Steel.Effect.Common.__reduce__] noextract let live_frag0 (f: frag_t) : vprop = match f with | Inl _ -> emp | Inr a -> (match a with | (| Base _, _ |) -> emp | (| Any, _ |) -> emp | (| Array _, Lift ((| _, b |), p, v) |) -> A.pts_to b p v) [@@__printf_reduce__] noextract let live_frag (f: frag_t) : vprop = live_frag0 f [@@__printf_reduce__] noextract let rec live_frags (l:list frag_t) : vprop = match l with | [] -> emp | a :: q -> live_frag a `star` live_frags q /// `interpret_frags` interprets a list of fragments as a Steel.ST function type /// Note `l` is the fragments in L-to-R order (i.e., parsing order) /// `acc` accumulates the fragment values in reverse order [@@__printf_reduce__] noextract let rec interpret_frags (l:fragments) (acc: list frag_t) : Type u#1 = match l with | [] -> // Always a dummy argument at the end // Ensures that all cases of this match // have the same universe, i.e., u#1 lift u#0 u#1 unit -> STT unit (live_frags acc) (fun _ -> live_frags acc) | Interpolate (Base t) :: args -> // Base types are simple: we just take one more argument x:base_typ_as_type t -> interpret_frags args (Inr (| Base t, Lift x |) :: acc) | Interpolate (Array t) :: args -> // Arrays are implicitly polymorphic in their preorders `r` and `s` // which is what forces us to be in universe 1 // Note, the length `l` is explicit l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags args (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) | Interpolate Any :: args -> #a:Type0 -> p:(a -> StTrivial unit) -> x:a -> interpret_frags args (Inr (| Any, (| a, p, x |) |) :: acc) | Frag s :: args -> // Literal fragments do not incur an additional argument // We just accumulate them and recur interpret_frags args (Inl s :: acc) /// `normal` A normalization marker with very specific steps enabled noextract unfold let normal (#a:Type) (x:a) : a = FStar.Pervasives.norm [iota; zeta; delta_attr [`%__printf_reduce__; `%BigOps.__reduce__]; delta_only [`%Base?; `%Array?; `%Some?; `%Some?.v; `%list_of_string]; primops; simplify] x /// `coerce`: A utility to trigger extensional equality of types noextract let coerce (x:'a{'a == 'b}) : 'b = x /// `fragment_printer`: The type of a printer of fragments noextract let fragment_printer = (acc:list frag_t) -> STT unit (live_frags acc) (fun _ -> live_frags acc) /// `print_frags`: Having accumulated all the pieces of a format /// string and the arguments to the printed (i.e., the `list frag_t`), /// this function does the actual work of printing them all using the /// primitive printers noextract inline_for_extraction let print_lmbuffer_gen (#t: Type) (#fr: frag_t) (f: stBuf t) (l: U32.t) (#tb: Type) (b: tb) (p: perm) (#tv: Type) (v: tv) : ST unit (live_frag fr) (fun _ -> live_frag fr) (tb == lmbuffer t l /\ tv == Ghost.erased (Seq.seq t) /\ live_frag fr == A.pts_to #t (coerce #_ #(lmbuffer t l) b) p (coerce #_ #(Ghost.erased (Seq.seq t)) v)) (fun _ -> True) = [@inline_let] let b' : lmbuffer t l = coerce b in let v' : Ghost.erased (Seq.seq t) = coerce v in let p' : Ghost.erased (lmbuffer t l & perm) = Ghost.hide (b', p) in rewrite (live_frag fr) (A.pts_to #t (fst p') (snd p') v'); f l _ _ (A.ptr_of b'); rewrite (A.pts_to _ _ _) (live_frag fr) noextract inline_for_extraction let print_frag (hd: frag_t) : STT unit (live_frag hd) (fun _ -> live_frag hd) = (match hd with | Inl s -> print_string s | Inr (| Base t, Lift value |) -> (match t with | Bool -> print_bool value | Char -> print_char value | String -> print_string value | U8 -> print_u8 value | U16 -> print_u16 value | U32 -> print_u32 value | U64 -> print_u64 value | I8 -> print_i8 value | I16 -> print_i16 value | I32 -> print_i32 value | I64 -> print_i64 value) | Inr (| Array t, Lift ((| l, value |), p, v ) |) -> (match t with | Bool -> print_lmbuffer_gen print_lmbuffer_bool l value p v | Char -> print_lmbuffer_gen print_lmbuffer_char l value p v | String -> print_lmbuffer_gen print_lmbuffer_string l value p v | U8 -> print_lmbuffer_gen print_lmbuffer_u8 l value p v | U16 -> print_lmbuffer_gen print_lmbuffer_u16 l value p v | U32 -> print_lmbuffer_gen print_lmbuffer_u32 l value p v | U64 -> print_lmbuffer_gen print_lmbuffer_u64 l value p v | I8 -> print_lmbuffer_gen print_lmbuffer_i8 l value p v | I16 -> print_lmbuffer_gen print_lmbuffer_i16 l value p v | I32 -> print_lmbuffer_gen print_lmbuffer_i32 l value p v | I64 -> print_lmbuffer_gen print_lmbuffer_i64 l value p v ) | Inr (| Any, (| _, printer, value |) |) -> printer value) noextract inline_for_extraction let rec print_frags (acc:list frag_t) : STT unit (live_frags acc) (fun _ -> live_frags acc) = match acc with | [] -> noop () | hd::tl -> rewrite (live_frags acc) (live_frag hd `star` live_frags tl); print_frags tl; print_frag hd; rewrite (live_frag hd `star` live_frags tl) (live_frags acc) [@@__printf_reduce__] let no_inst #a (#b:a -> Type) (f: (#x:a -> b x)) : unit -> #x:a -> b x = fun () -> f [@@__printf_reduce__] let elim_unit_arrow #t (f:unit -> t) : t = f () /// `aux frags acc`: This is the main workhorse which interprets a /// parsed format string (`frags`) as a variadic, stateful function [@@__printf_reduce__] noextract inline_for_extraction let rec aux (frags:fragments) (acc:list frag_t) (fp: fragment_printer) : interpret_frags frags acc = match frags with | [] -> let f (l:lift u#0 u#1 unit) : STT unit (live_frags acc) (fun _ -> live_frags acc) = fp acc in (f <: interpret_frags [] acc) | Frag s :: rest -> coerce (aux rest (Inl s :: acc) fp) | Interpolate (Base t) :: args -> let f (x:base_typ_as_type t) : interpret_frags args (Inr (| Base t, Lift x |) :: acc) = aux args (Inr (| Base t, Lift x |) :: acc) fp in f | Interpolate (Array t) :: rest -> let f : l:UInt32.t -> #p:perm -> #v:Ghost.erased (Seq.seq (base_typ_as_type t)) -> b:lmbuffer (base_typ_as_type t) l -> interpret_frags rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) = fun l #p #v b -> aux rest (Inr (| Array t, Lift ((| l, b |), p, v) |) :: acc) fp in f <: interpret_frags (Interpolate (Array t) :: rest) acc | Interpolate Any :: rest -> let f : unit -> #a:Type -> p:(a -> StTrivial unit) -> x:a -> interpret_frags rest (Inr (| Any, (| a, p, x |) |) :: acc) = fun () #a p x -> aux rest (Inr (| Any, (| a, p, x |) |) :: acc) fp in elim_unit_arrow (no_inst (f ()) <: (unit -> interpret_frags (Interpolate Any :: rest) acc)) /// `format_string` : A valid format string is one that can be successfully parsed [@@__printf_reduce__] noextract let format_string = s:string{normal #bool (Some? (parse_format_string s))} /// `interpret_format_string` parses a string into fragments and then /// interprets it as a type [@@__printf_reduce__] noextract let interpret_format_string (s:format_string) : Type = interpret_frags (Some?.v (parse_format_string s)) [] /// `printf'`: Almost there ... this has a variadic type /// and calls the actual printers for all its arguments. /// /// Note, the `normalize_term` in its body is crucial. It's what /// allows the term to be specialized at extraction time. noextract inline_for_extraction let printf' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] print_frags) /// `intro_normal_f`: a technical gadget to introduce /// implicit normalization in the domain and co-domain of a function type noextract inline_for_extraction let intro_normal_f (#a:Type) (b: (a -> Type)) (f:(x:a -> b x)) : (x:(normal a) -> normal (b x)) = f /// `printf`: The main function has type /// `s:normal format_string -> normal (interpret_format_string s)` /// Note: /// This is the type F* infers for it and it is best to leave it that way /// rather then writing it down and asking F* to re-check what it inferred. /// /// Annotating it results in a needless additional proof obligation to /// equate types after they are partially reduced, which is pointless. noextract inline_for_extraction val printf : s:normal format_string -> normal (interpret_format_string s) let printf = intro_normal_f #format_string interpret_format_string printf' /// `skip`: We also provide `skip`, a function that has the same type as printf /// but normalizes to `()`, i.e., it prints nothing. This is useful for conditional /// printing in debug code, for instance. noextract inline_for_extraction let skip' (s:format_string) : interpret_format_string s = normalize_term (match parse_format_string s with | Some frags -> aux frags [] (fun _ -> noop ())) noextract inline_for_extraction val skip : s:normal format_string -> normal (interpret_format_string s) let skip = intro_normal_f #format_string interpret_format_string skip' /// `test`: A small test function /// Running `fstar --codegen OCaml Steel.ST.Printf.fst --extract Steel.ST.Printf` /// produces the following for the body of this function /// ``` /// print_string "Hello "; /// print_bool true; /// print_string " Steel.ST "; /// print_u64 m; /// print_string " Printf "; /// print_lmbuffer_bool l x () (); /// print_string " "; /// print_string "bye"
{ "checked_file": "/", "dependencies": [ "Steel.ST.Util.fsti.checked", "Steel.ST.Array.fsti.checked", "Steel.Effect.Common.fsti.checked", "prims.fst.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.String.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.Int8.fsti.checked", "FStar.Int64.fsti.checked", "FStar.Int32.fsti.checked", "FStar.Int16.fsti.checked", "FStar.Ghost.fsti.checked", "FStar.Char.fsti.checked", "FStar.BigOps.fsti.checked" ], "interface_file": false, "source_file": "Steel.ST.Printf.fst" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "Steel.ST.Array", "short_module": "A" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.String", "short_module": null }, { "abbrev": false, "full_module": "FStar.Char", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.UInt64.t -> l: FStar.UInt32.t -> x: Steel.ST.Array.array Prims.bool {Steel.ST.Array.length x == FStar.UInt32.v l} -> v: FStar.Ghost.erased (FStar.Seq.Base.seq Prims.bool) -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "FStar.UInt64.t", "FStar.UInt32.t", "Steel.ST.Array.array", "Prims.bool", "Prims.eq2", "Prims.int", "Prims.l_or", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.UInt.size", "FStar.UInt32.n", "Steel.ST.Array.length", "FStar.UInt32.v", "FStar.Ghost.erased", "FStar.Seq.Base.seq", "Steel.ST.Printf.printf", "Steel.FractionalPermission.full_perm", "Steel.ST.Printf.done", "Prims.unit", "Steel.ST.Array.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop" ]
[]
false
true
false
false
false
let test_printf (m: UInt64.t) (l: UInt32.t) (x: A.array bool {A.length x == U32.v l}) (v: Ghost.erased (Seq.seq bool)) : STT unit (A.pts_to x full_perm v) (fun _ -> A.pts_to x full_perm v) =
printf "Hello %b Steel.ST %uL Printf %xb %s" true m l x "bye" done
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.parse32_bounded_integer
val parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
val parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz))
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 34, "end_line": 30, "start_col": 0, "start_line": 25 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: LowParse.Spec.BoundedInt.integer_size -> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_integer sz)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.SLow.BoundedInt.parse32_bounded_integer_1", "LowParse.SLow.BoundedInt.parse32_bounded_integer_2", "LowParse.SLow.BoundedInt.parse32_bounded_integer_3", "LowParse.SLow.BoundedInt.parse32_bounded_integer_4", "LowParse.SLow.Base.parser32", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer" ]
[]
false
false
false
false
false
let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) =
match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.size32_u32_le
val size32_u32_le:size32 serialize_u32_le
val size32_u32_le:size32 serialize_u32_le
let size32_u32_le: size32 serialize_u32_le = assert_norm (size32_constant_precond serialize_u32_le 4ul); size32_constant serialize_u32_le 4ul ()
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 129, "start_col": 0, "start_line": 127 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction noextract let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4 inline_for_extraction val parse32_u16_le : parser32 parse_u16_le inline_for_extraction val parse32_u32_le : parser32 parse_u32_le #pop-options inline_for_extraction val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1) inline_for_extraction val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2) inline_for_extraction val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3) inline_for_extraction val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4) inline_for_extraction noextract let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) = match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4 inline_for_extraction val serialize32_u16_le : serializer32 serialize_u16_le inline_for_extraction val serialize32_u32_le : serializer32 serialize_u32_le inline_for_extraction let size32_u16_le: size32 serialize_u16_le = assert_norm (size32_constant_precond serialize_u16_le 2ul); size32_constant serialize_u16_le 2ul ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.SLow.Base.size32 LowParse.Spec.BoundedInt.serialize_u32_le
Prims.Tot
[ "total" ]
[]
[ "LowParse.SLow.Base.size32_constant", "LowParse.Spec.Int.parse_u32_kind", "FStar.UInt32.t", "LowParse.Spec.BoundedInt.parse_u32_le", "LowParse.Spec.BoundedInt.serialize_u32_le", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "LowParse.SLow.Base.size32_constant_precond" ]
[]
false
false
false
true
false
let size32_u32_le:size32 serialize_u32_le =
assert_norm (size32_constant_precond serialize_u32_le 4ul); size32_constant serialize_u32_le 4ul ()
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.parse32_bounded_integer_le
val parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
val parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz))
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 37, "end_line": 84, "start_col": 0, "start_line": 79 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: LowParse.Spec.BoundedInt.integer_size -> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_integer_le sz)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.SLow.BoundedInt.parse32_bounded_integer_le_1", "LowParse.SLow.BoundedInt.parse32_bounded_integer_le_2", "LowParse.SLow.BoundedInt.parse32_bounded_integer_le_3", "LowParse.SLow.BoundedInt.parse32_bounded_integer_le_4", "LowParse.SLow.Base.parser32", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le" ]
[]
false
false
false
false
false
let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) =
match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.size32_u16_le
val size32_u16_le:size32 serialize_u16_le
val size32_u16_le:size32 serialize_u16_le
let size32_u16_le: size32 serialize_u16_le = assert_norm (size32_constant_precond serialize_u16_le 2ul); size32_constant serialize_u16_le 2ul ()
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 124, "start_col": 0, "start_line": 122 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction noextract let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4 inline_for_extraction val parse32_u16_le : parser32 parse_u16_le inline_for_extraction val parse32_u32_le : parser32 parse_u32_le #pop-options inline_for_extraction val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1) inline_for_extraction val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2) inline_for_extraction val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3) inline_for_extraction val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4) inline_for_extraction noextract let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) = match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4 inline_for_extraction val serialize32_u16_le : serializer32 serialize_u16_le inline_for_extraction val serialize32_u32_le : serializer32 serialize_u32_le
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.SLow.Base.size32 LowParse.Spec.BoundedInt.serialize_u16_le
Prims.Tot
[ "total" ]
[]
[ "LowParse.SLow.Base.size32_constant", "LowParse.Spec.Int.parse_u16_kind", "FStar.UInt16.t", "LowParse.Spec.BoundedInt.parse_u16_le", "LowParse.Spec.BoundedInt.serialize_u16_le", "FStar.UInt32.__uint_to_t", "Prims.unit", "FStar.Pervasives.assert_norm", "LowParse.SLow.Base.size32_constant_precond" ]
[]
false
false
false
true
false
let size32_u16_le:size32 serialize_u16_le =
assert_norm (size32_constant_precond serialize_u16_le 2ul); size32_constant serialize_u16_le 2ul ()
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.serialize32_bounded_integer_le
val serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
val serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz))
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) = match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 41, "end_line": 113, "start_col": 0, "start_line": 108 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction noextract let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4 inline_for_extraction val parse32_u16_le : parser32 parse_u16_le inline_for_extraction val parse32_u32_le : parser32 parse_u32_le #pop-options inline_for_extraction val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1) inline_for_extraction val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2) inline_for_extraction val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3) inline_for_extraction val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4) inline_for_extraction
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sz: LowParse.Spec.BoundedInt.integer_size -> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_integer_le sz)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.integer_size", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_1", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_2", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_3", "LowParse.SLow.BoundedInt.serialize32_bounded_integer_le_4", "LowParse.SLow.Base.serializer32", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.BoundedInt.serialize_bounded_integer_le" ]
[]
false
false
false
false
false
let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) =
match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.parse32_bounded_int32_le
val parse32_bounded_int32_le (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
val parse32_bounded_int32_le (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
let parse32_bounded_int32_le (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) = fun input -> ( if max32 `U32.lt` 256ul then parse32_bounded_int32_le_1 min32 max32 input else if max32 `U32.lt` 65536ul then parse32_bounded_int32_le_2 min32 max32 input else if max32 `U32.lt` 16777216ul then parse32_bounded_int32_le_3 min32 max32 input else parse32_bounded_int32_le_4 min32 max32 input )
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 237, "start_col": 0, "start_line": 225 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction noextract let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4 inline_for_extraction val parse32_u16_le : parser32 parse_u16_le inline_for_extraction val parse32_u32_le : parser32 parse_u32_le #pop-options inline_for_extraction val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1) inline_for_extraction val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2) inline_for_extraction val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3) inline_for_extraction val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4) inline_for_extraction noextract let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) = match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4 inline_for_extraction val serialize32_u16_le : serializer32 serialize_u16_le inline_for_extraction val serialize32_u32_le : serializer32 serialize_u32_le inline_for_extraction let size32_u16_le: size32 serialize_u16_le = assert_norm (size32_constant_precond serialize_u16_le 2ul); size32_constant serialize_u16_le 2ul () inline_for_extraction let size32_u32_le: size32 serialize_u32_le = assert_norm (size32_constant_precond serialize_u32_le 4ul); size32_constant serialize_u32_le 4ul () module U32 = FStar.UInt32 val parse32_bounded_int32_1 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_2 (min32: U32.t) (max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_3 (min32: U32.t) (max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_4 (min32: U32.t) (max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) inline_for_extraction let parse32_bounded_int32 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) = fun input -> ( if max32 `U32.lt` 256ul then parse32_bounded_int32_1 min32 max32 input else if max32 `U32.lt` 65536ul then parse32_bounded_int32_2 min32 max32 input else if max32 `U32.lt` 16777216ul then parse32_bounded_int32_3 min32 max32 input else parse32_bounded_int32_4 min32 max32 input ) val serialize32_bounded_int32_1 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_2 (min32: U32.t) (max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_3 (min32: U32.t) (max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_4 (min32: U32.t) (max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) inline_for_extraction let serialize32_bounded_int32 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) = fun input -> ( if max32 `U32.lt` 256ul then serialize32_bounded_int32_1 min32 max32 input else if max32 `U32.lt` 65536ul then serialize32_bounded_int32_2 min32 max32 input else if max32 `U32.lt` 16777216ul then serialize32_bounded_int32_3 min32 max32 input else serialize32_bounded_int32_4 min32 max32 input ) val parse32_bounded_int32_le_1 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 }) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) val parse32_bounded_int32_le_2 (min32: U32.t) (max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 }) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) val parse32_bounded_int32_le_3 (min32: U32.t) (max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 }) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) val parse32_bounded_int32_le_4 (min32: U32.t) (max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min32: FStar.UInt32.t -> max32: FStar.UInt32.t { 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\ FStar.UInt32.v max32 < 4294967296 } -> LowParse.SLow.Base.parser32 (LowParse.Spec.BoundedInt.parse_bounded_int32_le (FStar.UInt32.v min32 ) (FStar.UInt32.v max32))
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "LowParse.SLow.Base.bytes32", "FStar.UInt32.lt", "FStar.UInt32.__uint_to_t", "LowParse.SLow.BoundedInt.parse32_bounded_int32_le_1", "Prims.bool", "LowParse.SLow.BoundedInt.parse32_bounded_int32_le_2", "LowParse.SLow.BoundedInt.parse32_bounded_int32_le_3", "LowParse.SLow.BoundedInt.parse32_bounded_int32_le_4", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.SLow.Base.parser32_correct", "LowParse.Spec.BoundedInt.parse_bounded_int32_kind", "LowParse.Spec.BoundedInt.parse_bounded_int32_le", "LowParse.SLow.Base.parser32" ]
[]
false
false
false
false
false
let parse32_bounded_int32_le (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (parser32 (parse_bounded_int32_le (U32.v min32) (U32.v max32))) =
fun input -> (if max32 `U32.lt` 256ul then parse32_bounded_int32_le_1 min32 max32 input else if max32 `U32.lt` 65536ul then parse32_bounded_int32_le_2 min32 max32 input else if max32 `U32.lt` 16777216ul then parse32_bounded_int32_le_3 min32 max32 input else parse32_bounded_int32_le_4 min32 max32 input)
false
LowParse.SLow.BoundedInt.fsti
LowParse.SLow.BoundedInt.serialize32_bounded_int32
val serialize32_bounded_int32 (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
val serialize32_bounded_int32 (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
let serialize32_bounded_int32 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) = fun input -> ( if max32 `U32.lt` 256ul then serialize32_bounded_int32_1 min32 max32 input else if max32 `U32.lt` 65536ul then serialize32_bounded_int32_2 min32 max32 input else if max32 `U32.lt` 16777216ul then serialize32_bounded_int32_3 min32 max32 input else serialize32_bounded_int32_4 min32 max32 input )
{ "file_name": "src/lowparse/LowParse.SLow.BoundedInt.fsti", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 201, "start_col": 0, "start_line": 189 }
module LowParse.SLow.BoundedInt include LowParse.Spec.BoundedInt include LowParse.SLow.Base (* bounded integers *) inline_for_extraction val parse32_bounded_integer_1 : (parser32 (parse_bounded_integer 1)) inline_for_extraction val parse32_bounded_integer_2 : (parser32 (parse_bounded_integer 2)) inline_for_extraction val parse32_bounded_integer_3 : (parser32 (parse_bounded_integer 3)) inline_for_extraction val parse32_bounded_integer_4 : (parser32 (parse_bounded_integer 4)) inline_for_extraction noextract let parse32_bounded_integer (sz: integer_size) : Tot (parser32 (parse_bounded_integer sz)) = match sz with | 1 -> parse32_bounded_integer_1 | 2 -> parse32_bounded_integer_2 | 3 -> parse32_bounded_integer_3 | 4 -> parse32_bounded_integer_4 inline_for_extraction val serialize32_bounded_integer_1 : (serializer32 (serialize_bounded_integer 1)) inline_for_extraction val serialize32_bounded_integer_2 : (serializer32 (serialize_bounded_integer 2)) inline_for_extraction val serialize32_bounded_integer_3 : (serializer32 (serialize_bounded_integer 3)) inline_for_extraction val serialize32_bounded_integer_4 : (serializer32 (serialize_bounded_integer 4)) inline_for_extraction noextract let serialize32_bounded_integer (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer sz)) = match sz with | 1 -> serialize32_bounded_integer_1 | 2 -> serialize32_bounded_integer_2 | 3 -> serialize32_bounded_integer_3 | 4 -> serialize32_bounded_integer_4 #push-options "--max_fuel 0" inline_for_extraction val parse32_bounded_integer_le_1 : parser32 (parse_bounded_integer_le 1) inline_for_extraction val parse32_bounded_integer_le_2 : parser32 (parse_bounded_integer_le 2) inline_for_extraction val parse32_bounded_integer_le_3 : parser32 (parse_bounded_integer_le 3) inline_for_extraction val parse32_bounded_integer_le_4 : parser32 (parse_bounded_integer_le 4) inline_for_extraction noextract let parse32_bounded_integer_le (sz: integer_size) : Tot (parser32 (parse_bounded_integer_le sz)) = match sz with | 1 -> parse32_bounded_integer_le_1 | 2 -> parse32_bounded_integer_le_2 | 3 -> parse32_bounded_integer_le_3 | 4 -> parse32_bounded_integer_le_4 inline_for_extraction val parse32_u16_le : parser32 parse_u16_le inline_for_extraction val parse32_u32_le : parser32 parse_u32_le #pop-options inline_for_extraction val serialize32_bounded_integer_le_1 : serializer32 (serialize_bounded_integer_le 1) inline_for_extraction val serialize32_bounded_integer_le_2 : serializer32 (serialize_bounded_integer_le 2) inline_for_extraction val serialize32_bounded_integer_le_3 : serializer32 (serialize_bounded_integer_le 3) inline_for_extraction val serialize32_bounded_integer_le_4 : serializer32 (serialize_bounded_integer_le 4) inline_for_extraction noextract let serialize32_bounded_integer_le (sz: integer_size) : Tot (serializer32 (serialize_bounded_integer_le sz)) = match sz with | 1 -> serialize32_bounded_integer_le_1 | 2 -> serialize32_bounded_integer_le_2 | 3 -> serialize32_bounded_integer_le_3 | 4 -> serialize32_bounded_integer_le_4 inline_for_extraction val serialize32_u16_le : serializer32 serialize_u16_le inline_for_extraction val serialize32_u32_le : serializer32 serialize_u32_le inline_for_extraction let size32_u16_le: size32 serialize_u16_le = assert_norm (size32_constant_precond serialize_u16_le 2ul); size32_constant serialize_u16_le 2ul () inline_for_extraction let size32_u32_le: size32 serialize_u32_le = assert_norm (size32_constant_precond serialize_u32_le 4ul); size32_constant serialize_u32_le 4ul () module U32 = FStar.UInt32 val parse32_bounded_int32_1 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_2 (min32: U32.t) (max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_3 (min32: U32.t) (max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) val parse32_bounded_int32_4 (min32: U32.t) (max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) inline_for_extraction let parse32_bounded_int32 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (parser32 (parse_bounded_int32 (U32.v min32) (U32.v max32))) = fun input -> ( if max32 `U32.lt` 256ul then parse32_bounded_int32_1 min32 max32 input else if max32 `U32.lt` 65536ul then parse32_bounded_int32_2 min32 max32 input else if max32 `U32.lt` 16777216ul then parse32_bounded_int32_3 min32 max32 input else parse32_bounded_int32_4 min32 max32 input ) val serialize32_bounded_int32_1 (min32: U32.t) (max32: U32.t { 0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 256 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_2 (min32: U32.t) (max32: U32.t { 256 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 65536 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_3 (min32: U32.t) (max32: U32.t { 65536 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 16777216 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) val serialize32_bounded_int32_4 (min32: U32.t) (max32: U32.t { 16777216 <= U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296 }) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.SLow.Base.fst.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "LowParse.SLow.BoundedInt.fsti" }
[ { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.SLow.Base", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "LowParse.SLow", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min32: FStar.UInt32.t -> max32: FStar.UInt32.t { 0 < FStar.UInt32.v max32 /\ FStar.UInt32.v min32 <= FStar.UInt32.v max32 /\ FStar.UInt32.v max32 < 4294967296 } -> LowParse.SLow.Base.serializer32 (LowParse.Spec.BoundedInt.serialize_bounded_int32 (FStar.UInt32.v min32) (FStar.UInt32.v max32))
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt32.t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt32.v", "Prims.op_LessThanOrEqual", "LowParse.Spec.BoundedInt.bounded_int32", "FStar.UInt32.lt", "FStar.UInt32.__uint_to_t", "LowParse.SLow.BoundedInt.serialize32_bounded_int32_1", "Prims.bool", "LowParse.SLow.BoundedInt.serialize32_bounded_int32_2", "LowParse.SLow.BoundedInt.serialize32_bounded_int32_3", "LowParse.SLow.BoundedInt.serialize32_bounded_int32_4", "LowParse.SLow.Base.bytes32", "LowParse.SLow.Base.serializer32_correct", "LowParse.Spec.BoundedInt.parse_bounded_int32_kind", "LowParse.Spec.BoundedInt.parse_bounded_int32", "LowParse.Spec.BoundedInt.serialize_bounded_int32", "LowParse.SLow.Base.serializer32" ]
[]
false
false
false
false
false
let serialize32_bounded_int32 (min32: U32.t) (max32: U32.t{0 < U32.v max32 /\ U32.v min32 <= U32.v max32 /\ U32.v max32 < 4294967296}) : Tot (serializer32 (serialize_bounded_int32 (U32.v min32) (U32.v max32))) =
fun input -> (if max32 `U32.lt` 256ul then serialize32_bounded_int32_1 min32 max32 input else if max32 `U32.lt` 65536ul then serialize32_bounded_int32_2 min32 max32 input else if max32 `U32.lt` 16777216ul then serialize32_bounded_int32_3 min32 max32 input else serialize32_bounded_int32_4 min32 max32 input)
false