file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_pack_inner
val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1)
val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1)
let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8)
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 61, "start_col": 0, "start_line": 60 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d * (n1 * n2 / 8) <= Lib.IntTypes.max_size_t /\ d <= 16} -> a: Spec.Matrix.matrix n1 n2 -> i: Lib.IntTypes.size_nat{i < n1 * n2 / 8} -> s: Spec.Frodo.Pack.frodo_pack_state d i -> Spec.Frodo.Pack.frodo_pack_state d (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Spec.Matrix.matrix", "Prims.op_LessThan", "Spec.Frodo.Pack.frodo_pack_state", "Lib.Sequence.op_At_Bar", "Lib.IntTypes.uint8", "Spec.Frodo.Pack.frodo_pack8", "Lib.Sequence.sub", "Spec.Matrix.elem", "Prims.op_Addition" ]
[]
false
false
false
false
false
let frodo_pack_inner #n1 #n2 d a i s =
s @| frodo_pack8 d (Seq.sub a (8 * i) 8)
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_pack8
val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d
val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d
let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 42, "start_col": 0, "start_line": 21 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d <= 16} -> a: Lib.Sequence.lseq Lib.IntTypes.uint16 8 -> Lib.ByteSequence.lbytes d
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.Sequence.lseq", "Lib.IntTypes.uint16", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.IntTypes.numbytes", "Lib.IntTypes.U128", "Prims.op_Subtraction", "Lib.IntTypes.int_t", "Lib.ByteSequence.uint_to_bytes_be", "Lib.IntTypes.op_Bar_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.to_u128", "Lib.IntTypes.U16", "Lib.IntTypes.size", "FStar.Mul.op_Star", "Lib.IntTypes.op_Amp_Dot", "Lib.Sequence.index", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.to_u16", "Lib.IntTypes.U32", "Lib.IntTypes.u32", "Lib.IntTypes.u16", "Lib.ByteSequence.lbytes" ]
[]
false
false
false
false
false
let frodo_pack8 d a =
let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d
false
Spec.Chacha20.fst
Spec.Chacha20.column_round
val column_round:shuffle
val column_round:shuffle
let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 54, "start_col": 0, "start_line": 50 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Spec.Chacha20.shuffle
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.op_At", "Spec.Chacha20.state", "Spec.Chacha20.quarter_round" ]
[]
false
false
false
true
false
let column_round:shuffle =
quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15
false
Spec.Chacha20.fst
Spec.Chacha20.line
val line (a b d: idx) (s: rotval U32) (m: state) : Tot state
val line (a b d: idx) (s: rotval U32) (m: state) : Tot state
let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 42, "start_col": 0, "start_line": 40 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Spec.Chacha20.idx -> b: Spec.Chacha20.idx -> d: Spec.Chacha20.idx -> s: Lib.IntTypes.rotval Lib.IntTypes.U32 -> m: Spec.Chacha20.state -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.idx", "Lib.IntTypes.rotval", "Lib.IntTypes.U32", "Spec.Chacha20.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.rotate_left", "Lib.IntTypes.logxor", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Less_Less_Less_Dot", "Lib.IntTypes.op_Hat_Dot", "Lib.Sequence.op_String_Access", "Lib.IntTypes.add_mod", "Lib.IntTypes.op_Plus_Dot" ]
[]
false
false
false
true
false
let line (a b d: idx) (s: rotval U32) (m: state) : Tot state =
let m = m.[ a ] <- (m.[ a ] +. m.[ b ]) in let m = m.[ d ] <- ((m.[ d ] ^. m.[ a ]) <<<. s) in m
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_add_counter
val chacha20_add_counter (s0: state) (ctr: counter) : Tot state
val chacha20_add_counter (s0: state) (ctr: counter) : Tot state
let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 72, "start_col": 0, "start_line": 71 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: Spec.Chacha20.state -> ctr: Spec.Chacha20.counter -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Spec.Chacha20.counter", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Sequence.op_String_Access", "Lib.IntTypes.u32" ]
[]
false
false
false
true
false
let chacha20_add_counter (s0: state) (ctr: counter) : Tot state =
s0.[ 12 ] <- s0.[ 12 ] +. u32 ctr
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_init
val chacha20_init (k: key) (n: nonce) (ctr0: counter) : Tot state
val chacha20_init (k: key) (n: nonce) (ctr0: counter) : Tot state
let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 125, "start_col": 0, "start_line": 122 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.key -> n: Spec.Chacha20.nonce -> ctr0: Spec.Chacha20.counter -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.key", "Spec.Chacha20.nonce", "Spec.Chacha20.counter", "Spec.Chacha20.state", "Spec.Chacha20.setup", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.index", "Lib.Sequence.create", "Lib.IntTypes.uint32", "Lib.IntTypes.u32" ]
[]
false
false
false
true
false
let chacha20_init (k: key) (n: nonce) (ctr0: counter) : Tot state =
let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
false
Spec.Chacha20.fst
Spec.Chacha20.sum_state
val sum_state (s0 s1: state) : Tot state
val sum_state (s0 s1: state) : Tot state
let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 69, "start_col": 0, "start_line": 68 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s0: Spec.Chacha20.state -> s1: Spec.Chacha20.state -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Lib.Sequence.map2", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Plus_Dot", "Lib.IntTypes.U32", "Lib.IntTypes.SEC" ]
[]
false
false
false
true
false
let sum_state (s0 s1: state) : Tot state =
map2 ( +. ) s0 s1
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_unpack
val frodo_unpack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> lbytes (d * ((n1 * n2) / 8)) -> matrix n1 n2
val frodo_unpack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> lbytes (d * ((n1 * n2) / 8)) -> matrix n1 n2
let frodo_unpack #n1 #n2 d b = Loops.repeat_gen ((n1 * n2) / 8) (frodo_unpack_state #n1 #n2) (frodo_unpack_inner #n1 #n2 d b) FStar.Seq.empty
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 19, "end_line": 125, "start_col": 0, "start_line": 121 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1) let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8) val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8)) let frodo_pack #n1 #n2 d a = Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0)) /// Unpack val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d -> lseq uint16 8 let frodo_unpack8 d b = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let v16 = Seq.create 16 (u8 0) in let src = update_sub v16 (16 - d) d b in let templong: uint_t U128 SEC = uint_from_bytes_be src in let res = Seq.create 8 (u16 0) in let res = res.[0] <- to_u16 (templong >>. size (7 * d)) &. maskd in let res = res.[1] <- to_u16 (templong >>. size (6 * d)) &. maskd in let res = res.[2] <- to_u16 (templong >>. size (5 * d)) &. maskd in let res = res.[3] <- to_u16 (templong >>. size (4 * d)) &. maskd in let res = res.[4] <- to_u16 (templong >>. size (3 * d)) &. maskd in let res = res.[5] <- to_u16 (templong >>. size (2 * d)) &. maskd in let res = res.[6] <- to_u16 (templong >>. size (1 * d)) &. maskd in let res = res.[7] <- to_u16 (templong >>. size (0 * d)) &. maskd in res val frodo_unpack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_unpack_state #n1 #n2 i = lseq uint16 (8 * i) val frodo_unpack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> b:lbytes (d * ((n1 * n2) / 8)) -> i:size_nat{i < (n1 * n2) / 8} -> frodo_unpack_state #n1 #n2 i -> frodo_unpack_state #n1 #n2 (i + 1) let frodo_unpack_inner #n1 #n2 d b i s = s @| frodo_unpack8 d (Seq.sub b (d * i) d) val frodo_unpack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> lbytes (d * ((n1 * n2) / 8))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d * (n1 * n2 / 8) <= Lib.IntTypes.max_size_t /\ d <= 16} -> b: Lib.ByteSequence.lbytes (d * (n1 * n2 / 8)) -> Spec.Matrix.matrix n1 n2
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Lib.ByteSequence.lbytes", "Lib.LoopCombinators.repeat_gen", "Spec.Frodo.Pack.frodo_unpack_state", "Spec.Frodo.Pack.frodo_unpack_inner", "FStar.Seq.Base.empty", "Lib.IntTypes.uint16", "Spec.Matrix.matrix" ]
[]
false
false
false
false
false
let frodo_unpack #n1 #n2 d b =
Loops.repeat_gen ((n1 * n2) / 8) (frodo_unpack_state #n1 #n2) (frodo_unpack_inner #n1 #n2 d b) FStar.Seq.empty
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_unpack_inner
val frodo_unpack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> b:lbytes (d * ((n1 * n2) / 8)) -> i:size_nat{i < (n1 * n2) / 8} -> frodo_unpack_state #n1 #n2 i -> frodo_unpack_state #n1 #n2 (i + 1)
val frodo_unpack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> b:lbytes (d * ((n1 * n2) / 8)) -> i:size_nat{i < (n1 * n2) / 8} -> frodo_unpack_state #n1 #n2 i -> frodo_unpack_state #n1 #n2 (i + 1)
let frodo_unpack_inner #n1 #n2 d b i s = s @| frodo_unpack8 d (Seq.sub b (d * i) d)
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 113, "start_col": 0, "start_line": 112 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1) let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8) val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8)) let frodo_pack #n1 #n2 d a = Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0)) /// Unpack val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d -> lseq uint16 8 let frodo_unpack8 d b = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let v16 = Seq.create 16 (u8 0) in let src = update_sub v16 (16 - d) d b in let templong: uint_t U128 SEC = uint_from_bytes_be src in let res = Seq.create 8 (u16 0) in let res = res.[0] <- to_u16 (templong >>. size (7 * d)) &. maskd in let res = res.[1] <- to_u16 (templong >>. size (6 * d)) &. maskd in let res = res.[2] <- to_u16 (templong >>. size (5 * d)) &. maskd in let res = res.[3] <- to_u16 (templong >>. size (4 * d)) &. maskd in let res = res.[4] <- to_u16 (templong >>. size (3 * d)) &. maskd in let res = res.[5] <- to_u16 (templong >>. size (2 * d)) &. maskd in let res = res.[6] <- to_u16 (templong >>. size (1 * d)) &. maskd in let res = res.[7] <- to_u16 (templong >>. size (0 * d)) &. maskd in res val frodo_unpack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_unpack_state #n1 #n2 i = lseq uint16 (8 * i) val frodo_unpack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> b:lbytes (d * ((n1 * n2) / 8)) -> i:size_nat{i < (n1 * n2) / 8} -> frodo_unpack_state #n1 #n2 i
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d * (n1 * n2 / 8) <= Lib.IntTypes.max_size_t /\ d <= 16} -> b: Lib.ByteSequence.lbytes (d * (n1 * n2 / 8)) -> i: Lib.IntTypes.size_nat{i < n1 * n2 / 8} -> s: Spec.Frodo.Pack.frodo_unpack_state i -> Spec.Frodo.Pack.frodo_unpack_state (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.max_size_t", "Prims.op_Equality", "Prims.int", "Prims.op_Modulus", "Prims.op_Division", "Lib.ByteSequence.lbytes", "Prims.op_LessThan", "Spec.Frodo.Pack.frodo_unpack_state", "Lib.Sequence.op_At_Bar", "Lib.IntTypes.uint16", "Spec.Frodo.Pack.frodo_unpack8", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Prims.op_Addition" ]
[]
false
false
false
false
false
let frodo_unpack_inner #n1 #n2 d b i s =
s @| frodo_unpack8 d (Seq.sub b (d * i) d)
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_key_block
val chacha20_key_block (st: state) : Tot block
val chacha20_key_block (st: state) : Tot block
let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 134, "start_col": 0, "start_line": 132 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
st: Spec.Chacha20.state -> Spec.Chacha20.block
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Spec.Chacha20.chacha20_core", "Spec.Chacha20.block" ]
[]
false
false
false
true
false
let chacha20_key_block (st: state) : Tot block =
let st = chacha20_core 0 st in uints_to_bytes_le st
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_decrypt_bytes
val chacha20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
val chacha20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
let chacha20_decrypt_bytes key nonce ctr0 cipher = let st0 = chacha20_init key nonce ctr0 in chacha20_update st0 cipher
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 28, "end_line": 191, "start_col": 0, "start_line": 189 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let chacha20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = chacha20_core incr st0 in xor_block k b let chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len) = let plain = create size_block (u8 0) in let plain = update_sub plain 0 len b in let cipher = chacha20_encrypt_block st0 incr plain in sub cipher 0 (length b) val chacha20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let chacha20_update ctx msg = let cipher = msg in map_blocks size_block cipher (chacha20_encrypt_block ctx) (chacha20_encrypt_last ctx) val chacha20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let chacha20_encrypt_bytes key nonce ctr0 msg = let st0 = chacha20_init key nonce ctr0 in chacha20_update st0 msg val chacha20_decrypt_bytes: k: key -> n: nonce -> c: counter -> cipher: bytes{length cipher / size_block <= max_size_t} -> msg: bytes{length cipher == length msg}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.key -> n: Spec.Chacha20.nonce -> c: Spec.Chacha20.counter -> cipher: Lib.ByteSequence.bytes {Lib.Sequence.length cipher / Spec.Chacha20.size_block <= Lib.IntTypes.max_size_t} -> msg: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.key", "Spec.Chacha20.nonce", "Spec.Chacha20.counter", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Chacha20.size_block", "Lib.IntTypes.max_size_t", "Spec.Chacha20.chacha20_update", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Prims.eq2", "Prims.nat" ]
[]
false
false
false
false
false
let chacha20_decrypt_bytes key nonce ctr0 cipher =
let st0 = chacha20_init key nonce ctr0 in chacha20_update st0 cipher
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_constants
val chacha20_constants:lseq size_t 4
val chacha20_constants:lseq size_t 4
let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 11, "end_line": 113, "start_col": 0, "start_line": 109 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Lib.Sequence.lseq (Lib.IntTypes.int_t Lib.IntTypes.U32 Lib.IntTypes.PUB) 4
Prims.Tot
[ "total" ]
[]
[ "Lib.Sequence.createL", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "Prims.int", "FStar.List.Tot.Base.length", "Prims.list", "Prims.Cons", "Spec.Chacha20.c0", "Spec.Chacha20.c1", "Spec.Chacha20.c2", "Spec.Chacha20.c3", "Prims.Nil" ]
[]
false
false
false
false
false
let chacha20_constants:lseq size_t 4 =
[@@ inline_let ]let l = [c0; c1; c2; c3] in assert_norm (List.Tot.length l == 4); createL l
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_key_block0
val chacha20_key_block0 (k: key) (n: nonce) : Tot block
val chacha20_key_block0 (k: key) (n: nonce) : Tot block
let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 130, "start_col": 0, "start_line": 127 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.key -> n: Spec.Chacha20.nonce -> Spec.Chacha20.block
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.key", "Spec.Chacha20.nonce", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_core", "Spec.Chacha20.chacha20_init", "Spec.Chacha20.block" ]
[]
false
false
false
true
false
let chacha20_key_block0 (k: key) (n: nonce) : Tot block =
let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st
false
Spec.Chacha20.fst
Spec.Chacha20.xor_block
val xor_block (k: state) (b: block) : block
val xor_block (k: state) (b: block) : block
let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 139, "start_col": 0, "start_line": 136 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.state -> b: Spec.Chacha20.block -> Spec.Chacha20.block
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Spec.Chacha20.block", "Lib.ByteSequence.uints_to_bytes_le", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_Forall", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.eq2", "Lib.Sequence.index", "Lib.IntTypes.logxor", "Lib.Sequence.map2", "Lib.IntTypes.uint_t", "Lib.IntTypes.uint32", "Lib.IntTypes.op_Hat_Dot", "Lib.ByteSequence.uints_from_bytes_le" ]
[]
false
false
false
true
false
let xor_block (k: state) (b: block) : block =
let ib = uints_from_bytes_le b in let ob = map2 ( ^. ) ib k in uints_to_bytes_le ob
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_encrypt_last
val chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len)
val chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len)
let chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len) = let plain = create size_block (u8 0) in let plain = update_sub plain 0 len b in let cipher = chacha20_encrypt_block st0 incr plain in sub cipher 0 (length b)
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 155, "start_col": 0, "start_line": 145 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let chacha20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = chacha20_core incr st0 in xor_block k b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
st0: Spec.Chacha20.state -> incr: Spec.Chacha20.counter -> len: Lib.IntTypes.size_nat{len < Spec.Chacha20.size_block} -> b: Lib.ByteSequence.lbytes len -> Lib.ByteSequence.lbytes len
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Spec.Chacha20.counter", "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThan", "Spec.Chacha20.size_block", "Lib.ByteSequence.lbytes", "Lib.Sequence.sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Lib.Sequence.length", "Spec.Chacha20.block", "Spec.Chacha20.chacha20_encrypt_block", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Prims.l_and", "Prims.eq2", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "FStar.Seq.Base.seq", "FStar.Seq.Base.create", "Lib.IntTypes.mk_int", "Prims.l_imp", "Lib.Sequence.create", "Lib.IntTypes.u8" ]
[]
false
false
false
false
false
let chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len) =
let plain = create size_block (u8 0) in let plain = update_sub plain 0 len b in let cipher = chacha20_encrypt_block st0 incr plain in sub cipher 0 (length b)
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_encrypt_bytes
val chacha20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
val chacha20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
let chacha20_encrypt_bytes key nonce ctr0 msg = let st0 = chacha20_init key nonce ctr0 in chacha20_update st0 msg
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 179, "start_col": 0, "start_line": 177 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let chacha20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = chacha20_core incr st0 in xor_block k b let chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len) = let plain = create size_block (u8 0) in let plain = update_sub plain 0 len b in let cipher = chacha20_encrypt_block st0 incr plain in sub cipher 0 (length b) val chacha20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg} let chacha20_update ctx msg = let cipher = msg in map_blocks size_block cipher (chacha20_encrypt_block ctx) (chacha20_encrypt_last ctx) val chacha20_encrypt_bytes: k: key -> n: nonce -> c: counter -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.key -> n: Spec.Chacha20.nonce -> c: Spec.Chacha20.counter -> msg: Lib.ByteSequence.bytes {Lib.Sequence.length msg / Spec.Chacha20.size_block <= Lib.IntTypes.max_size_t} -> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.key", "Spec.Chacha20.nonce", "Spec.Chacha20.counter", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Chacha20.size_block", "Lib.IntTypes.max_size_t", "Spec.Chacha20.chacha20_update", "Spec.Chacha20.state", "Spec.Chacha20.chacha20_init", "Prims.eq2", "Prims.nat" ]
[]
false
false
false
false
false
let chacha20_encrypt_bytes key nonce ctr0 msg =
let st0 = chacha20_init key nonce ctr0 in chacha20_update st0 msg
false
Spec.Chacha20.fst
Spec.Chacha20.setup
val setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state
val setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state
let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 4, "end_line": 120, "start_col": 0, "start_line": 115 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
k: Spec.Chacha20.key -> n: Spec.Chacha20.nonce -> ctr0: Spec.Chacha20.counter -> st: Spec.Chacha20.state -> Spec.Chacha20.state
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.key", "Spec.Chacha20.nonce", "Spec.Chacha20.counter", "Spec.Chacha20.state", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U32", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "Lib.Sequence.sub", "Lib.ByteSequence.uints_from_bytes_le", "Prims.l_Forall", "Prims.nat", "Prims.l_or", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Prims.op_Addition", "FStar.Seq.Base.index", "Lib.Sequence.to_seq", "Lib.Sequence.index", "Lib.Sequence.update_sub", "Lib.IntTypes.uint32", "FStar.Seq.Base.seq", "FStar.Seq.Base.upd", "Lib.IntTypes.mk_int", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_disEquality", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.u32", "Lib.Sequence.map", "Lib.IntTypes.PUB", "Lib.IntTypes.secret", "Spec.Chacha20.chacha20_constants" ]
[]
false
false
false
true
false
let setup (k: key) (n: nonce) (ctr0: counter) (st: state) : Tot state =
let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[ 12 ] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st
false
Spec.Chacha20.fst
Spec.Chacha20.chacha20_update
val chacha20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
val chacha20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
let chacha20_update ctx msg = let cipher = msg in map_blocks size_block cipher (chacha20_encrypt_block ctx) (chacha20_encrypt_last ctx)
{ "file_name": "specs/Spec.Chacha20.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 167, "start_col": 0, "start_line": 163 }
module Spec.Chacha20 open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Lib.LoopCombinators #set-options "--max_fuel 0 --z3rlimit 100" /// Constants and Types let size_key = 32 let size_block = 64 let size_nonce = 12 (* TODO: Remove, left here to avoid breaking implementation *) let keylen = 32 (* in bytes *) let blocklen = 64 (* in bytes *) let noncelen = 12 (* in bytes *) type key = lbytes size_key type block = lbytes size_block type nonce = lbytes size_nonce type counter = size_nat type subblock = b:bytes{length b <= size_block} // Internally, blocks are represented as 16 x 4-byte integers type state = lseq uint32 16 type idx = n:size_nat{n < 16} type shuffle = state -> Tot state // Using @ as a functional substitute for ; let op_At f g = fun x -> g (f x) /// Specification let line (a:idx) (b:idx) (d:idx) (s:rotval U32) (m:state) : Tot state = let m = m.[a] <- (m.[a] +. m.[b]) in let m = m.[d] <- ((m.[d] ^. m.[a]) <<<. s) in m let quarter_round a b c d : Tot shuffle = line a b d (size 16) @ line c d b (size 12) @ line a b d (size 8) @ line c d b (size 7) let column_round : shuffle = quarter_round 0 4 8 12 @ quarter_round 1 5 9 13 @ quarter_round 2 6 10 14 @ quarter_round 3 7 11 15 let diagonal_round : shuffle = quarter_round 0 5 10 15 @ quarter_round 1 6 11 12 @ quarter_round 2 7 8 13 @ quarter_round 3 4 9 14 let double_round : shuffle = column_round @ diagonal_round (* 2 rounds *) let rounds : shuffle = repeat 10 double_round (* 20 rounds *) let sum_state (s0:state) (s1:state) : Tot state = map2 (+.) s0 s1 let chacha20_add_counter (s0:state) (ctr:counter) : Tot state = s0.[12] <- s0.[12] +. u32 ctr // protz 10:37 AM // question about chacha20 spec: why the double counter increment in chacha20_core? // https://github.com/project-everest/hacl-star/blob/_dev/specs/Spec.Chacha20.fst#L75 // is this in the spec? // karthik 11:28 AM // This is doing the same as: // // let chacha20_core (ctr:counter) (s0:state) : Tot state = // let s0 = chacha20_add_counter s0 ctr in // let k = rounds s0 in // sum_state k s0 // // but we rewrite in this way so that s0 remains constant // (in the code) // protz 11:32 AM // do sum_state and add_counter commute? // I feel like I'm missing some equational property of these sub-combinators // to understand why this is true // karthik 11:33 AM // yes, they do. let chacha20_core (ctr:counter) (s0:state) : Tot state = let k = chacha20_add_counter s0 ctr in let k = rounds k in let k = sum_state k s0 in chacha20_add_counter k ctr inline_for_extraction let c0 = 0x61707865ul inline_for_extraction let c1 = 0x3320646eul inline_for_extraction let c2 = 0x79622d32ul inline_for_extraction let c3 = 0x6b206574ul let chacha20_constants : lseq size_t 4 = [@ inline_let] let l = [c0;c1;c2;c3] in assert_norm(List.Tot.length l == 4); createL l let setup (k:key) (n:nonce) (ctr0:counter) (st:state) : Tot state = let st = update_sub st 0 4 (map secret chacha20_constants) in let st = update_sub st 4 8 (uints_from_bytes_le #U32 #SEC #8 k) in let st = st.[12] <- u32 ctr0 in let st = update_sub st 13 3 (uints_from_bytes_le #U32 #SEC #3 n) in st let chacha20_init (k:key) (n:nonce) (ctr0:counter) : Tot state = let st = create 16 (u32 0) in let st = setup k n ctr0 st in st let chacha20_key_block0 (k:key) (n:nonce) : Tot block = let st = chacha20_init k n 0 in let st = chacha20_core 0 st in uints_to_bytes_le st let chacha20_key_block (st:state) : Tot block = let st = chacha20_core 0 st in uints_to_bytes_le st let xor_block (k:state) (b:block) : block = let ib = uints_from_bytes_le b in let ob = map2 (^.) ib k in uints_to_bytes_le ob let chacha20_encrypt_block (st0:state) (incr:counter) (b:block) : Tot block = let k = chacha20_core incr st0 in xor_block k b let chacha20_encrypt_last (st0: state) (incr: counter) (len: size_nat{len < size_block}) (b: lbytes len) : Tot (lbytes len) = let plain = create size_block (u8 0) in let plain = update_sub plain 0 len b in let cipher = chacha20_encrypt_block st0 incr plain in sub cipher 0 (length b) val chacha20_update: ctx: state -> msg: bytes{length msg / size_block <= max_size_t} -> cipher: bytes{length cipher == length msg}
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.List.Tot.fst.checked" ], "interface_file": false, "source_file": "Spec.Chacha20.fst" }
[ { "abbrev": false, "full_module": "Lib.LoopCombinators", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ctx: Spec.Chacha20.state -> msg: Lib.ByteSequence.bytes {Lib.Sequence.length msg / Spec.Chacha20.size_block <= Lib.IntTypes.max_size_t} -> cipher: Lib.ByteSequence.bytes{Lib.Sequence.length cipher == Lib.Sequence.length msg}
Prims.Tot
[ "total" ]
[]
[ "Spec.Chacha20.state", "Lib.ByteSequence.bytes", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Division", "Lib.Sequence.length", "Lib.IntTypes.uint_t", "Lib.IntTypes.U8", "Lib.IntTypes.SEC", "Spec.Chacha20.size_block", "Lib.IntTypes.max_size_t", "Lib.Sequence.map_blocks", "Spec.Chacha20.chacha20_encrypt_block", "Spec.Chacha20.chacha20_encrypt_last", "Lib.Sequence.seq", "Lib.IntTypes.int_t", "Prims.op_Subtraction", "Prims.pow2", "Prims.eq2", "Prims.nat" ]
[]
false
false
false
false
false
let chacha20_update ctx msg =
let cipher = msg in map_blocks size_block cipher (chacha20_encrypt_block ctx) (chacha20_encrypt_last ctx)
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.repeat_gen_blocks_map_l
val repeat_gen_blocks_map_l (#a: Type0) (blocksize: size_pos) (hi: nat) (l: (i: nat{i <= hi} -> rem: nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i: nat{i <= hi}) (rem: nat{rem < blocksize}) (block_l: lseq a rem) (acc: map_blocks_a a blocksize hi i) : seq a
val repeat_gen_blocks_map_l (#a: Type0) (blocksize: size_pos) (hi: nat) (l: (i: nat{i <= hi} -> rem: nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i: nat{i <= hi}) (rem: nat{rem < blocksize}) (block_l: lseq a rem) (acc: map_blocks_a a blocksize hi i) : seq a
let repeat_gen_blocks_map_l (#a:Type0) (blocksize:size_pos) (hi:nat) (l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i:nat{i <= hi}) (rem:nat{rem < blocksize}) (block_l:lseq a rem) (acc:map_blocks_a a blocksize hi i) : seq a = if rem > 0 then Seq.append acc (l i rem block_l) else acc
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 523, "start_col": 0, "start_line": 513 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b val repeati_extensionality: #a:Type0 -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc)) (ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) val repeat_right_extensionality: n:nat -> lo:nat -> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f lo -> Lemma (requires (forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\ (forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc)) (ensures Loops.repeat_right lo (lo + n) a_f f acc0 == Loops.repeat_right lo (lo + n) a_g g acc0) // Loops.repeat_gen n a_f f acc0 == // Loops.repeat_right lo_g (lo_g + n) a_g g acc0) val repeat_gen_right_extensionality: n:nat -> lo_g:nat -> a_f:(i:nat{i <= n} -> Type) -> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type) -> f:(i:nat{i < n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f 0 -> Lemma (requires (forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\ (forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n a_f f acc0 == Loops.repeat_right lo_g (lo_g + n) a_g g acc0) // Loops.repeati n a f acc0 == // Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0 val repeati_right_extensionality: #a:Type -> n:nat -> lo_g:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 == Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) /// A specialized version of the lemma above, for only shifting one computation, /// but specified using repeati instead val repeati_right_shift: #a:Type -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < 1 + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc)) (ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) /// /// `repeat_gen_blocks` is defined here to prove all the properties /// needed for `map_blocks` and `repeat_blocks` once /// let repeat_gen_blocks_f (#inp_t:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (inp:seq inp_t{length inp == n * blocksize}) (a:(i:nat{i <= hi} -> Type)) (f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i:nat{mi <= i /\ i < mi + n}) (acc:a i) : a (i + 1) = let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc //lo = 0 val repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> a (mi + n) val lemma_repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 == Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0) val repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acci:a mi -> c val lemma_repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_div nb blocksize; Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == l (mi + nb) rem last acc) val repeat_gen_blocks_multi_extensionality_zero: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{length inp == n * blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc)) (ensures repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 == repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) val repeat_gen_blocks_extensionality_zero: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{n == length inp / blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc) /\ (forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)). l_f (mi + i) len block acc == l_g i len block acc)) (ensures repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 == repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) val len0_div_bs: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize == 0) (ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat -> Lemma (requires len0 <= n * blocksize /\ len0 % blocksize = 0) (ensures (let len = n * blocksize in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\ n0 * blocksize = len0 /\ n1 * blocksize = len1)) val split_len_lemma: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize = 0) (ensures (let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in let n = len / blocksize in len % blocksize = len1 % blocksize /\ n0 * blocksize = len0 /\ n0 + n1 = n)) val repeat_gen_blocks_multi_split: #inp_t:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (let len = length inp in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in split_len_lemma0 blocksize n len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 == repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) val repeat_gen_blocks_split: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> hi:nat -> mi:nat{mi <= hi} -> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let n = len / blocksize in let n0 = len0 / blocksize in split_len_lemma blocksize len len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) /// /// Properties related to the repeat_blocks combinator /// val repeat_blocks_extensionality: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f1:(lseq a blocksize -> b -> b) -> f2:(lseq a blocksize -> b -> b) -> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\ (forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc)) (ensures repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) val lemma_repeat_blocks_via_multi: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_blocks_multi blocksize blocks f acc0 in repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) val repeat_blocks_multi_is_repeat_gen_blocks_multi: #a:Type0 -> #b:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let n = length inp / blocksize in Math.Lemmas.div_exact_r (length inp) blocksize; repeat_blocks_multi #a #b blocksize inp f acc0 == repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) val repeat_blocks_is_repeat_gen_blocks: #a:Type0 -> #b:Type0 -> #c:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (repeat_blocks #a #b #c blocksize inp f l acc0 == repeat_gen_blocks #a #c blocksize 0 hi inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) val repeat_blocks_multi_split: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let len = length inp in Math.Lemmas.lemma_div_exact len blocksize; split_len_lemma0 blocksize (len / blocksize) len0; Math.Lemmas.swap_mul blocksize (len / blocksize); repeat_blocks_multi blocksize inp f acc0 == repeat_blocks_multi blocksize (Seq.slice inp len0 len) f (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) val repeat_blocks_split: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in split_len_lemma blocksize len len0; repeat_blocks blocksize inp f l acc0 == repeat_blocks blocksize (Seq.slice inp len0 len) f l (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) /// val repeat_blocks_multi_extensionality: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> g:(lseq a blocksize -> b -> b) -> init:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f block acc == g block acc)) (ensures repeat_blocks_multi blocksize inp f init == repeat_blocks_multi blocksize inp g init) /// Properties related to the map_blocks combinator /// val map_blocks_multi_extensionality: #a:Type0 -> blocksize:size_pos -> max:nat -> n:nat{n <= max} -> inp:seq a{length inp == max * blocksize} -> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> Lemma (requires (forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v)) (ensures map_blocks_multi blocksize max n inp f == map_blocks_multi blocksize max n inp g) val map_blocks_extensionality: #a:Type0 -> blocksize:size_pos -> inp:seq a -> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> Lemma (requires (let n = length inp / blocksize in (forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\ (forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v))) (ensures map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) /// /// New definition of `map_blocks` that takes extra parameter `acc`. /// When `acc` = Seq.empty, map_blocks == map_blocks_acc /// let repeat_gen_blocks_map_f (#a:Type0) (blocksize:size_pos) (hi:nat) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < hi}) (block:lseq a blocksize) (acc:map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1) = Seq.append acc (f i block)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> hi: Prims.nat -> l: (i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem -> Lib.Sequence.lseq a rem) -> i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> block_l: Lib.Sequence.lseq a rem -> acc: Lib.Sequence.map_blocks_a a blocksize hi i -> Lib.Sequence.seq a
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.Sequence.map_blocks_a", "Prims.op_GreaterThan", "FStar.Seq.Base.append", "Prims.bool", "Lib.Sequence.seq" ]
[]
false
false
false
false
false
let repeat_gen_blocks_map_l (#a: Type0) (blocksize: size_pos) (hi: nat) (l: (i: nat{i <= hi} -> rem: nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i: nat{i <= hi}) (rem: nat{rem < blocksize}) (block_l: lseq a rem) (acc: map_blocks_a a blocksize hi i) : seq a =
if rem > 0 then Seq.append acc (l i rem block_l) else acc
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.get_block_s
val get_block_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) (i: nat{i < (len / blocksize) * blocksize}) : lseq a blocksize
val get_block_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) (i: nat{i < (len / blocksize) * blocksize}) : lseq a blocksize
let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 24, "start_col": 0, "start_line": 13 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> inp: Lib.Sequence.seq a {Lib.Sequence.length inp == len} -> i: Prims.nat{i < (len / blocksize) * blocksize} -> Lib.Sequence.lseq a blocksize
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Lib.IntTypes.size_pos", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Prims.op_Division", "Lib.Sequence.lseq", "FStar.Seq.Base.slice", "Prims.op_Addition", "Prims.int", "Prims.unit", "Lib.Sequence.div_mul_lt" ]
[]
false
false
false
false
false
let get_block_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) (i: nat{i < (len / blocksize) * blocksize}) : lseq a blocksize =
div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b:lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.get_last_s
val get_last_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) : lseq a (len % blocksize)
val get_last_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) : lseq a (len % blocksize)
let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 36, "start_col": 0, "start_line": 27 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> inp: Lib.Sequence.seq a {Lib.Sequence.length inp == len} -> Lib.Sequence.lseq a (len % blocksize)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Lib.IntTypes.size_pos", "Lib.Sequence.seq", "Prims.eq2", "Lib.Sequence.length", "Lib.Sequence.lseq", "FStar.Seq.Base.slice", "Prims.op_Subtraction", "Prims.int", "Prims.op_Modulus" ]
[]
false
false
false
false
false
let get_last_s (#a: Type) (#len: nat) (blocksize: size_pos) (inp: seq a {length inp == len}) : lseq a (len % blocksize) =
let rem = len % blocksize in let b:lseq a rem = Seq.slice inp (len - rem) len in b
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.f_shift
val f_shift : blocksize: Lib.IntTypes.size_pos -> mi: Prims.nat -> hi: Prims.nat -> n: Prims.nat{mi + n <= hi} -> f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) -> i: Prims.nat{i < n} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize
let f_shift (#a:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < n}) = f (mi + i)
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 89, "end_line": 609, "start_col": 0, "start_line": 608 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b val repeati_extensionality: #a:Type0 -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc)) (ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) val repeat_right_extensionality: n:nat -> lo:nat -> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f lo -> Lemma (requires (forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\ (forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc)) (ensures Loops.repeat_right lo (lo + n) a_f f acc0 == Loops.repeat_right lo (lo + n) a_g g acc0) // Loops.repeat_gen n a_f f acc0 == // Loops.repeat_right lo_g (lo_g + n) a_g g acc0) val repeat_gen_right_extensionality: n:nat -> lo_g:nat -> a_f:(i:nat{i <= n} -> Type) -> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type) -> f:(i:nat{i < n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f 0 -> Lemma (requires (forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\ (forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n a_f f acc0 == Loops.repeat_right lo_g (lo_g + n) a_g g acc0) // Loops.repeati n a f acc0 == // Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0 val repeati_right_extensionality: #a:Type -> n:nat -> lo_g:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 == Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) /// A specialized version of the lemma above, for only shifting one computation, /// but specified using repeati instead val repeati_right_shift: #a:Type -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < 1 + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc)) (ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) /// /// `repeat_gen_blocks` is defined here to prove all the properties /// needed for `map_blocks` and `repeat_blocks` once /// let repeat_gen_blocks_f (#inp_t:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (inp:seq inp_t{length inp == n * blocksize}) (a:(i:nat{i <= hi} -> Type)) (f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i:nat{mi <= i /\ i < mi + n}) (acc:a i) : a (i + 1) = let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc //lo = 0 val repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> a (mi + n) val lemma_repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 == Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0) val repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acci:a mi -> c val lemma_repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_div nb blocksize; Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == l (mi + nb) rem last acc) val repeat_gen_blocks_multi_extensionality_zero: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{length inp == n * blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc)) (ensures repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 == repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) val repeat_gen_blocks_extensionality_zero: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{n == length inp / blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc) /\ (forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)). l_f (mi + i) len block acc == l_g i len block acc)) (ensures repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 == repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) val len0_div_bs: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize == 0) (ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat -> Lemma (requires len0 <= n * blocksize /\ len0 % blocksize = 0) (ensures (let len = n * blocksize in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\ n0 * blocksize = len0 /\ n1 * blocksize = len1)) val split_len_lemma: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize = 0) (ensures (let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in let n = len / blocksize in len % blocksize = len1 % blocksize /\ n0 * blocksize = len0 /\ n0 + n1 = n)) val repeat_gen_blocks_multi_split: #inp_t:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (let len = length inp in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in split_len_lemma0 blocksize n len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 == repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) val repeat_gen_blocks_split: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> hi:nat -> mi:nat{mi <= hi} -> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let n = len / blocksize in let n0 = len0 / blocksize in split_len_lemma blocksize len len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) /// /// Properties related to the repeat_blocks combinator /// val repeat_blocks_extensionality: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f1:(lseq a blocksize -> b -> b) -> f2:(lseq a blocksize -> b -> b) -> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\ (forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc)) (ensures repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) val lemma_repeat_blocks_via_multi: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_blocks_multi blocksize blocks f acc0 in repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) val repeat_blocks_multi_is_repeat_gen_blocks_multi: #a:Type0 -> #b:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let n = length inp / blocksize in Math.Lemmas.div_exact_r (length inp) blocksize; repeat_blocks_multi #a #b blocksize inp f acc0 == repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) val repeat_blocks_is_repeat_gen_blocks: #a:Type0 -> #b:Type0 -> #c:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (repeat_blocks #a #b #c blocksize inp f l acc0 == repeat_gen_blocks #a #c blocksize 0 hi inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) val repeat_blocks_multi_split: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let len = length inp in Math.Lemmas.lemma_div_exact len blocksize; split_len_lemma0 blocksize (len / blocksize) len0; Math.Lemmas.swap_mul blocksize (len / blocksize); repeat_blocks_multi blocksize inp f acc0 == repeat_blocks_multi blocksize (Seq.slice inp len0 len) f (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) val repeat_blocks_split: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in split_len_lemma blocksize len len0; repeat_blocks blocksize inp f l acc0 == repeat_blocks blocksize (Seq.slice inp len0 len) f l (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) /// val repeat_blocks_multi_extensionality: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> g:(lseq a blocksize -> b -> b) -> init:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f block acc == g block acc)) (ensures repeat_blocks_multi blocksize inp f init == repeat_blocks_multi blocksize inp g init) /// Properties related to the map_blocks combinator /// val map_blocks_multi_extensionality: #a:Type0 -> blocksize:size_pos -> max:nat -> n:nat{n <= max} -> inp:seq a{length inp == max * blocksize} -> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> Lemma (requires (forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v)) (ensures map_blocks_multi blocksize max n inp f == map_blocks_multi blocksize max n inp g) val map_blocks_extensionality: #a:Type0 -> blocksize:size_pos -> inp:seq a -> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> Lemma (requires (let n = length inp / blocksize in (forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\ (forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v))) (ensures map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) /// /// New definition of `map_blocks` that takes extra parameter `acc`. /// When `acc` = Seq.empty, map_blocks == map_blocks_acc /// let repeat_gen_blocks_map_f (#a:Type0) (blocksize:size_pos) (hi:nat) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < hi}) (block:lseq a blocksize) (acc:map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1) = Seq.append acc (f i block) let repeat_gen_blocks_map_l (#a:Type0) (blocksize:size_pos) (hi:nat) (l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i:nat{i <= hi}) (rem:nat{rem < blocksize}) (block_l:lseq a rem) (acc:map_blocks_a a blocksize hi i) : seq a = if rem > 0 then Seq.append acc (l i rem block_l) else acc val repeat_gen_blocks_map_l_length: #a:Type0 -> blocksize:size_pos -> hi:nat -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> i:nat{i <= hi} -> rem:nat{rem < blocksize} -> block_l:lseq a rem -> acc:map_blocks_a a blocksize hi i -> Lemma (length (repeat_gen_blocks_map_l blocksize hi l i rem block_l acc) == i * blocksize + rem) val map_blocks_multi_acc: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq a{length inp == n * blocksize} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> acc0:map_blocks_a a blocksize hi mi -> out:seq a {length out == length acc0 + length inp} val map_blocks_acc: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> seq a val map_blocks_acc_length: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (length (map_blocks_acc blocksize mi hi inp f l acc0) == length acc0 + length inp) [SMTPat (map_blocks_acc blocksize mi hi inp f l acc0)] val map_blocks_multi_acc_is_repeat_gen_blocks_multi: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq a{length inp == n * blocksize} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (map_blocks_multi_acc #a blocksize mi hi n inp f acc0 == repeat_gen_blocks_multi #a blocksize mi hi n inp (map_blocks_a a blocksize hi) (repeat_gen_blocks_map_f blocksize hi f) acc0) val map_blocks_acc_is_repeat_gen_blocks: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (map_blocks_acc #a blocksize mi hi inp f l acc0 == repeat_gen_blocks #a blocksize mi hi inp (map_blocks_a a blocksize hi) (repeat_gen_blocks_map_f blocksize hi f) (repeat_gen_blocks_map_l blocksize hi l) acc0)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> mi: Prims.nat -> hi: Prims.nat -> n: Prims.nat{mi + n <= hi} -> f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) -> i: Prims.nat{i < n} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Prims.op_LessThan", "Lib.Sequence.lseq" ]
[]
false
false
false
false
false
let f_shift (#a: Type0) (blocksize: size_pos) (mi hi: nat) (n: nat{mi + n <= hi}) (f: (i: nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i: nat{i < n}) =
f (mi + i)
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.repeat_gen_blocks_map_f
val repeat_gen_blocks_map_f (#a: Type0) (blocksize: size_pos) (hi: nat) (f: (i: nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i: nat{i < hi}) (block: lseq a blocksize) (acc: map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1)
val repeat_gen_blocks_map_f (#a: Type0) (blocksize: size_pos) (hi: nat) (f: (i: nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i: nat{i < hi}) (block: lseq a blocksize) (acc: map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1)
let repeat_gen_blocks_map_f (#a:Type0) (blocksize:size_pos) (hi:nat) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < hi}) (block:lseq a blocksize) (acc:map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1) = Seq.append acc (f i block)
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 29, "end_line": 510, "start_col": 0, "start_line": 501 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b val repeati_extensionality: #a:Type0 -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc)) (ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) val repeat_right_extensionality: n:nat -> lo:nat -> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f lo -> Lemma (requires (forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\ (forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc)) (ensures Loops.repeat_right lo (lo + n) a_f f acc0 == Loops.repeat_right lo (lo + n) a_g g acc0) // Loops.repeat_gen n a_f f acc0 == // Loops.repeat_right lo_g (lo_g + n) a_g g acc0) val repeat_gen_right_extensionality: n:nat -> lo_g:nat -> a_f:(i:nat{i <= n} -> Type) -> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type) -> f:(i:nat{i < n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f 0 -> Lemma (requires (forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\ (forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n a_f f acc0 == Loops.repeat_right lo_g (lo_g + n) a_g g acc0) // Loops.repeati n a f acc0 == // Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0 val repeati_right_extensionality: #a:Type -> n:nat -> lo_g:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 == Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) /// A specialized version of the lemma above, for only shifting one computation, /// but specified using repeati instead val repeati_right_shift: #a:Type -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < 1 + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc)) (ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) /// /// `repeat_gen_blocks` is defined here to prove all the properties /// needed for `map_blocks` and `repeat_blocks` once /// let repeat_gen_blocks_f (#inp_t:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (inp:seq inp_t{length inp == n * blocksize}) (a:(i:nat{i <= hi} -> Type)) (f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i:nat{mi <= i /\ i < mi + n}) (acc:a i) : a (i + 1) = let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc //lo = 0 val repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> a (mi + n) val lemma_repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 == Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0) val repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acci:a mi -> c val lemma_repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_div nb blocksize; Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == l (mi + nb) rem last acc) val repeat_gen_blocks_multi_extensionality_zero: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{length inp == n * blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc)) (ensures repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 == repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) val repeat_gen_blocks_extensionality_zero: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{n == length inp / blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc) /\ (forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)). l_f (mi + i) len block acc == l_g i len block acc)) (ensures repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 == repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) val len0_div_bs: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize == 0) (ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat -> Lemma (requires len0 <= n * blocksize /\ len0 % blocksize = 0) (ensures (let len = n * blocksize in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\ n0 * blocksize = len0 /\ n1 * blocksize = len1)) val split_len_lemma: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize = 0) (ensures (let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in let n = len / blocksize in len % blocksize = len1 % blocksize /\ n0 * blocksize = len0 /\ n0 + n1 = n)) val repeat_gen_blocks_multi_split: #inp_t:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (let len = length inp in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in split_len_lemma0 blocksize n len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 == repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) val repeat_gen_blocks_split: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> hi:nat -> mi:nat{mi <= hi} -> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let n = len / blocksize in let n0 = len0 / blocksize in split_len_lemma blocksize len len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) /// /// Properties related to the repeat_blocks combinator /// val repeat_blocks_extensionality: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f1:(lseq a blocksize -> b -> b) -> f2:(lseq a blocksize -> b -> b) -> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\ (forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc)) (ensures repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) val lemma_repeat_blocks_via_multi: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_blocks_multi blocksize blocks f acc0 in repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) val repeat_blocks_multi_is_repeat_gen_blocks_multi: #a:Type0 -> #b:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let n = length inp / blocksize in Math.Lemmas.div_exact_r (length inp) blocksize; repeat_blocks_multi #a #b blocksize inp f acc0 == repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) val repeat_blocks_is_repeat_gen_blocks: #a:Type0 -> #b:Type0 -> #c:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (repeat_blocks #a #b #c blocksize inp f l acc0 == repeat_gen_blocks #a #c blocksize 0 hi inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) val repeat_blocks_multi_split: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let len = length inp in Math.Lemmas.lemma_div_exact len blocksize; split_len_lemma0 blocksize (len / blocksize) len0; Math.Lemmas.swap_mul blocksize (len / blocksize); repeat_blocks_multi blocksize inp f acc0 == repeat_blocks_multi blocksize (Seq.slice inp len0 len) f (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) val repeat_blocks_split: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in split_len_lemma blocksize len len0; repeat_blocks blocksize inp f l acc0 == repeat_blocks blocksize (Seq.slice inp len0 len) f l (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) /// val repeat_blocks_multi_extensionality: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> g:(lseq a blocksize -> b -> b) -> init:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f block acc == g block acc)) (ensures repeat_blocks_multi blocksize inp f init == repeat_blocks_multi blocksize inp g init) /// Properties related to the map_blocks combinator /// val map_blocks_multi_extensionality: #a:Type0 -> blocksize:size_pos -> max:nat -> n:nat{n <= max} -> inp:seq a{length inp == max * blocksize} -> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> Lemma (requires (forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v)) (ensures map_blocks_multi blocksize max n inp f == map_blocks_multi blocksize max n inp g) val map_blocks_extensionality: #a:Type0 -> blocksize:size_pos -> inp:seq a -> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> Lemma (requires (let n = length inp / blocksize in (forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\ (forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v))) (ensures map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) /// /// New definition of `map_blocks` that takes extra parameter `acc`. /// When `acc` = Seq.empty, map_blocks == map_blocks_acc ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> hi: Prims.nat -> f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq a blocksize -> Lib.Sequence.lseq a blocksize) -> i: Prims.nat{i < hi} -> block: Lib.Sequence.lseq a blocksize -> acc: Lib.Sequence.map_blocks_a a blocksize hi i -> Lib.Sequence.map_blocks_a a blocksize hi (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.Sequence.map_blocks_a", "FStar.Seq.Base.append", "Prims.op_Addition" ]
[]
false
false
false
false
false
let repeat_gen_blocks_map_f (#a: Type0) (blocksize: size_pos) (hi: nat) (f: (i: nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i: nat{i < hi}) (block: lseq a blocksize) (acc: map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1) =
Seq.append acc (f i block)
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.l_shift
val l_shift : blocksize: Lib.IntTypes.size_pos -> mi: Prims.nat -> hi: Prims.nat -> n: Prims.nat{mi + n <= hi} -> l: (i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem -> Lib.Sequence.lseq a rem) -> i: Prims.nat{i <= n} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem -> Lib.Sequence.lseq a rem
let l_shift (#a:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i:nat{i <= n}) = l (mi + i)
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 107, "end_line": 613, "start_col": 0, "start_line": 612 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b val repeati_extensionality: #a:Type0 -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc)) (ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) val repeat_right_extensionality: n:nat -> lo:nat -> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f lo -> Lemma (requires (forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\ (forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc)) (ensures Loops.repeat_right lo (lo + n) a_f f acc0 == Loops.repeat_right lo (lo + n) a_g g acc0) // Loops.repeat_gen n a_f f acc0 == // Loops.repeat_right lo_g (lo_g + n) a_g g acc0) val repeat_gen_right_extensionality: n:nat -> lo_g:nat -> a_f:(i:nat{i <= n} -> Type) -> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type) -> f:(i:nat{i < n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f 0 -> Lemma (requires (forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\ (forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n a_f f acc0 == Loops.repeat_right lo_g (lo_g + n) a_g g acc0) // Loops.repeati n a f acc0 == // Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0 val repeati_right_extensionality: #a:Type -> n:nat -> lo_g:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 == Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) /// A specialized version of the lemma above, for only shifting one computation, /// but specified using repeati instead val repeati_right_shift: #a:Type -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < 1 + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc)) (ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) /// /// `repeat_gen_blocks` is defined here to prove all the properties /// needed for `map_blocks` and `repeat_blocks` once /// let repeat_gen_blocks_f (#inp_t:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (inp:seq inp_t{length inp == n * blocksize}) (a:(i:nat{i <= hi} -> Type)) (f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i:nat{mi <= i /\ i < mi + n}) (acc:a i) : a (i + 1) = let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc //lo = 0 val repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> a (mi + n) val lemma_repeat_gen_blocks_multi: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (repeat_gen_blocks_multi #inp_t blocksize mi hi n inp a f acc0 == Loops.repeat_right mi (mi + n) a (repeat_gen_blocks_f blocksize mi hi n inp a f) acc0) val repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acci:a mi -> c val lemma_repeat_gen_blocks: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq inp_t{mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_div nb blocksize; Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_gen_blocks_multi #inp_t blocksize mi hi nb blocks a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == l (mi + nb) rem last acc) val repeat_gen_blocks_multi_extensionality_zero: #inp_t:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{length inp == n * blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc)) (ensures repeat_gen_blocks_multi blocksize mi hi_f n inp a_f f acc0 == repeat_gen_blocks_multi blocksize 0 hi_g n inp a_g g acc0) val repeat_gen_blocks_extensionality_zero: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> mi:nat -> hi_f:nat -> hi_g:nat -> n:nat{mi + n <= hi_f /\ n <= hi_g} -> inp:seq inp_t{n == length inp / blocksize} -> a_f:(i:nat{i <= hi_f} -> Type) -> a_g:(i:nat{i <= hi_g} -> Type) -> f:(i:nat{i < hi_f} -> lseq inp_t blocksize -> a_f i -> a_f (i + 1)) -> l_f:(i:nat{i <= hi_f} -> len:nat{len < blocksize} -> lseq inp_t len -> a_f i -> c) -> g:(i:nat{i < hi_g} -> lseq inp_t blocksize -> a_g i -> a_g (i + 1)) -> l_g:(i:nat{i <= hi_g} -> len:nat{len < blocksize} -> lseq inp_t len -> a_g i -> c) -> acc0:a_f mi -> Lemma (requires (forall (i:nat{i <= n}). a_f (mi + i) == a_g i) /\ (forall (i:nat{i < n}) (block:lseq inp_t blocksize) (acc:a_f (mi + i)). f (mi + i) block acc == g i block acc) /\ (forall (i:nat{i <= n}) (len:nat{len < blocksize}) (block:lseq inp_t len) (acc:a_f (mi + i)). l_f (mi + i) len block acc == l_g i len block acc)) (ensures repeat_gen_blocks blocksize mi hi_f inp a_f f l_f acc0 == repeat_gen_blocks blocksize 0 hi_g inp a_g g l_g acc0) val len0_div_bs: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize == 0) (ensures len0 / blocksize + (len - len0) / blocksize == len / blocksize) val split_len_lemma0: blocksize:pos -> n:nat -> len0:nat -> Lemma (requires len0 <= n * blocksize /\ len0 % blocksize = 0) (ensures (let len = n * blocksize in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in len % blocksize = 0 /\ len1 % blocksize = 0 /\ n0 + n1 = n /\ n0 * blocksize = len0 /\ n1 * blocksize = len1)) val split_len_lemma: blocksize:pos -> len:nat -> len0:nat -> Lemma (requires len0 <= len /\ len0 % blocksize = 0) (ensures (let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in let n = len / blocksize in len % blocksize = len1 % blocksize /\ n0 * blocksize = len0 /\ n0 + n1 = n)) val repeat_gen_blocks_multi_split: #inp_t:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq inp_t{len0 <= length inp /\ length inp == n * blocksize} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> acc0:a mi -> Lemma (let len = length inp in let len1 = len - len0 in let n0 = len0 / blocksize in let n1 = len1 / blocksize in split_len_lemma0 blocksize n len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks_multi blocksize mi hi n inp a f acc0 == repeat_gen_blocks_multi blocksize (mi + n0) hi n1 t1 a f acc) val repeat_gen_blocks_split: #inp_t:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize == 0} -> hi:nat -> mi:nat{mi <= hi} -> inp:seq inp_t{len0 <= length inp /\ mi + length inp / blocksize <= hi} -> a:(i:nat{i <= hi} -> Type) -> f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1)) -> l:(i:nat{i <= hi} -> len:nat{len < blocksize} -> lseq inp_t len -> a i -> c) -> acc0:a mi -> Lemma (let len = length inp in let n = len / blocksize in let n0 = len0 / blocksize in split_len_lemma blocksize len len0; let t0 = Seq.slice inp 0 len0 in let t1 = Seq.slice inp len0 len in let acc : a (mi + n0) = repeat_gen_blocks_multi blocksize mi hi n0 t0 a f acc0 in repeat_gen_blocks blocksize mi hi inp a f l acc0 == repeat_gen_blocks blocksize (mi + n0) hi t1 a f l acc) /// /// Properties related to the repeat_blocks combinator /// val repeat_blocks_extensionality: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f1:(lseq a blocksize -> b -> b) -> f2:(lseq a blocksize -> b -> b) -> l1:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> l2:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f1 block acc == f2 block acc) /\ (forall (rem:nat{rem < blocksize}) (last:lseq a rem) (acc:b). l1 rem last acc == l2 rem last acc)) (ensures repeat_blocks blocksize inp f1 l1 acc0 == repeat_blocks blocksize inp f2 l2 acc0) val lemma_repeat_blocks_via_multi: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> inp:seq a -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in let nb = len / blocksize in let rem = len % blocksize in let blocks = Seq.slice inp 0 (nb * blocksize) in let last = Seq.slice inp (nb * blocksize) len in Math.Lemmas.cancel_mul_mod nb blocksize; let acc = repeat_blocks_multi blocksize blocks f acc0 in repeat_blocks #a #b blocksize inp f l acc0 == l rem last acc) val repeat_blocks_multi_is_repeat_gen_blocks_multi: #a:Type0 -> #b:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0 /\ length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let n = length inp / blocksize in Math.Lemmas.div_exact_r (length inp) blocksize; repeat_blocks_multi #a #b blocksize inp f acc0 == repeat_gen_blocks_multi #a blocksize 0 hi n inp (Loops.fixed_a b) (Loops.fixed_i f) acc0) val repeat_blocks_is_repeat_gen_blocks: #a:Type0 -> #b:Type0 -> #c:Type0 -> hi:nat -> blocksize:size_pos -> inp:seq a{length inp / blocksize <= hi} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (repeat_blocks #a #b #c blocksize inp f l acc0 == repeat_gen_blocks #a #c blocksize 0 hi inp (Loops.fixed_a b) (Loops.fixed_i f) (Loops.fixed_i l) acc0) val repeat_blocks_multi_split: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp /\ length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> acc0:b -> Lemma (let len = length inp in Math.Lemmas.lemma_div_exact len blocksize; split_len_lemma0 blocksize (len / blocksize) len0; Math.Lemmas.swap_mul blocksize (len / blocksize); repeat_blocks_multi blocksize inp f acc0 == repeat_blocks_multi blocksize (Seq.slice inp len0 len) f (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) val repeat_blocks_split: #a:Type0 -> #b:Type0 -> #c:Type0 -> blocksize:size_pos -> len0:nat{len0 % blocksize = 0} -> inp:seq a{len0 <= length inp} -> f:(lseq a blocksize -> b -> b) -> l:(len:nat{len < blocksize} -> s:lseq a len -> b -> c) -> acc0:b -> Lemma (let len = length inp in split_len_lemma blocksize len len0; repeat_blocks blocksize inp f l acc0 == repeat_blocks blocksize (Seq.slice inp len0 len) f l (repeat_blocks_multi blocksize (Seq.slice inp 0 len0) f acc0)) /// val repeat_blocks_multi_extensionality: #a:Type0 -> #b:Type0 -> blocksize:size_pos -> inp:seq a{length inp % blocksize = 0} -> f:(lseq a blocksize -> b -> b) -> g:(lseq a blocksize -> b -> b) -> init:b -> Lemma (requires (forall (block:lseq a blocksize) (acc:b). f block acc == g block acc)) (ensures repeat_blocks_multi blocksize inp f init == repeat_blocks_multi blocksize inp g init) /// Properties related to the map_blocks combinator /// val map_blocks_multi_extensionality: #a:Type0 -> blocksize:size_pos -> max:nat -> n:nat{n <= max} -> inp:seq a{length inp == max * blocksize} -> f:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> g:(i:nat{i < max} -> lseq a blocksize -> lseq a blocksize) -> Lemma (requires (forall (i:nat{i < max}) (b_v:lseq a blocksize). f i b_v == g i b_v)) (ensures map_blocks_multi blocksize max n inp f == map_blocks_multi blocksize max n inp g) val map_blocks_extensionality: #a:Type0 -> blocksize:size_pos -> inp:seq a -> f:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_f:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> g:(block (length inp) blocksize -> lseq a blocksize -> lseq a blocksize) -> l_g:(last (length inp) blocksize -> rem:size_nat{rem < blocksize} -> s:lseq a rem -> lseq a rem) -> Lemma (requires (let n = length inp / blocksize in (forall (i:nat{i < n}) (b_v:lseq a blocksize). f i b_v == g i b_v) /\ (forall (rem:nat{rem < blocksize}) (b_v:lseq a rem). l_f n rem b_v == l_g n rem b_v))) (ensures map_blocks blocksize inp f l_f == map_blocks blocksize inp g l_g) /// /// New definition of `map_blocks` that takes extra parameter `acc`. /// When `acc` = Seq.empty, map_blocks == map_blocks_acc /// let repeat_gen_blocks_map_f (#a:Type0) (blocksize:size_pos) (hi:nat) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < hi}) (block:lseq a blocksize) (acc:map_blocks_a a blocksize hi i) : map_blocks_a a blocksize hi (i + 1) = Seq.append acc (f i block) let repeat_gen_blocks_map_l (#a:Type0) (blocksize:size_pos) (hi:nat) (l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i:nat{i <= hi}) (rem:nat{rem < blocksize}) (block_l:lseq a rem) (acc:map_blocks_a a blocksize hi i) : seq a = if rem > 0 then Seq.append acc (l i rem block_l) else acc val repeat_gen_blocks_map_l_length: #a:Type0 -> blocksize:size_pos -> hi:nat -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> i:nat{i <= hi} -> rem:nat{rem < blocksize} -> block_l:lseq a rem -> acc:map_blocks_a a blocksize hi i -> Lemma (length (repeat_gen_blocks_map_l blocksize hi l i rem block_l acc) == i * blocksize + rem) val map_blocks_multi_acc: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq a{length inp == n * blocksize} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> acc0:map_blocks_a a blocksize hi mi -> out:seq a {length out == length acc0 + length inp} val map_blocks_acc: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> seq a val map_blocks_acc_length: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (length (map_blocks_acc blocksize mi hi inp f l acc0) == length acc0 + length inp) [SMTPat (map_blocks_acc blocksize mi hi inp f l acc0)] val map_blocks_multi_acc_is_repeat_gen_blocks_multi: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> n:nat{mi + n <= hi} -> inp:seq a{length inp == n * blocksize} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (map_blocks_multi_acc #a blocksize mi hi n inp f acc0 == repeat_gen_blocks_multi #a blocksize mi hi n inp (map_blocks_a a blocksize hi) (repeat_gen_blocks_map_f blocksize hi f) acc0) val map_blocks_acc_is_repeat_gen_blocks: #a:Type0 -> blocksize:size_pos -> mi:nat -> hi:nat -> inp:seq a{mi + length inp / blocksize <= hi} -> f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize) -> l:(i:nat{i <= hi} -> rem:nat{rem < blocksize} -> lseq a rem -> lseq a rem) -> acc0:map_blocks_a a blocksize hi mi -> Lemma (map_blocks_acc #a blocksize mi hi inp f l acc0 == repeat_gen_blocks #a blocksize mi hi inp (map_blocks_a a blocksize hi) (repeat_gen_blocks_map_f blocksize hi f) (repeat_gen_blocks_map_l blocksize hi l) acc0) let f_shift (#a:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (f:(i:nat{i < hi} -> lseq a blocksize -> lseq a blocksize)) (i:nat{i < n}) = f (mi + i)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> mi: Prims.nat -> hi: Prims.nat -> n: Prims.nat{mi + n <= hi} -> l: (i: Prims.nat{i <= hi} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem -> Lib.Sequence.lseq a rem) -> i: Prims.nat{i <= n} -> rem: Prims.nat{rem < blocksize} -> _: Lib.Sequence.lseq a rem -> Lib.Sequence.lseq a rem
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Prims.op_LessThan", "Lib.Sequence.lseq" ]
[]
false
false
false
false
false
let l_shift (#a: Type0) (blocksize: size_pos) (mi hi: nat) (n: nat{mi + n <= hi}) (l: (i: nat{i <= hi} -> rem: nat{rem < blocksize} -> lseq a rem -> lseq a rem)) (i: nat{i <= n}) =
l (mi + i)
false
Lib.Sequence.Lemmas.fsti
Lib.Sequence.Lemmas.repeat_gen_blocks_f
val repeat_gen_blocks_f (#inp_t: Type0) (blocksize: size_pos) (mi hi: nat) (n: nat{mi + n <= hi}) (inp: seq inp_t {length inp == n * blocksize}) (a: (i: nat{i <= hi} -> Type)) (f: (i: nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i: nat{mi <= i /\ i < mi + n}) (acc: a i) : a (i + 1)
val repeat_gen_blocks_f (#inp_t: Type0) (blocksize: size_pos) (mi hi: nat) (n: nat{mi + n <= hi}) (inp: seq inp_t {length inp == n * blocksize}) (a: (i: nat{i <= hi} -> Type)) (f: (i: nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i: nat{mi <= i /\ i < mi + n}) (acc: a i) : a (i + 1)
let repeat_gen_blocks_f (#inp_t:Type0) (blocksize:size_pos) (mi:nat) (hi:nat) (n:nat{mi + n <= hi}) (inp:seq inp_t{length inp == n * blocksize}) (a:(i:nat{i <= hi} -> Type)) (f:(i:nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i:nat{mi <= i /\ i < mi + n}) (acc:a i) : a (i + 1) = let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc
{ "file_name": "lib/Lib.Sequence.Lemmas.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 15, "end_line": 133, "start_col": 0, "start_line": 118 }
module Lib.Sequence.Lemmas open FStar.Mul open Lib.IntTypes open Lib.Sequence module Loops = Lib.LoopCombinators #set-options "--z3rlimit 50 --max_fuel 0 --max_ifuel 0 \ --using_facts_from '-* +Prims +FStar.Math.Lemmas +FStar.Seq +Lib.IntTypes +Lib.Sequence +Lib.Sequence.Lemmas'" let get_block_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) (i:nat{i < len / blocksize * blocksize}) : lseq a blocksize = div_mul_lt blocksize i (len / blocksize); let j = i / blocksize in let b: lseq a blocksize = Seq.slice inp (j * blocksize) ((j + 1) * blocksize) in b let get_last_s (#a:Type) (#len:nat) (blocksize:size_pos) (inp:seq a{length inp == len}) : lseq a (len % blocksize) = let rem = len % blocksize in let b: lseq a rem = Seq.slice inp (len - rem) len in b val repeati_extensionality: #a:Type0 -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g i acc)) (ensures Loops.repeati n f acc0 == Loops.repeati n g acc0) val repeat_right_extensionality: n:nat -> lo:nat -> a_f:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> a_g:(i:nat{lo <= i /\ i <= lo + n} -> Type) -> f:(i:nat{lo <= i /\ i < lo + n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo <= i /\ i < lo + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f lo -> Lemma (requires (forall (i:nat{lo <= i /\ i <= lo + n}). a_f i == a_g i) /\ (forall (i:nat{lo <= i /\ i < lo + n}) (acc:a_f i). f i acc == g i acc)) (ensures Loops.repeat_right lo (lo + n) a_f f acc0 == Loops.repeat_right lo (lo + n) a_g g acc0) // Loops.repeat_gen n a_f f acc0 == // Loops.repeat_right lo_g (lo_g + n) a_g g acc0) val repeat_gen_right_extensionality: n:nat -> lo_g:nat -> a_f:(i:nat{i <= n} -> Type) -> a_g:(i:nat{lo_g <= i /\ i <= lo_g + n} -> Type) -> f:(i:nat{i < n} -> a_f i -> a_f (i + 1)) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a_g i -> a_g (i + 1)) -> acc0:a_f 0 -> Lemma (requires (forall (i:nat{i <= n}). a_f i == a_g (lo_g + i)) /\ (forall (i:nat{i < n}) (acc:a_f i). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n a_f f acc0 == Loops.repeat_right lo_g (lo_g + n) a_g g acc0) // Loops.repeati n a f acc0 == // Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0 val repeati_right_extensionality: #a:Type -> n:nat -> lo_g:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{lo_g <= i /\ i < lo_g + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (lo_g + i) acc)) (ensures Loops.repeat_right 0 n (Loops.fixed_a a) f acc0 == Loops.repeat_right lo_g (lo_g + n) (Loops.fixed_a a) g acc0) /// A specialized version of the lemma above, for only shifting one computation, /// but specified using repeati instead val repeati_right_shift: #a:Type -> n:nat -> f:(i:nat{i < n} -> a -> a) -> g:(i:nat{i < 1 + n} -> a -> a) -> acc0:a -> Lemma (requires (forall (i:nat{i < n}) (acc:a). f i acc == g (i + 1) acc)) (ensures Loops.repeati n f (g 0 acc0) == Loops.repeati (n + 1) g acc0) /// /// `repeat_gen_blocks` is defined here to prove all the properties /// needed for `map_blocks` and `repeat_blocks` once ///
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Math.Lemmas.fst.checked" ], "interface_file": false, "source_file": "Lib.Sequence.Lemmas.fsti" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
blocksize: Lib.IntTypes.size_pos -> mi: Prims.nat -> hi: Prims.nat -> n: Prims.nat{mi + n <= hi} -> inp: Lib.Sequence.seq inp_t {Lib.Sequence.length inp == n * blocksize} -> a: (i: Prims.nat{i <= hi} -> Type) -> f: (i: Prims.nat{i < hi} -> _: Lib.Sequence.lseq inp_t blocksize -> _: a i -> a (i + 1)) -> i: Prims.nat{mi <= i /\ i < mi + n} -> acc: a i -> a (i + 1)
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_pos", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "Lib.Sequence.seq", "Prims.eq2", "Prims.int", "Lib.Sequence.length", "FStar.Mul.op_Star", "Prims.op_LessThan", "Lib.Sequence.lseq", "Prims.l_and", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "Prims.unit", "FStar.Math.Lemmas.lemma_mult_le_right", "Prims.op_Subtraction" ]
[]
false
false
false
false
false
let repeat_gen_blocks_f (#inp_t: Type0) (blocksize: size_pos) (mi hi: nat) (n: nat{mi + n <= hi}) (inp: seq inp_t {length inp == n * blocksize}) (a: (i: nat{i <= hi} -> Type)) (f: (i: nat{i < hi} -> lseq inp_t blocksize -> a i -> a (i + 1))) (i: nat{mi <= i /\ i < mi + n}) (acc: a i) : a (i + 1) =
let i_b = i - mi in Math.Lemmas.lemma_mult_le_right blocksize (i_b + 1) n; let block = Seq.slice inp (i_b * blocksize) (i_b * blocksize + blocksize) in f i block acc
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.alloc
val alloc (#a:Type) (#pcm:pcm a) (x:a) : ST (ref a pcm) emp (fun r -> pts_to r x) (requires pcm.refine x) (ensures fun _ -> True)
val alloc (#a:Type) (#pcm:pcm a) (x:a) : ST (ref a pcm) emp (fun r -> pts_to r x) (requires pcm.refine x) (ensures fun _ -> True)
let alloc x = C.coerce_steel (fun _ -> P.alloc x)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 49, "end_line": 10, "start_col": 0, "start_line": 10 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> Steel.ST.Effect.ST (Steel.Memory.ref a pcm)
Steel.ST.Effect.ST
[]
[]
[ "FStar.PCM.pcm", "Steel.ST.Coercions.coerce_steel", "Steel.Memory.ref", "Steel.Effect.Common.emp", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "Steel.Effect.Common.vprop", "FStar.PCM.__proj__Mkpcm__item__refine", "Prims.l_True", "Prims.unit", "Steel.PCMReference.alloc" ]
[]
false
true
false
false
false
let alloc x =
C.coerce_steel (fun _ -> P.alloc x)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.read
val read (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) : ST a (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v /\ True)
val read (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) : ST a (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v /\ True)
let read r v0 = C.coerce_steel (fun _ -> P.read r v0)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 53, "end_line": 6, "start_col": 0, "start_line": 6 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> v0: FStar.Ghost.erased a -> Steel.ST.Effect.ST a
Steel.ST.Effect.ST
[]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_steel", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.l_and", "FStar.PCM.compatible", "Prims.unit", "Steel.PCMReference.read" ]
[]
false
true
false
false
false
let read r v0 =
C.coerce_steel (fun _ -> P.read r v0)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.write
val write (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) (v1:a) : ST unit (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True)
val write (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) (v1:a) : ST unit (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True)
let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 61, "end_line": 8, "start_col": 0, "start_line": 8 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> v0: FStar.Ghost.erased a -> v1: a -> Steel.ST.Effect.ST Prims.unit
Steel.ST.Effect.ST
[]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_steel", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_and", "FStar.PCM.frame_preserving", "FStar.PCM.__proj__Mkpcm__item__refine", "Prims.l_True", "Steel.PCMReference.write" ]
[]
false
true
false
false
false
let write r v0 v1 =
C.coerce_steel (fun _ -> P.write r v0 v1)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.free
val free (#a:Type) (#p:pcm a) (r:ref a p) (x:erased a) : ST unit (pts_to r x) (fun _ -> pts_to r p.p.one) (requires exclusive p x /\ p.refine p.p.one) (ensures fun _ -> True)
val free (#a:Type) (#p:pcm a) (r:ref a p) (x:erased a) : ST unit (pts_to r x) (fun _ -> pts_to r p.p.one) (requires exclusive p x /\ p.refine p.p.one) (ensures fun _ -> True)
let free r x = C.coerce_steel (fun _ -> P.free r x)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 51, "end_line": 12, "start_col": 0, "start_line": 12 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a p -> x: FStar.Ghost.erased a -> Steel.ST.Effect.ST Prims.unit
Steel.ST.Effect.ST
[]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_steel", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "FStar.PCM.__proj__Mkpcm'__item__one", "FStar.PCM.__proj__Mkpcm__item__p", "Steel.Effect.Common.vprop", "Prims.l_and", "FStar.PCM.exclusive", "FStar.PCM.__proj__Mkpcm__item__refine", "Prims.l_True", "Steel.PCMReference.free" ]
[]
false
true
false
false
false
let free r x =
C.coerce_steel (fun _ -> P.free r x)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.witness
val witness (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) : STAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v)
val witness (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) : STAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v)
let witness r fact v vc = C.coerce_atomic (witness' r fact v vc)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 64, "end_line": 28, "start_col": 0, "start_line": 28 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v ()
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> fact: Steel.Memory.stable_property pcm -> v: FStar.Ghost.erased a -> vc: Steel.ST.PCMReference.fact_valid_compat fact v -> Steel.ST.Effect.Atomic.STAtomicUT (Steel.Memory.witnessed r fact)
Steel.ST.Effect.Atomic.STAtomicUT
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "Steel.Memory.stable_property", "FStar.Ghost.erased", "Steel.ST.PCMReference.fact_valid_compat", "Steel.ST.Coercions.coerce_atomic", "Steel.Memory.witnessed", "Steel.Effect.Common.Unobservable", "Steel.ST.PCMReference.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.ST.PCMReference.witness'" ]
[]
false
true
false
false
false
let witness r fact v vc =
C.coerce_atomic (witness' r fact v vc)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.atomic_write
val atomic_write (#opened:_) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) (v1:a) : STAtomic unit opened (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True)
val atomic_write (#opened:_) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) (v1:a) : STAtomic unit opened (pts_to r v0) (fun _ -> pts_to r v1) (requires frame_preserving pcm v0 v1 /\ pcm.refine v1) (ensures fun _ -> True)
let atomic_write r v0 v1 = C.coerce_atomic (fun _ -> P.atomic_write r v0 v1)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 76, "end_line": 38, "start_col": 0, "start_line": 38 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v () let witness r fact v vc = C.coerce_atomic (witness' r fact v vc) let recall fact r v w = C.coerce_atomic (fun _ -> P.recall fact r v w) let select_refine r x f = C.coerce_steel (fun _ -> P.select_refine r x f) let upd_gen r x y f = C.coerce_steel (fun _ -> P.upd_gen r x y f) let atomic_read r v0 = C.coerce_atomic (fun _ -> P.atomic_read r v0)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> v0: FStar.Ghost.erased a -> v1: a -> Steel.ST.Effect.Atomic.STAtomic Prims.unit
Steel.ST.Effect.Atomic.STAtomic
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_atomic", "Prims.unit", "Steel.Effect.Common.Observable", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_and", "FStar.PCM.frame_preserving", "FStar.PCM.__proj__Mkpcm__item__refine", "Prims.l_True", "Steel.PCMReference.atomic_write" ]
[]
false
true
false
false
false
let atomic_write r v0 v1 =
C.coerce_atomic (fun _ -> P.atomic_write r v0 v1)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.upd_gen
val upd_gen (#a:Type) (#p:pcm a) (r:ref a p) (x y:erased a) (f:frame_preserving_upd p x y) : STT unit (pts_to r x) (fun _ -> pts_to r y)
val upd_gen (#a:Type) (#p:pcm a) (r:ref a p) (x y:erased a) (f:frame_preserving_upd p x y) : STT unit (pts_to r x) (fun _ -> pts_to r y)
let upd_gen r x y f = C.coerce_steel (fun _ -> P.upd_gen r x y f)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 34, "start_col": 0, "start_line": 34 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v () let witness r fact v vc = C.coerce_atomic (witness' r fact v vc) let recall fact r v w = C.coerce_atomic (fun _ -> P.recall fact r v w) let select_refine r x f = C.coerce_steel (fun _ -> P.select_refine r x f)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a p -> x: FStar.Ghost.erased a -> y: FStar.Ghost.erased a -> f: FStar.PCM.frame_preserving_upd p (FStar.Ghost.reveal x) (FStar.Ghost.reveal y) -> Steel.ST.Effect.STT Prims.unit
Steel.ST.Effect.STT
[]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "FStar.PCM.frame_preserving_upd", "FStar.Ghost.reveal", "Steel.ST.Coercions.coerce_steel", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.PCMReference.upd_gen" ]
[]
false
true
false
false
false
let upd_gen r x y f =
C.coerce_steel (fun _ -> P.upd_gen r x y f)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.atomic_read
val atomic_read (#opened:_) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) : STAtomic a opened (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v /\ True)
val atomic_read (#opened:_) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (v0:erased a) : STAtomic a opened (pts_to r v0) (fun _ -> pts_to r v0) (requires True) (ensures fun v -> compatible pcm v0 v /\ True)
let atomic_read r v0 = C.coerce_atomic (fun _ -> P.atomic_read r v0)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 68, "end_line": 36, "start_col": 0, "start_line": 36 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v () let witness r fact v vc = C.coerce_atomic (witness' r fact v vc) let recall fact r v w = C.coerce_atomic (fun _ -> P.recall fact r v w) let select_refine r x f = C.coerce_steel (fun _ -> P.select_refine r x f) let upd_gen r x y f = C.coerce_steel (fun _ -> P.upd_gen r x y f)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a pcm -> v0: FStar.Ghost.erased a -> Steel.ST.Effect.Atomic.STAtomic a
Steel.ST.Effect.Atomic.STAtomic
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_atomic", "Steel.Effect.Common.Observable", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.l_and", "FStar.PCM.compatible", "Prims.unit", "Steel.PCMReference.atomic_read" ]
[]
false
true
false
false
false
let atomic_read r v0 =
C.coerce_atomic (fun _ -> P.atomic_read r v0)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.recall
val recall (#inames: _) (#a:Type u#1) (#pcm:pcm a) (fact:property a) (r:ref a pcm) (v:erased a) (w:witnessed r fact) : STAtomicU (erased a) inames (pts_to r v) (fun v1 -> pts_to r v) (requires True) (ensures fun v1 -> fact v1 /\ compatible pcm v v1)
val recall (#inames: _) (#a:Type u#1) (#pcm:pcm a) (fact:property a) (r:ref a pcm) (v:erased a) (w:witnessed r fact) : STAtomicU (erased a) inames (pts_to r v) (fun v1 -> pts_to r v) (requires True) (ensures fun v1 -> fact v1 /\ compatible pcm v v1)
let recall fact r v w = C.coerce_atomic (fun _ -> P.recall fact r v w)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 30, "start_col": 0, "start_line": 30 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v () let witness r fact v vc = C.coerce_atomic (witness' r fact v vc)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
fact: Steel.Memory.property a -> r: Steel.Memory.ref a pcm -> v: FStar.Ghost.erased a -> w: Steel.Memory.witnessed r fact -> Steel.ST.Effect.Atomic.STAtomicU (FStar.Ghost.erased a)
Steel.ST.Effect.Atomic.STAtomicU
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.property", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.Memory.witnessed", "Steel.ST.Coercions.coerce_atomic", "Steel.Effect.Common.Unobservable", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "FStar.Ghost.hide", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.l_and", "FStar.PCM.compatible", "Prims.unit", "Steel.PCMReference.recall" ]
[]
false
true
false
false
false
let recall fact r v w =
C.coerce_atomic (fun _ -> P.recall fact r v w)
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.select_refine
val select_refine (#a:Type u#1) (#p:pcm a) (r:ref a p) (x:erased a) (f:(v:a{compatible p x v} -> GTot (y:a{compatible p y v /\ frame_compatible p x v y}))) : STT (v:a{compatible p x v /\ p.refine v}) (pts_to r x) (fun v -> pts_to r (f v))
val select_refine (#a:Type u#1) (#p:pcm a) (r:ref a p) (x:erased a) (f:(v:a{compatible p x v} -> GTot (y:a{compatible p y v /\ frame_compatible p x v y}))) : STT (v:a{compatible p x v /\ p.refine v}) (pts_to r x) (fun v -> pts_to r (f v))
let select_refine r x f = C.coerce_steel (fun _ -> P.select_refine r x f)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 73, "end_line": 32, "start_col": 0, "start_line": 32 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1) let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1) let witness' (#inames: _) (#a:Type) (#pcm:pcm a) (r:ref a pcm) (fact:stable_property pcm) (v:erased a) (_:fact_valid_compat fact v) () : Steel.Effect.Atomic.SteelAtomicUT (witnessed r fact) inames (pts_to r v) (fun _ -> pts_to r v) = P.witness r fact v () let witness r fact v vc = C.coerce_atomic (witness' r fact v vc) let recall fact r v w = C.coerce_atomic (fun _ -> P.recall fact r v w)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a p -> x: FStar.Ghost.erased a -> f: (v: a{FStar.PCM.compatible p (FStar.Ghost.reveal x) v} -> Prims.GTot (y: a{FStar.PCM.compatible p y v /\ FStar.PCM.frame_compatible p x v y})) -> Steel.ST.Effect.STT (v: a{FStar.PCM.compatible p (FStar.Ghost.reveal x) v /\ Mkpcm?.refine p v})
Steel.ST.Effect.STT
[]
[]
[ "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "FStar.PCM.compatible", "FStar.Ghost.reveal", "Prims.l_and", "FStar.PCM.frame_compatible", "Steel.ST.Coercions.coerce_steel", "FStar.PCM.__proj__Mkpcm__item__refine", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "Steel.Effect.Common.vprop", "Prims.l_True", "Prims.unit", "Steel.PCMReference.select_refine" ]
[]
false
true
false
false
false
let select_refine r x f =
C.coerce_steel (fun _ -> P.select_refine r x f)
false
Spec.Frodo.Pack.fst
Spec.Frodo.Pack.frodo_unpack8
val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d -> lseq uint16 8
val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d -> lseq uint16 8
let frodo_unpack8 d b = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let v16 = Seq.create 16 (u8 0) in let src = update_sub v16 (16 - d) d b in let templong: uint_t U128 SEC = uint_from_bytes_be src in let res = Seq.create 8 (u16 0) in let res = res.[0] <- to_u16 (templong >>. size (7 * d)) &. maskd in let res = res.[1] <- to_u16 (templong >>. size (6 * d)) &. maskd in let res = res.[2] <- to_u16 (templong >>. size (5 * d)) &. maskd in let res = res.[3] <- to_u16 (templong >>. size (4 * d)) &. maskd in let res = res.[4] <- to_u16 (templong >>. size (3 * d)) &. maskd in let res = res.[5] <- to_u16 (templong >>. size (2 * d)) &. maskd in let res = res.[6] <- to_u16 (templong >>. size (1 * d)) &. maskd in let res = res.[7] <- to_u16 (templong >>. size (0 * d)) &. maskd in res
{ "file_name": "specs/frodo/Spec.Frodo.Pack.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 95, "start_col": 0, "start_line": 81 }
module Spec.Frodo.Pack open FStar.Mul open Lib.IntTypes open Lib.Sequence open Lib.ByteSequence open Spec.Matrix module Seq = Lib.Sequence module Loops = Lib.LoopCombinators #reset-options "--z3rlimit 100 --max_fuel 0 --max_ifuel 0 --using_facts_from '* -FStar +FStar.Pervasives +FStar.UInt -Spec +Spec.Frodo +Spec.Frodo.Params +Spec.Matrix'" /// Pack val frodo_pack8: d:size_nat{d <= 16} -> a:lseq uint16 8 -> lbytes d let frodo_pack8 d a = let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let a0 = Seq.index a 0 &. maskd in let a1 = Seq.index a 1 &. maskd in let a2 = Seq.index a 2 &. maskd in let a3 = Seq.index a 3 &. maskd in let a4 = Seq.index a 4 &. maskd in let a5 = Seq.index a 5 &. maskd in let a6 = Seq.index a 6 &. maskd in let a7 = Seq.index a 7 &. maskd in let templong = to_u128 a0 <<. size (7 * d) |. to_u128 a1 <<. size (6 * d) |. to_u128 a2 <<. size (5 * d) |. to_u128 a3 <<. size (4 * d) |. to_u128 a4 <<. size (3 * d) |. to_u128 a5 <<. size (2 * d) |. to_u128 a6 <<. size (1 * d) |. to_u128 a7 <<. size (0 * d) in let v16 = uint_to_bytes_be templong in Seq.sub v16 (16 - d) d val frodo_pack_state: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> i:size_nat{i <= (n1 * n2) / 8} -> Type0 let frodo_pack_state #n1 #n2 d i = lseq uint8 (d * i) val frodo_pack_inner: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> i:size_nat{i < (n1 * n2) / 8} -> frodo_pack_state #n1 #n2 d i -> frodo_pack_state #n1 #n2 d (i + 1) let frodo_pack_inner #n1 #n2 d a i s = s @| frodo_pack8 d (Seq.sub a (8 * i) 8) val frodo_pack: #n1:size_nat -> #n2:size_nat{n1 * n2 <= max_size_t /\ (n1 * n2) % 8 = 0} -> d:size_nat{d * ((n1 * n2) / 8) <= max_size_t /\ d <= 16} -> a:matrix n1 n2 -> lbytes (d * ((n1 * n2) / 8)) let frodo_pack #n1 #n2 d a = Loops.repeat_gen ((n1 * n2) / 8) (frodo_pack_state #n1 #n2 d) (frodo_pack_inner #n1 #n2 d a) (Seq.create 0 (u8 0)) /// Unpack val frodo_unpack8: d:size_nat{d <= 16} -> b:lbytes d
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "prims.fst.checked", "Lib.Sequence.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked" ], "interface_file": false, "source_file": "Spec.Frodo.Pack.fst" }
[ { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "Seq" }, { "abbrev": false, "full_module": "Spec.Matrix", "short_module": null }, { "abbrev": false, "full_module": "Lib.ByteSequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.Sequence", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "Spec.Frodo", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 100, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
d: Lib.IntTypes.size_nat{d <= 16} -> b: Lib.ByteSequence.lbytes d -> Lib.Sequence.lseq Lib.IntTypes.uint16 8
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "Lib.ByteSequence.lbytes", "Lib.Sequence.lseq", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Prims.l_and", "Prims.eq2", "FStar.Seq.Base.seq", "Lib.Sequence.to_seq", "FStar.Seq.Base.upd", "Lib.IntTypes.logand", "Lib.IntTypes.cast", "Lib.IntTypes.U128", "Lib.IntTypes.shift_right", "Lib.IntTypes.mk_int", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_Multiply", "Lib.Sequence.index", "Prims.l_Forall", "Prims.nat", "Prims.op_Subtraction", "Prims.pow2", "Prims.l_imp", "Prims.op_LessThan", "Prims.op_disEquality", "Prims.l_or", "FStar.Seq.Base.index", "Lib.Sequence.op_String_Assignment", "Lib.IntTypes.uint16", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.to_u16", "Lib.IntTypes.op_Greater_Greater_Dot", "Lib.IntTypes.size", "FStar.Mul.op_Star", "FStar.Seq.Base.create", "Lib.Sequence.create", "Lib.IntTypes.u16", "Lib.ByteSequence.uint_from_bytes_be", "Lib.IntTypes.U8", "Lib.Sequence.sub", "Prims.op_Addition", "Lib.Sequence.update_sub", "Lib.IntTypes.uint_t", "Lib.IntTypes.u8", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u32" ]
[]
false
false
false
false
false
let frodo_unpack8 d b =
let maskd = to_u16 (u32 1 <<. size d) -. u16 1 in let v16 = Seq.create 16 (u8 0) in let src = update_sub v16 (16 - d) d b in let templong:uint_t U128 SEC = uint_from_bytes_be src in let res = Seq.create 8 (u16 0) in let res = res.[ 0 ] <- to_u16 (templong >>. size (7 * d)) &. maskd in let res = res.[ 1 ] <- to_u16 (templong >>. size (6 * d)) &. maskd in let res = res.[ 2 ] <- to_u16 (templong >>. size (5 * d)) &. maskd in let res = res.[ 3 ] <- to_u16 (templong >>. size (4 * d)) &. maskd in let res = res.[ 4 ] <- to_u16 (templong >>. size (3 * d)) &. maskd in let res = res.[ 5 ] <- to_u16 (templong >>. size (2 * d)) &. maskd in let res = res.[ 6 ] <- to_u16 (templong >>. size (1 * d)) &. maskd in let res = res.[ 7 ] <- to_u16 (templong >>. size (0 * d)) &. maskd in res
false
Steel.TLArray.fst
Steel.TLArray.t
val t (a:Type0) : Type0
val t (a:Type0) : Type0
let t a = list a
{ "file_name": "lib/steel/Steel.TLArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 3, "start_col": 0, "start_line": 3 }
module Steel.TLArray
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.TLArray.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type0 -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.list" ]
[]
false
false
false
true
true
let t a =
list a
false
Steel.TLArray.fst
Steel.TLArray.length
val length (#a:Type0) (x:t a) : GTot nat
val length (#a:Type0) (x:t a) : GTot nat
let length x = L.length x
{ "file_name": "lib/steel/Steel.TLArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 25, "end_line": 6, "start_col": 0, "start_line": 6 }
module Steel.TLArray let t a = list a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.TLArray.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Steel.TLArray.t a -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "Steel.TLArray.t", "FStar.List.Tot.Base.length", "Prims.nat" ]
[]
false
false
false
false
false
let length x =
L.length x
false
Steel.TLArray.fst
Steel.TLArray.v
val v (#a:Type0) (x : t a) : G.erased (list a)
val v (#a:Type0) (x : t a) : G.erased (list a)
let v x = G.hide x
{ "file_name": "lib/steel/Steel.TLArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 18, "end_line": 5, "start_col": 0, "start_line": 5 }
module Steel.TLArray let t a = list a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.TLArray.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Steel.TLArray.t a -> FStar.Ghost.erased (Prims.list a)
Prims.Tot
[ "total" ]
[]
[ "Steel.TLArray.t", "FStar.Ghost.hide", "Prims.list", "FStar.Ghost.erased" ]
[]
false
false
false
true
false
let v x =
G.hide x
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.split
val split (#inames: _) (#a:Type) (#p:pcm a) (r:ref a p) (v:erased a) (v0:erased a) (v1:erased a) : STGhost unit inames (pts_to r v) (fun _ -> pts_to r v0 `star` pts_to r v1) (requires composable p v0 v1 /\ v == hide (op p v0 v1)) (ensures fun _ -> True)
val split (#inames: _) (#a:Type) (#p:pcm a) (r:ref a p) (v:erased a) (v0:erased a) (v1:erased a) : STGhost unit inames (pts_to r v) (fun _ -> pts_to r v0 `star` pts_to r v1) (requires composable p v0 v1 /\ v == hide (op p v0 v1)) (ensures fun _ -> True)
let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 65, "end_line": 14, "start_col": 0, "start_line": 14 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a p -> v: FStar.Ghost.erased a -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> Steel.ST.Effect.Ghost.STGhost Prims.unit
Steel.ST.Effect.Ghost.STGhost
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.Effect.Common.vprop", "Prims.l_and", "FStar.PCM.composable", "Prims.eq2", "FStar.Ghost.hide", "FStar.PCM.op", "Prims.l_True", "Steel.PCMReference.split" ]
[]
false
true
false
false
false
let split r v v0 v1 =
C.coerce_ghost (fun _ -> P.split r v v0 v1)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.length_of_empty_is_zero_fact
val length_of_empty_is_zero_fact : Prims.logical
let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 157, "start_col": 8, "start_line": 156 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.empty" ]
[]
false
false
false
true
true
let length_of_empty_is_zero_fact =
forall (ty: Type u#a). {:pattern empty #ty} length (empty #ty) = 0
false
Steel.TLArray.fst
Steel.TLArray.get
val get (#a:Type0) (x: t a) (i:US.t{US.v i < length x}) : Pure a (requires True) (ensures fun y -> US.v i < L.length (v x) /\ y == L.index (v x) (US.v i))
val get (#a:Type0) (x: t a) (i:US.t{US.v i < length x}) : Pure a (requires True) (ensures fun y -> US.v i < L.length (v x) /\ y == L.index (v x) (US.v i))
let get x i = L.index x (US.v i)
{ "file_name": "lib/steel/Steel.TLArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 32, "end_line": 9, "start_col": 0, "start_line": 9 }
module Steel.TLArray let t a = list a let v x = G.hide x let length x = L.length x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.TLArray.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Steel.TLArray.t a -> i: FStar.SizeT.t{FStar.SizeT.v i < Steel.TLArray.length x} -> Prims.Pure a
Prims.Pure
[]
[]
[ "Steel.TLArray.t", "FStar.SizeT.t", "Prims.b2t", "Prims.op_LessThan", "FStar.SizeT.v", "Steel.TLArray.length", "FStar.List.Tot.Base.index" ]
[]
false
false
false
false
false
let get x i =
L.index x (US.v i)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.build_increments_length_fact
val build_increments_length_fact : Prims.logical
let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 182, "start_col": 8, "start_line": 180 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.build", "Prims.op_Addition" ]
[]
false
false
false
true
true
let build_increments_length_fact =
forall (ty: Type u#a) (s: seq ty) (v: ty). {:pattern build s v} length (build s v) = 1 + length s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.length_zero_implies_empty_fact
val length_zero_implies_empty_fact : Prims.logical
let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 83, "end_line": 165, "start_col": 8, "start_line": 164 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty())
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.empty" ]
[]
false
false
false
true
true
let length_zero_implies_empty_fact =
forall (ty: Type u#a) (s: seq ty). {:pattern length s} length s = 0 ==> s == empty
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.singleton_length_one_fact
val singleton_length_one_fact : Prims.logical
let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 88, "end_line": 172, "start_col": 8, "start_line": 171 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.singleton" ]
[]
false
false
false
true
true
let singleton_length_one_fact =
forall (ty: Type u#a) (v: ty). {:pattern length (singleton v)} length (singleton v) = 1
false
Steel.TLArray.fst
Steel.TLArray.create
val create (#a:Type0) (l: list a) : Pure (t a) (requires True) (ensures fun x -> Ghost.reveal (v x) == l /\ length x == normalize_term (List.Tot.length l))
val create (#a:Type0) (l: list a) : Pure (t a) (requires True) (ensures fun x -> Ghost.reveal (v x) == l /\ length x == normalize_term (List.Tot.length l))
let create l = l
{ "file_name": "lib/steel/Steel.TLArray.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 16, "end_line": 8, "start_col": 0, "start_line": 8 }
module Steel.TLArray let t a = list a let v x = G.hide x let length x = L.length x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.TLArray.fst" }
[ { "abbrev": true, "full_module": "FStar.SizeT", "short_module": "US" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Ghost", "short_module": "G" }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
l: Prims.list a -> Prims.Pure (Steel.TLArray.t a)
Prims.Pure
[]
[]
[ "Prims.list", "Steel.TLArray.t" ]
[]
false
false
false
false
false
let create l =
l
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.append_sums_lengths_fact
val append_sums_lengths_fact : Prims.logical
let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 203, "start_col": 8, "start_line": 201 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.b2t", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.op_Addition" ]
[]
false
false
false
true
true
let append_sums_lengths_fact =
forall (ty: Type u#a) (s0: seq ty) (s1: seq ty). {:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.build_contains_equiv_fact
val build_contains_equiv_fact : Prims.logical
let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 275, "start_col": 8, "start_line": 273 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.build", "Prims.l_or", "Prims.eq2" ]
[]
false
false
false
true
true
let build_contains_equiv_fact =
forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty). {:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.empty_doesnt_contain_anything_fact
val empty_doesnt_contain_anything_fact : Prims.logical
let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 79, "end_line": 265, "start_col": 8, "start_line": 264 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.l_not", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.empty" ]
[]
false
false
false
true
true
let empty_doesnt_contain_anything_fact =
forall (ty: Type u#a) (x: ty). {:pattern contains empty x} ~(contains empty x)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.contains_iff_exists_index_fact
val contains_iff_exists_index_fact : Prims.logical
let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 256, "start_col": 8, "start_line": 254 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.contains", "Prims.l_Exists", "Prims.nat", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let contains_iff_exists_index_fact =
forall (ty: Type u#a) (s: seq ty) (x: ty). {:pattern contains s x} contains s x <==> (exists (i: nat). {:pattern index s i} i < length s /\ index s i == x)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.extensionality_fact
val extensionality_fact : Prims.logical
let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 325, "start_col": 8, "start_line": 323 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_imp", "FStar.Sequence.Base.equal", "Prims.eq2" ]
[]
false
false
false
true
true
let extensionality_fact =
forall (ty: Type u#a) (a: seq ty) (b: seq ty). {:pattern equal a b} equal a b ==> a == b
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_length_fact
val drop_length_fact : Prims.logical
let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 374, "start_col": 8, "start_line": 371 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.op_Equality", "Prims.int", "FStar.Sequence.Base.drop", "Prims.op_Subtraction" ]
[]
false
false
false
true
true
let drop_length_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.update_maintains_length_fact
val update_maintains_length_fact : Prims.logical
let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 232, "start_col": 8, "start_line": 230 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.op_Equality", "FStar.Sequence.Base.update" ]
[]
false
false
false
true
true
let update_maintains_length_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty). {:pattern length (update s i v)} length (update s i v) = length s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.index_into_build_fact
val index_into_build_fact : _: Prims.squash FStar.Sequence.Base.build_increments_length_fact -> Prims.logical
let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 194, "start_col": 8, "start_line": 190 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.build_increments_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.build_increments_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.build", "Prims.l_and", "Prims.l_imp", "Prims.op_Equality", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_disEquality", "Prims.logical" ]
[]
false
false
false
true
true
let index_into_build_fact (_: squash (build_increments_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}). {:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.index_after_append_fact
val index_after_append_fact : _: Prims.squash FStar.Sequence.Base.append_sums_lengths_fact -> Prims.logical
let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0))
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 78, "end_line": 223, "start_col": 8, "start_line": 219 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0))));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.append_sums_lengths_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.append_sums_lengths_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.append", "Prims.l_and", "Prims.l_imp", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_LessThanOrEqual", "Prims.op_Subtraction", "Prims.logical" ]
[]
false
false
false
true
true
let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) =
forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}). {:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0))
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.rank_def_fact
val rank_def_fact : Prims.logical
let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 481, "start_col": 8, "start_line": 480 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts.
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eq2", "FStar.Sequence.Base.rank" ]
[]
false
false
false
true
true
let rank_def_fact =
forall (ty: Type u#a) (v: ty). {:pattern rank v} rank v == v
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.element_ranks_less_fact
val element_ranks_less_fact : Prims.logical
let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 47, "end_line": 491, "start_col": 8, "start_line": 489 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.rank", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let element_ranks_less_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat). {:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_contains_equiv_exists_fact
val take_contains_equiv_exists_fact : Prims.logical
let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 82, "end_line": 288, "start_col": 8, "start_line": 285 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.take", "Prims.l_Exists", "Prims.l_and", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let take_contains_equiv_exists_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty). {:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat). {:pattern index s i} i < n /\ i < length s /\ index s i == x)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.update_then_index_fact
val update_then_index_fact : Prims.logical
let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 59, "end_line": 246, "start_col": 8, "start_line": 241 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "FStar.Sequence.Base.update", "Prims.l_imp", "Prims.l_and", "Prims.op_Equality", "Prims.l_or", "Prims.eq2", "FStar.Sequence.Base.index", "Prims.op_disEquality" ]
[]
false
false
false
true
true
let update_then_index_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}). {:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.index_into_drop_fact
val index_into_drop_fact : _: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 387, "start_col": 8, "start_line": 384 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.drop_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "Prims.op_Subtraction", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.drop", "Prims.op_Addition", "Prims.logical" ]
[]
false
false
false
true
true
let index_into_drop_fact (_: squash (drop_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.is_prefix_def_fact
val is_prefix_def_fact : Prims.logical
let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 52, "end_line": 341, "start_col": 8, "start_line": 336 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.is_prefix", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.nat", "Prims.l_imp", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let is_prefix_def_fact =
forall (ty: Type u#a) (s0: seq ty) (s1: seq ty). {:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat). {:pattern index s0 j\/index s1 j} j < length s0 ==> index s0 j == index s1 j)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_length_fact
val take_length_fact : Prims.logical
let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 43, "end_line": 350, "start_col": 8, "start_line": 348 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.op_Equality", "FStar.Sequence.Base.take" ]
[]
false
false
false
true
true
let take_length_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (take s n)} n <= length s ==> length (take s n) = n
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.index_into_take_fact
val index_into_take_fact : _: Prims.squash FStar.Sequence.Base.take_length_fact -> Prims.logical
let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 364, "start_col": 8, "start_line": 361 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.take_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.take_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.take", "Prims.logical" ]
[]
false
false
false
true
true
let index_into_take_fact (_: squash (take_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j\/index s j; take s n} j < n && n <= length s ==> index (take s n) j == index s j
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.index_into_singleton_fact
val index_into_singleton_fact : _: Prims.squash FStar.Sequence.Base.singleton_length_one_fact -> Prims.logical
let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 211, "start_col": 8, "start_line": 209 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.singleton_length_one_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.singleton_length_one_fact", "Prims.l_Forall", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.singleton", "Prims.logical" ]
[]
false
false
false
true
true
let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) =
forall (ty: Type u#a) (v: ty). {:pattern index (singleton v) 0} index (singleton v) 0 == v
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.equal_def_fact
val equal_def_fact : Prims.logical
let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 316, "start_col": 8, "start_line": 311 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j)));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.l_iff", "FStar.Sequence.Base.equal", "Prims.l_and", "Prims.eq2", "Prims.nat", "FStar.Sequence.Base.length", "Prims.int", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "Prims.op_LessThan", "Prims.l_imp", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let equal_def_fact =
forall (ty: Type u#a) (s0: seq ty) (s1: seq ty). {:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j. {:pattern index s0 j\/index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_index_offset_fact
val drop_index_offset_fact : _: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 68, "end_line": 400, "start_col": 8, "start_line": 397 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.drop_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.index", "FStar.Sequence.Base.drop", "Prims.op_Subtraction", "Prims.logical" ]
[]
false
false
false
true
true
let drop_index_offset_fact (_: squash (drop_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.append_then_take_or_drop_fact
val append_then_take_or_drop_fact : _: Prims.squash FStar.Sequence.Base.append_sums_lengths_fact -> Prims.logical
let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 73, "end_line": 415, "start_col": 8, "start_line": 412 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.append_sums_lengths_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.append_sums_lengths_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "FStar.Sequence.Base.length", "Prims.l_and", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.append", "FStar.Sequence.Base.drop", "Prims.logical" ]
[]
false
false
false
true
true
let append_then_take_or_drop_fact (_: squash (append_sums_lengths_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n\/drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_contains_equiv_exists_fact
val drop_contains_equiv_exists_fact : Prims.logical
let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 83, "end_line": 301, "start_col": 8, "start_line": 298 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.l_iff", "FStar.Sequence.Base.contains", "FStar.Sequence.Base.drop", "Prims.l_Exists", "Prims.l_and", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.eq2", "FStar.Sequence.Base.index" ]
[]
false
false
false
true
true
let drop_contains_equiv_exists_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty). {:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat). {:pattern index s i} n <= i && i < length s /\ index s i == x)
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_ranks_less_fact
val take_ranks_less_fact : Prims.logical
let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 514, "start_col": 8, "start_line": 512 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.take" ]
[]
false
false
false
true
true
let take_ranks_less_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat). {:pattern length (take s i)} i < length s ==> length (take s i) << length s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_ranks_less_fact
val drop_ranks_less_fact : Prims.logical
let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 501, "start_col": 8, "start_line": 499 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.rank", "FStar.Sequence.Base.drop" ]
[]
false
false
false
true
true
let drop_ranks_less_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat). {:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_commutes_with_in_range_update_fact
val take_commutes_with_in_range_update_fact : _: Prims.squash (FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.take_length_fact) -> Prims.logical
let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 50, "end_line": 428, "start_col": 8, "start_line": 424 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash (FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.take_length_fact) -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "Prims.l_and", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.take_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.update", "Prims.logical" ]
[]
false
false
false
true
true
let take_commutes_with_in_range_update_fact (_: squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat). {:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_zero_fact
val take_zero_fact : Prims.logical
let take_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern take s n} n = 0 ==> take s n == empty
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 547, "start_col": 8, "start_line": 545 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) ); private let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s /// We represent the following Dafny axiom with /// `append_take_drop_ranks_less_fact`. However, since it isn't true /// in F* (which has strong requirements for <<), we instead /// substitute length, requiring decreases clauses to use /// length in this case. /// /// axiom (forall<T> s: Seq T, i: int, j: int :: /// { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } /// 0 <= i && i < j && j <= Seq#Length(s) ==> /// Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s) ); private let append_take_drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat).{:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s /// We represent the following Dafny axiom with `drop_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Drop(s, n) } /// n == 0 ==> Seq#Drop(s, n) == s); private let drop_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern drop s n} n = 0 ==> drop s n == s /// We represent the following Dafny axiom with `take_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Take(s, n) } /// n == 0 ==> Seq#Take(s, n) == Seq#Empty());
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.empty" ]
[]
false
false
false
true
true
let take_zero_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern take s n} n = 0 ==> take s n == empty
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_commutes_with_build_fact
val drop_commutes_with_build_fact : _: Prims.squash FStar.Sequence.Base.build_increments_length_fact -> Prims.logical
let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 476, "start_col": 8, "start_line": 474 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.build_increments_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.build_increments_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.build", "Prims.logical" ]
[]
false
false
false
true
true
let drop_commutes_with_build_fact (_: squash (build_increments_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat). {:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_ignores_out_of_range_update_fact
val drop_ignores_out_of_range_update_fact : _: Prims.squash FStar.Sequence.Base.update_maintains_length_fact -> Prims.logical
let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 465, "start_col": 8, "start_line": 462 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.update_maintains_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.update_maintains_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.update", "Prims.logical" ]
[]
false
false
false
true
true
let drop_ignores_out_of_range_update_fact (_: squash (update_maintains_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat). {:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_commutes_with_in_range_update_fact
val drop_commutes_with_in_range_update_fact : _: Prims.squash (FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.drop_length_fact) -> Prims.logical
let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 452, "start_col": 8, "start_line": 448 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash (FStar.Sequence.Base.update_maintains_length_fact /\ FStar.Sequence.Base.drop_length_fact) -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "Prims.l_and", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.drop_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "FStar.Sequence.Base.update", "Prims.op_Subtraction", "Prims.logical" ]
[]
false
false
false
true
true
let drop_commutes_with_in_range_update_fact (_: squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat). {:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_zero_fact
val drop_zero_fact : Prims.logical
let drop_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern drop s n} n = 0 ==> drop s n == s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 27, "end_line": 538, "start_col": 8, "start_line": 536 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) ); private let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s /// We represent the following Dafny axiom with /// `append_take_drop_ranks_less_fact`. However, since it isn't true /// in F* (which has strong requirements for <<), we instead /// substitute length, requiring decreases clauses to use /// length in this case. /// /// axiom (forall<T> s: Seq T, i: int, j: int :: /// { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } /// 0 <= i && i < j && j <= Seq#Length(s) ==> /// Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s) ); private let append_take_drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat).{:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s /// We represent the following Dafny axiom with `drop_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Drop(s, n) } /// n == 0 ==> Seq#Drop(s, n) == s);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_Equality", "Prims.int", "Prims.eq2", "FStar.Sequence.Base.drop" ]
[]
false
false
false
true
true
let drop_zero_fact =
forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern drop s n} n = 0 ==> drop s n == s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.take_ignores_out_of_range_update_fact
val take_ignores_out_of_range_update_fact : _: Prims.squash FStar.Sequence.Base.update_maintains_length_fact -> Prims.logical
let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 439, "start_col": 8, "start_line": 436 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.update_maintains_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.update_maintains_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThanOrEqual", "Prims.op_LessThan", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.take", "FStar.Sequence.Base.update", "Prims.logical" ]
[]
false
false
false
true
true
let take_ignores_out_of_range_update_fact (_: squash (update_maintains_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat). {:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n
false
Vale.X64.Memory_Sems.fsti
Vale.X64.Memory_Sems.is_full_read
val is_full_read : h1: Vale.X64.Memory.vale_heap -> h2: Vale.X64.Memory.vale_heap -> b: Vale.X64.Memory.buffer t -> i: Prims.int -> Prims.logical
let is_full_read (#t:base_typ) (h1 h2:vale_heap) (b:buffer t) (i:int) = buffer_addr b h1 == buffer_addr b h2 /\ buffer_read b i h1 == buffer_read b i h2 /\ valid_buffer_read h1 b i
{ "file_name": "vale/code/arch/x64/Vale.X64.Memory_Sems.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 48, "start_col": 0, "start_line": 45 }
module Vale.X64.Memory_Sems open FStar.Mul open Vale.Def.Prop_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.Arch.Heap open Vale.Arch.MachineHeap_s open Vale.X64.Machine_s open Vale.X64.Memory open Vale.Lib.Seqs module S = Vale.X64.Machine_Semantics_s module Map16 = Vale.Lib.Map16 val same_domain (h:vale_heap) (m:S.machine_heap) : prop0 val lemma_same_domains (h:vale_heap) (m1:S.machine_heap) (m2:S.machine_heap) : Lemma (requires same_domain h m1 /\ Set.equal (Map.domain m1) (Map.domain m2)) (ensures same_domain h m2) val get_heap (h:vale_heap) : GTot (m:S.machine_heap{same_domain h m}) val upd_heap (h:vale_heap) (m:S.machine_heap{is_machine_heap_update (get_heap h) m}) : GTot vale_heap //val lemma_upd_get_heap (h:vale_heap) : Lemma (upd_heap h (get_heap h) == h) // [SMTPat (upd_heap h (get_heap h))] val lemma_get_upd_heap (h:vale_heap) (m:S.machine_heap) : Lemma (requires is_machine_heap_update (get_heap h) m) (ensures get_heap (upd_heap h m) == m) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x val lemma_heap_impl : squash (heap_impl == vale_full_heap) val lemma_heap_get_heap (h:vale_full_heap) : Lemma (heap_get (coerce h) == get_heap (get_vale_heap h)) [SMTPat (heap_get (coerce h))] val lemma_heap_taint (h:vale_full_heap) : Lemma (heap_taint (coerce h) == full_heap_taint h) [SMTPat (heap_taint (coerce h))]
{ "checked_file": "/", "dependencies": [ "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_Semantics_s.fst.checked", "Vale.X64.Machine_s.fst.checked", "Vale.Lib.Seqs.fsti.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.MachineHeap_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked" ], "interface_file": false, "source_file": "Vale.X64.Memory_Sems.fsti" }
[ { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.X64.Machine_Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.Lib.Seqs", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.MachineHeap_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h1: Vale.X64.Memory.vale_heap -> h2: Vale.X64.Memory.vale_heap -> b: Vale.X64.Memory.buffer t -> i: Prims.int -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.X64.Memory.vale_heap", "Vale.X64.Memory.buffer", "Prims.int", "Prims.l_and", "Prims.eq2", "Vale.X64.Memory.buffer_addr", "Vale.X64.Memory.base_typ_as_vale_type", "Vale.X64.Memory.buffer_read", "Vale.X64.Memory.valid_buffer_read", "Prims.logical" ]
[]
false
false
false
false
true
let is_full_read (#t: base_typ) (h1 h2: vale_heap) (b: buffer t) (i: int) =
buffer_addr b h1 == buffer_addr b h2 /\ buffer_read b i h1 == buffer_read b i h2 /\ valid_buffer_read h1 b i
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.append_take_drop_ranks_less_fact
val append_take_drop_ranks_less_fact : Prims.logical
let append_take_drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat).{:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 529, "start_col": 8, "start_line": 527 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) ); private let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s /// We represent the following Dafny axiom with /// `append_take_drop_ranks_less_fact`. However, since it isn't true /// in F* (which has strong requirements for <<), we instead /// substitute length, requiring decreases clauses to use /// length in this case. /// /// axiom (forall<T> s: Seq T, i: int, j: int :: /// { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } /// 0 <= i && i < j && j <= Seq#Length(s) ==> /// Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s) );
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_AmpAmp", "Prims.op_LessThan", "Prims.op_LessThanOrEqual", "FStar.Sequence.Base.length", "Prims.precedes", "FStar.Sequence.Base.append", "FStar.Sequence.Base.take", "FStar.Sequence.Base.drop" ]
[]
false
false
false
true
true
let append_take_drop_ranks_less_fact =
forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat). {:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.drop_then_drop_fact
val drop_then_drop_fact : _: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
let drop_then_drop_fact (_: squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (m: nat) (n: nat).{:pattern drop (drop s m) n} m + n <= length s ==> drop (drop s m) n == drop s (m + n)
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 557, "start_col": 8, "start_line": 555 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) ); private let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s /// We represent the following Dafny axiom with /// `append_take_drop_ranks_less_fact`. However, since it isn't true /// in F* (which has strong requirements for <<), we instead /// substitute length, requiring decreases clauses to use /// length in this case. /// /// axiom (forall<T> s: Seq T, i: int, j: int :: /// { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } /// 0 <= i && i < j && j <= Seq#Length(s) ==> /// Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s) ); private let append_take_drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat).{:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s /// We represent the following Dafny axiom with `drop_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Drop(s, n) } /// n == 0 ==> Seq#Drop(s, n) == s); private let drop_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern drop s n} n = 0 ==> drop s n == s /// We represent the following Dafny axiom with `take_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Take(s, n) } /// n == 0 ==> Seq#Take(s, n) == Seq#Empty()); private let take_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern take s n} n = 0 ==> take s n == empty /// We represent the following Dafny axiom with `drop_then_drop_fact`. /// /// axiom (forall<T> s: Seq T, m, n: int :: { Seq#Drop(Seq#Drop(s, m), n) } /// 0 <= m && 0 <= n && m+n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Drop(s, m), n) == Seq#Drop(s, m+n));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.squash FStar.Sequence.Base.drop_length_fact -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.squash", "FStar.Sequence.Base.drop_length_fact", "Prims.l_Forall", "FStar.Sequence.Base.seq", "Prims.nat", "Prims.l_imp", "Prims.b2t", "Prims.op_LessThanOrEqual", "Prims.op_Addition", "FStar.Sequence.Base.length", "Prims.eq2", "FStar.Sequence.Base.drop", "Prims.logical" ]
[]
false
false
false
true
true
let drop_then_drop_fact (_: squash (drop_length_fact u#a)) =
forall (ty: Type u#a) (s: seq ty) (m: nat) (n: nat). {:pattern drop (drop s m) n} m + n <= length s ==> drop (drop s m) n == drop s (m + n)
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.gst_pre
val gst_pre : Type
let gst_pre = st_pre_h mem
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 45, "start_col": 0, "start_line": 45 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.st_pre_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let gst_pre =
st_pre_h mem
false
Steel.ST.PCMReference.fst
Steel.ST.PCMReference.gather
val gather (#inames: _) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:erased a) (v1:erased a) : STGhostT (_:unit{composable p v0 v1}) inames (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1))
val gather (#inames: _) (#a:Type) (#p:FStar.PCM.pcm a) (r:ref a p) (v0:erased a) (v1:erased a) : STGhostT (_:unit{composable p v0 v1}) inames (pts_to r v0 `star` pts_to r v1) (fun _ -> pts_to r (op p v0 v1))
let gather r v0 v1 = C.coerce_ghost (fun _ -> P.gather r v0 v1)
{ "file_name": "lib/steel/Steel.ST.PCMReference.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 63, "end_line": 16, "start_col": 0, "start_line": 16 }
module Steel.ST.PCMReference module C = Steel.ST.Coercions module P = Steel.PCMReference let read r v0 = C.coerce_steel (fun _ -> P.read r v0) let write r v0 v1 = C.coerce_steel (fun _ -> P.write r v0 v1) let alloc x = C.coerce_steel (fun _ -> P.alloc x) let free r x = C.coerce_steel (fun _ -> P.free r x) let split r v v0 v1 = C.coerce_ghost (fun _ -> P.split r v v0 v1)
{ "checked_file": "/", "dependencies": [ "Steel.ST.Coercions.fsti.checked", "Steel.PCMReference.fsti.checked", "Steel.Effect.Atomic.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": true, "source_file": "Steel.ST.PCMReference.fst" }
[ { "abbrev": true, "full_module": "Steel.PCMReference", "short_module": "P" }, { "abbrev": true, "full_module": "Steel.ST.Coercions", "short_module": "C" }, { "abbrev": false, "full_module": "Steel.ST.Util", "short_module": null }, { "abbrev": false, "full_module": "FStar.Ghost", "short_module": null }, { "abbrev": false, "full_module": "FStar.PCM", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "Steel.ST", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Memory.ref a p -> v0: FStar.Ghost.erased a -> v1: FStar.Ghost.erased a -> Steel.ST.Effect.Ghost.STGhostT (_: Prims.unit{FStar.PCM.composable p (FStar.Ghost.reveal v0) (FStar.Ghost.reveal v1)})
Steel.ST.Effect.Ghost.STGhostT
[]
[]
[ "Steel.Memory.inames", "FStar.PCM.pcm", "Steel.Memory.ref", "FStar.Ghost.erased", "Steel.ST.Coercions.coerce_ghost", "Prims.unit", "FStar.PCM.composable", "FStar.Ghost.reveal", "Steel.Effect.Common.star", "Steel.Effect.Common.VUnit", "Steel.Effect.Common.to_vprop'", "Steel.Memory.pts_to", "FStar.PCM.op", "Steel.Effect.Common.vprop", "Prims.l_True", "Steel.PCMReference.gather" ]
[]
false
true
false
false
false
let gather r v0 v1 =
C.coerce_ghost (fun _ -> P.gather r v0 v1)
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.gst_post'
val gst_post' : a: Type -> pre: Type -> Type
let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 56, "end_line": 46, "start_col": 0, "start_line": 46 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> pre: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.st_post_h'", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let gst_post' (a pre: Type) =
st_post_h' mem a pre
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.contains_region
val contains_region : m: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> Prims.bool
let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 80, "end_line": 29, "start_col": 15, "start_line": 29 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "FStar.Map.contains", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "Prims.bool" ]
[]
false
false
false
true
false
let contains_region (m: mem) (r: rid) =
(get_hmap m) `Map.contains` r
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.st_post'
val st_post' : a: Type -> pre: Type -> Type
let st_post' = gst_post'
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 24, "end_line": 80, "start_col": 0, "start_line": 80 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> pre: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.gst_post'" ]
[]
false
false
false
true
true
let st_post' =
gst_post'
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.st_post
val st_post : a: Type -> Type
let st_post = gst_post
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 23, "end_line": 81, "start_col": 0, "start_line": 81 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.gst_post" ]
[]
false
false
false
true
true
let st_post =
gst_post
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.gst_post
val gst_post : a: Type -> Type
let gst_post (a:Type) = st_post_h mem a
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 39, "end_line": 47, "start_col": 0, "start_line": 47 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.st_post_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let gst_post (a: Type) =
st_post_h mem a
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.gst_wp
val gst_wp : a: Type -> Type
let gst_wp (a:Type) = st_wp_h mem a
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 48, "start_col": 0, "start_line": 48 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.Pervasives.st_wp_h", "FStar.Monotonic.HyperStack.mem" ]
[]
false
false
false
true
true
let gst_wp (a: Type) =
st_wp_h mem a
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.st_pre
val st_pre : Type
let st_pre = gst_pre
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 79, "start_col": 0, "start_line": 79 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.gst_pre" ]
[]
false
false
false
true
true
let st_pre =
gst_pre
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.lift_div_gst
val lift_div_gst : a: Type -> wp: Prims.pure_wp a -> p: FStar.HyperStack.ST.gst_post a -> h: FStar.Monotonic.HyperStack.mem -> Prims.pure_pre
let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h)
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 92, "end_line": 50, "start_col": 7, "start_line": 50 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: Prims.pure_wp a -> p: FStar.HyperStack.ST.gst_post a -> h: FStar.Monotonic.HyperStack.mem -> Prims.pure_pre
Prims.Tot
[ "total" ]
[]
[ "Prims.pure_wp", "FStar.HyperStack.ST.gst_post", "FStar.Monotonic.HyperStack.mem", "Prims.l_True", "Prims.pure_pre" ]
[]
false
false
false
true
false
let lift_div_gst (a: Type) (wp: pure_wp a) (p: gst_post a) (h: mem) =
wp (fun a -> p a h)
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.st_wp
val st_wp : a: Type -> Type
let st_wp = gst_wp
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 21, "end_line": 82, "start_col": 0, "start_line": 82 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> Type
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.gst_wp" ]
[]
false
false
false
true
true
let st_wp =
gst_wp
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.lift_gst_state
val lift_gst_state : a: Type -> wp: FStar.HyperStack.ST.gst_wp a -> FStar.HyperStack.ST.gst_wp a
let lift_gst_state (a:Type) (wp:gst_wp a) = wp
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 86, "start_col": 7, "start_line": 86 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Type -> wp: FStar.HyperStack.ST.gst_wp a -> FStar.HyperStack.ST.gst_wp a
Prims.Tot
[ "total" ]
[]
[ "FStar.HyperStack.ST.gst_wp" ]
[]
false
false
false
true
false
let lift_gst_state (a: Type) (wp: gst_wp a) =
wp
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.contained_stack_region
val contained_stack_region: mem -> mem -> rid -> Type0
val contained_stack_region: mem -> mem -> rid -> Type0
let contained_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 128, "start_col": 15, "start_line": 127 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r) [@@"opaque_to_smt"] unfold private let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "Prims.l_and", "Prims.b2t", "FStar.Monotonic.HyperStack.is_stack_region", "FStar.HyperStack.ST.contained_region" ]
[]
false
false
false
true
true
let contained_stack_region: mem -> mem -> rid -> Type0 =
fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r
false
FStar.Sequence.Base.fsti
FStar.Sequence.Base.all_seq_facts
val all_seq_facts : Prims.logical
let all_seq_facts = length_of_empty_is_zero_fact u#a /\ length_zero_implies_empty_fact u#a /\ singleton_length_one_fact u#a /\ build_increments_length_fact u#a /\ index_into_build_fact u#a () /\ append_sums_lengths_fact u#a /\ index_into_singleton_fact u#a () /\ index_after_append_fact u#a () /\ update_maintains_length_fact u#a /\ update_then_index_fact u#a /\ contains_iff_exists_index_fact u#a /\ empty_doesnt_contain_anything_fact u#a /\ build_contains_equiv_fact u#a /\ take_contains_equiv_exists_fact u#a /\ drop_contains_equiv_exists_fact u#a /\ equal_def_fact u#a /\ extensionality_fact u#a /\ is_prefix_def_fact u#a /\ take_length_fact u#a /\ index_into_take_fact u#a () /\ drop_length_fact u#a /\ index_into_drop_fact u#a () /\ drop_index_offset_fact u#a () /\ append_then_take_or_drop_fact u#a () /\ take_commutes_with_in_range_update_fact u#a () /\ take_ignores_out_of_range_update_fact u#a () /\ drop_commutes_with_in_range_update_fact u#a () /\ drop_ignores_out_of_range_update_fact u#a () /\ drop_commutes_with_build_fact u#a () /\ rank_def_fact u#a /\ element_ranks_less_fact u#a /\ drop_ranks_less_fact u#a /\ take_ranks_less_fact u#a /\ append_take_drop_ranks_less_fact u#a /\ drop_zero_fact u#a /\ take_zero_fact u#a /\ drop_then_drop_fact u#a ()
{ "file_name": "ulib/experimental/FStar.Sequence.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 601, "start_col": 0, "start_line": 564 }
(* Copyright 2008-2021 Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling sequences as they're modeled in Dafny. @summary Type and functions for modeling sequences *) module FStar.Sequence.Base new val seq ([@@@ strictly_positive] a: Type u#a) : Type u#a (** We translate each Dafny sequence function prefixed with `Seq#` into an F* function. **) /// We represent the Dafny function `Seq#Length` with `length`: /// /// function Seq#Length<T>(Seq T): int; val length : #ty: Type -> seq ty -> nat /// We represent the Dafny function `Seq#Empty` with `empty`: /// /// function Seq#Empty<T>(): Seq T; /// /// We also provide an alias `nil` for it. val empty : #ty: Type -> seq ty /// We represent the Dafny function `Seq#Singleton` with `singleton`: /// /// function Seq#Singleton<T>(T): Seq T; val singleton : #ty: Type -> ty -> seq ty /// We represent the Dafny function `Seq#Index` with `index`: /// /// function Seq#Index<T>(Seq T, int): T; /// /// We also provide the infix symbol `$@` for it. val index: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty let ($@) = index /// We represent the Dafny function `Seq#Build` with `build`: /// /// function Seq#Build<T>(s: Seq T, val: T): Seq T; /// /// We also provide the infix symbol `$::` for it. val build: #ty: Type -> seq ty -> ty -> seq ty let ($::) = build /// We represent the Dafny function `Seq#Append` with `append`: /// /// function Seq#Append<T>(Seq T, Seq T): Seq T; /// /// We also provide the infix notation `$+` for it. val append: #ty: Type -> seq ty -> seq ty -> seq ty let ($+) = append /// We represent the Dafny function `Seq#Update` with `update`: /// /// function Seq#Update<T>(Seq T, int, T): Seq T; val update: #ty: Type -> s: seq ty -> i: nat{i < length s} -> ty -> seq ty /// We represent the Dafny function `Seq#Contains` with `contains`: /// /// function Seq#Contains<T>(Seq T, T): bool; val contains: #ty: Type -> seq ty -> ty -> Type0 /// We represent the Dafny function `Seq#Take` with `take`: /// /// function Seq#Take<T>(s: Seq T, howMany: int): Seq T; val take: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Drop` with `drop`: /// /// function Seq#Drop<T>(s: Seq T, howMany: int): Seq T; val drop: #ty: Type -> s: seq ty -> howMany: nat{howMany <= length s} -> seq ty /// We represent the Dafny function `Seq#Equal` with `equal`. /// /// function Seq#Equal<T>(Seq T, Seq T): bool; /// /// We also provide the infix symbol `$==` for it. val equal: #ty: Type -> seq ty -> seq ty -> Type0 let ($==) = equal /// Instead of representing the Dafny function `Seq#SameUntil`, which /// is only ever used in Dafny to represent prefix relations, we /// instead use `is_prefix`. /// /// function Seq#SameUntil<T>(Seq T, Seq T, int): bool; /// /// We also provide the infix notation `$<=` for it. val is_prefix: #ty: Type -> seq ty -> seq ty -> Type0 let ($<=) = is_prefix /// We represent the Dafny function `Seq#Rank` with `rank`. /// /// function Seq#Rank<T>(Seq T): int; val rank: #ty: Type -> ty -> ty (** We translate each sequence axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from length: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } 0 <= Seq#Length(s)); /// We represent the following Dafny axiom with `length_of_empty_is_zero_fact`: /// /// axiom (forall<T> :: { Seq#Empty(): Seq T } Seq#Length(Seq#Empty(): Seq T) == 0); private let length_of_empty_is_zero_fact = forall (ty: Type u#a).{:pattern empty #ty} length (empty #ty) = 0 /// We represent the following Dafny axiom with `length_zero_implies_empty_fact`: /// /// axiom (forall<T> s: Seq T :: { Seq#Length(s) } /// (Seq#Length(s) == 0 ==> s == Seq#Empty()) private let length_zero_implies_empty_fact = forall (ty: Type u#a) (s: seq ty).{:pattern length s} length s = 0 ==> s == empty /// We represent the following Dafny axiom with `singleton_length_one_fact`: /// /// axiom (forall<T> t: T :: { Seq#Length(Seq#Singleton(t)) } Seq#Length(Seq#Singleton(t)) == 1); private let singleton_length_one_fact = forall (ty: Type u#a) (v: ty).{:pattern length (singleton v)} length (singleton v) = 1 /// We represent the following Dafny axiom with `build_increments_length_fact`: /// /// axiom (forall<T> s: Seq T, v: T :: /// { Seq#Build(s,v) } /// Seq#Length(Seq#Build(s,v)) == 1 + Seq#Length(s)); private let build_increments_length_fact = forall (ty: Type u#a) (s: seq ty) (v: ty).{:pattern build s v} length (build s v) = 1 + length s /// We represent the following Dafny axiom with `index_into_build_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Index(Seq#Build(s,v), i) } /// (i == Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == v) && /// (i != Seq#Length(s) ==> Seq#Index(Seq#Build(s,v), i) == Seq#Index(s, i))); private let index_into_build_fact (_: squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (i: nat{i < length (build s v)}) .{:pattern index (build s v) i} (i = length s ==> index (build s v) i == v) /\ (i <> length s ==> index (build s v) i == index s i) /// We represent the following Dafny axiom with `append_sums_lengths_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Length(Seq#Append(s0,s1)) } /// Seq#Length(Seq#Append(s0,s1)) == Seq#Length(s0) + Seq#Length(s1)); private let append_sums_lengths_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern length (append s0 s1)} length (append s0 s1) = length s0 + length s1 /// We represent the following Dafny axiom with `index_into_singleton_fact`: /// /// axiom (forall<T> t: T :: { Seq#Index(Seq#Singleton(t), 0) } Seq#Index(Seq#Singleton(t), 0) == t); private let index_into_singleton_fact (_: squash (singleton_length_one_fact u#a)) = forall (ty: Type u#a) (v: ty).{:pattern index (singleton v) 0} index (singleton v) 0 == v /// We represent the following axiom with `index_after_append_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#Index(Seq#Append(s0,s1), n) } /// (n < Seq#Length(s0) ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s0, n)) && /// (Seq#Length(s0) <= n ==> Seq#Index(Seq#Append(s0,s1), n) == Seq#Index(s1, n - Seq#Length(s0)))); private let index_after_append_fact (_: squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty) (n: nat{n < length (append s0 s1)}) .{:pattern index (append s0 s1) n} (n < length s0 ==> index (append s0 s1) n == index s0 n) /\ (length s0 <= n ==> index (append s0 s1) n == index s1 (n - length s0)) /// We represent the following Dafny axiom with `update_maintains_length`: /// /// axiom (forall<T> s: Seq T, i: int, v: T :: { Seq#Length(Seq#Update(s,i,v)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Length(Seq#Update(s,i,v)) == Seq#Length(s)); private let update_maintains_length_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty).{:pattern length (update s i v)} length (update s i v) = length s /// We represent the following Dafny axiom with `update_then_index_fact`: /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: { Seq#Index(Seq#Update(s,i,v),n) } /// 0 <= n && n < Seq#Length(s) ==> /// (i == n ==> Seq#Index(Seq#Update(s,i,v),n) == v) && /// (i != n ==> Seq#Index(Seq#Update(s,i,v),n) == Seq#Index(s,n))); private let update_then_index_fact = forall (ty: Type u#a) (s: seq ty) (i: nat{i < length s}) (v: ty) (n: nat{n < length (update s i v)}) .{:pattern index (update s i v) n} n < length s ==> (i = n ==> index (update s i v) n == v) /\ (i <> n ==> index (update s i v) n == index s n) /// We represent the following Dafny axiom with `contains_iff_exists_index_fact`: /// /// axiom (forall<T> s: Seq T, x: T :: { Seq#Contains(s,x) } /// Seq#Contains(s,x) <==> /// (exists i: int :: { Seq#Index(s,i) } 0 <= i && i < Seq#Length(s) && Seq#Index(s,i) == x)); private let contains_iff_exists_index_fact = forall (ty: Type u#a) (s: seq ty) (x: ty).{:pattern contains s x} contains s x <==> (exists (i: nat).{:pattern index s i} i < length s /\ index s i == x) /// We represent the following Dafny axiom with `empty_doesnt_contain_fact`: /// /// axiom (forall<T> x: T :: /// { Seq#Contains(Seq#Empty(), x) } /// !Seq#Contains(Seq#Empty(), x)); private let empty_doesnt_contain_anything_fact = forall (ty: Type u#a) (x: ty).{:pattern contains empty x} ~(contains empty x) /// We represent the following Dafny axiom with `build_contains_equiv_fact`: /// /// axiom (forall<T> s: Seq T, v: T, x: T :: // needed to prove things like '4 in [2,3,4]', see method TestSequences0 in SmallTests.dfy /// { Seq#Contains(Seq#Build(s, v), x) } /// Seq#Contains(Seq#Build(s, v), x) <==> (v == x || Seq#Contains(s, x))); private let build_contains_equiv_fact = forall (ty: Type u#a) (s: seq ty) (v: ty) (x: ty).{:pattern contains (build s v) x} contains (build s v) x <==> (v == x \/ contains s x) /// We represent the following Dafny axiom with `take_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Take(s, n), x) } /// Seq#Contains(Seq#Take(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= i && i < n && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let take_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (take s n) x} contains (take s n) x <==> (exists (i: nat).{:pattern index s i} i < n /\ i < length s /\ index s i == x) /// We represent the following Dafny axiom with `drop_contains_equiv_exists_fact`: /// /// axiom (forall<T> s: Seq T, n: int, x: T :: /// { Seq#Contains(Seq#Drop(s, n), x) } /// Seq#Contains(Seq#Drop(s, n), x) <==> /// (exists i: int :: { Seq#Index(s, i) } /// 0 <= n && n <= i && i < Seq#Length(s) && Seq#Index(s, i) == x)); private let drop_contains_equiv_exists_fact = forall (ty: Type u#a) (s: seq ty) (n: nat{n <= length s}) (x: ty).{:pattern contains (drop s n) x} contains (drop s n) x <==> (exists (i: nat).{:pattern index s i} n <= i && i < length s /\ index s i == x) /// We represent the following Dafny axiom with `equal_def_fact`: /// /// axiom (forall<T> s0: Seq T, s1: Seq T :: { Seq#Equal(s0,s1) } /// Seq#Equal(s0,s1) <==> /// Seq#Length(s0) == Seq#Length(s1) && /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < Seq#Length(s0) ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let equal_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern equal s0 s1} equal s0 s1 <==> length s0 == length s1 /\ (forall j.{:pattern index s0 j \/ index s1 j} 0 <= j && j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `extensionality_fact`: /// /// axiom (forall<T> a: Seq T, b: Seq T :: { Seq#Equal(a,b) } // extensionality axiom for sequences /// Seq#Equal(a,b) ==> a == b); private let extensionality_fact = forall (ty: Type u#a) (a: seq ty) (b: seq ty).{:pattern equal a b} equal a b ==> a == b /// We represent an analog of the following Dafny axiom with /// `is_prefix_def_fact`. Our analog uses `is_prefix` instead /// of `Seq#SameUntil`. /// /// axiom (forall<T> s0: Seq T, s1: Seq T, n: int :: { Seq#SameUntil(s0,s1,n) } /// Seq#SameUntil(s0,s1,n) <==> /// (forall j: int :: { Seq#Index(s0,j) } { Seq#Index(s1,j) } /// 0 <= j && j < n ==> Seq#Index(s0,j) == Seq#Index(s1,j))); private let is_prefix_def_fact = forall (ty: Type u#a) (s0: seq ty) (s1: seq ty).{:pattern is_prefix s0 s1} is_prefix s0 s1 <==> length s0 <= length s1 /\ (forall (j: nat).{:pattern index s0 j \/ index s1 j} j < length s0 ==> index s0 j == index s1 j) /// We represent the following Dafny axiom with `take_length_fact`: /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Take(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Take(s,n)) == n); private let take_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern length (take s n)} n <= length s ==> length (take s n) = n /// We represent the following Dafny axiom with `index_into_take_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Take(s,n), j) } /// { Seq#Index(s, j), Seq#Take(s,n) } /// 0 <= j && j < n && j < Seq#Length(s) ==> /// Seq#Index(Seq#Take(s,n), j) == Seq#Index(s, j)); private let index_into_take_fact (_ : squash (take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (take s n) j \/ index s j ; take s n} j < n && n <= length s ==> index (take s n) j == index s j /// We represent the following Dafny axiom with `drop_length_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Length(Seq#Drop(s,n)) } /// 0 <= n && n <= Seq#Length(s) ==> Seq#Length(Seq#Drop(s,n)) == Seq#Length(s) - n); private let drop_length_fact = forall (ty: Type u#a) (s: seq ty) (n: nat). {:pattern length (drop s n)} n <= length s ==> length (drop s n) = length s - n /// We represent the following Dafny axiom with `index_into_drop_fact`. /// /// axiom (forall<T> s: Seq T, n: int, j: int :: /// {:weight 25} /// { Seq#Index(Seq#Drop(s,n), j) } /// 0 <= n && 0 <= j && j < Seq#Length(s)-n ==> /// Seq#Index(Seq#Drop(s,n), j) == Seq#Index(s, j+n)); private let index_into_drop_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (j: nat). {:pattern index (drop s n) j} j < length s - n ==> index (drop s n) j == index s (j + n) /// We represent the following Dafny axiom with `drop_index_offset_fact`. /// /// axiom (forall<T> s: Seq T, n: int, k: int :: /// {:weight 25} /// { Seq#Index(s, k), Seq#Drop(s,n) } /// 0 <= n && n <= k && k < Seq#Length(s) ==> /// Seq#Index(Seq#Drop(s,n), k-n) == Seq#Index(s, k)); private let drop_index_offset_fact (_ : squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (n: nat) (k: nat). {:pattern index s k; drop s n} n <= k && k < length s ==> index (drop s n) (k - n) == index s k /// We represent the following Dafny axiom with `append_then_take_or_drop_fact`. /// /// axiom (forall<T> s, t: Seq T, n: int :: /// { Seq#Take(Seq#Append(s, t), n) } /// { Seq#Drop(Seq#Append(s, t), n) } /// n == Seq#Length(s) /// ==> /// Seq#Take(Seq#Append(s, t), n) == s && /// Seq#Drop(Seq#Append(s, t), n) == t); private let append_then_take_or_drop_fact (_ : squash (append_sums_lengths_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (t: seq ty) (n: nat). {:pattern take (append s t) n \/ drop (append s t) n} n = length s ==> take (append s t) n == s /\ drop (append s t) n == t /// We represent the following Dafny axiom with `take_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n <= Seq#Length(s) ==> /// Seq#Take(Seq#Update(s, i, v), n) == Seq#Update(Seq#Take(s, n), i, v) ); private let take_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ take_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} i < n && n <= length s ==> take (update s i v) n == update (take s n) i v /// We represent the following Dafny axiom with `take_ignores_out_of_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Take(Seq#Update(s, i, v), n) } /// n <= i && i < Seq#Length(s) ==> Seq#Take(Seq#Update(s, i, v), n) == Seq#Take(s, n)); private let take_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern take (update s i v) n} n <= i && i < length s ==> take (update s i v) n == take s n /// We represent the following Dafny axiom with `drop_commutes_with_in_range_update_fact`. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= n && n <= i && i < Seq#Length(s) ==> /// Seq#Drop(Seq#Update(s, i, v), n) == Seq#Update(Seq#Drop(s, n), i-n, v) ); private let drop_commutes_with_in_range_update_fact (_ : squash (update_maintains_length_fact u#a /\ drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} n <= i && i < length s ==> drop (update s i v) n == update (drop s n) (i - n) v /// We represent the following Dafny axiom with `drop_ignores_out_of_range_update_fact`. /// Jay noticed that it was unnecessarily weak, possibly due to a typo, so he reported this as /// Dafny issue #1423 (https://github.com/dafny-lang/dafny/issues/1423) and updated it here. /// /// axiom (forall<T> s: Seq T, i: int, v: T, n: int :: /// { Seq#Drop(Seq#Update(s, i, v), n) } /// 0 <= i && i < n && n < Seq#Length(s) ==> Seq#Drop(Seq#Update(s, i, v), n) == Seq#Drop(s, n)); private let drop_ignores_out_of_range_update_fact (_ : squash (update_maintains_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (i: nat) (v: ty) (n: nat).{:pattern drop (update s i v) n} i < n && n <= length s ==> drop (update s i v) n == drop s n /// We represent the following Dafny axiom with `drop_commutes_with_build_fact`. /// /// axiom (forall<T> s: Seq T, v: T, n: int :: /// { Seq#Drop(Seq#Build(s, v), n) } /// 0 <= n && n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Build(s, v), n) == Seq#Build(Seq#Drop(s, n), v) ); private let drop_commutes_with_build_fact (_ : squash (build_increments_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (v: ty) (n: nat).{:pattern drop (build s v) n} n <= length s ==> drop (build s v) n == build (drop s n) v /// We include the definition of `rank` among our facts. private let rank_def_fact = forall (ty: Type u#a) (v: ty).{:pattern rank v} rank v == v /// We represent the following Dafny axiom with `element_ranks_less_fact`. /// /// axiom (forall s: Seq Box, i: int :: /// { DtRank($Unbox(Seq#Index(s, i)): DatatypeType) } /// 0 <= i && i < Seq#Length(s) ==> DtRank($Unbox(Seq#Index(s, i)): DatatypeType) < Seq#Rank(s) ); private let element_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (index s i)} i < length s ==> rank (index s i) << rank s /// We represent the following Dafny axiom with `drop_ranks_less_fact`. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Drop(s, i)) } /// 0 < i && i <= Seq#Length(s) ==> Seq#Rank(Seq#Drop(s, i)) < Seq#Rank(s) ); private let drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern rank (drop s i)} 0 < i && i <= length s ==> rank (drop s i) << rank s /// We represent the following Dafny axiom with /// `take_ranks_less_fact`. However, since it isn't true in F* (which /// has strong requirements for <<), we instead substitute length, /// requiring decreases clauses to use length in this case. /// /// axiom (forall<T> s: Seq T, i: int :: /// { Seq#Rank(Seq#Take(s, i)) } /// 0 <= i && i < Seq#Length(s) ==> Seq#Rank(Seq#Take(s, i)) < Seq#Rank(s) ); private let take_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat).{:pattern length (take s i)} i < length s ==> length (take s i) << length s /// We represent the following Dafny axiom with /// `append_take_drop_ranks_less_fact`. However, since it isn't true /// in F* (which has strong requirements for <<), we instead /// substitute length, requiring decreases clauses to use /// length in this case. /// /// axiom (forall<T> s: Seq T, i: int, j: int :: /// { Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) } /// 0 <= i && i < j && j <= Seq#Length(s) ==> /// Seq#Rank(Seq#Append(Seq#Take(s, i), Seq#Drop(s, j))) < Seq#Rank(s) ); private let append_take_drop_ranks_less_fact = forall (ty: Type u#a) (s: seq ty) (i: nat) (j: nat).{:pattern length (append (take s i) (drop s j))} i < j && j <= length s ==> length (append (take s i) (drop s j)) << length s /// We represent the following Dafny axiom with `drop_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Drop(s, n) } /// n == 0 ==> Seq#Drop(s, n) == s); private let drop_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern drop s n} n = 0 ==> drop s n == s /// We represent the following Dafny axiom with `take_zero_fact`. /// /// axiom (forall<T> s: Seq T, n: int :: { Seq#Take(s, n) } /// n == 0 ==> Seq#Take(s, n) == Seq#Empty()); private let take_zero_fact = forall (ty: Type u#a) (s: seq ty) (n: nat).{:pattern take s n} n = 0 ==> take s n == empty /// We represent the following Dafny axiom with `drop_then_drop_fact`. /// /// axiom (forall<T> s: Seq T, m, n: int :: { Seq#Drop(Seq#Drop(s, m), n) } /// 0 <= m && 0 <= n && m+n <= Seq#Length(s) ==> /// Seq#Drop(Seq#Drop(s, m), n) == Seq#Drop(s, m+n)); private let drop_then_drop_fact (_: squash (drop_length_fact u#a)) = forall (ty: Type u#a) (s: seq ty) (m: nat) (n: nat).{:pattern drop (drop s m) n} m + n <= length s ==> drop (drop s m) n == drop s (m + n) (** The predicate `all_dafny_seq_facts` collects all the Dafny sequence axioms. One can bring all these facts into scope with `all_dafny_seq_facts_lemma ()`. **)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "FStar.Sequence.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Sequence", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_and", "FStar.Sequence.Base.length_of_empty_is_zero_fact", "FStar.Sequence.Base.length_zero_implies_empty_fact", "FStar.Sequence.Base.singleton_length_one_fact", "FStar.Sequence.Base.build_increments_length_fact", "FStar.Sequence.Base.index_into_build_fact", "FStar.Sequence.Base.append_sums_lengths_fact", "FStar.Sequence.Base.index_into_singleton_fact", "FStar.Sequence.Base.index_after_append_fact", "FStar.Sequence.Base.update_maintains_length_fact", "FStar.Sequence.Base.update_then_index_fact", "FStar.Sequence.Base.contains_iff_exists_index_fact", "FStar.Sequence.Base.empty_doesnt_contain_anything_fact", "FStar.Sequence.Base.build_contains_equiv_fact", "FStar.Sequence.Base.take_contains_equiv_exists_fact", "FStar.Sequence.Base.drop_contains_equiv_exists_fact", "FStar.Sequence.Base.equal_def_fact", "FStar.Sequence.Base.extensionality_fact", "FStar.Sequence.Base.is_prefix_def_fact", "FStar.Sequence.Base.take_length_fact", "FStar.Sequence.Base.index_into_take_fact", "FStar.Sequence.Base.drop_length_fact", "FStar.Sequence.Base.index_into_drop_fact", "FStar.Sequence.Base.drop_index_offset_fact", "FStar.Sequence.Base.append_then_take_or_drop_fact", "FStar.Sequence.Base.take_commutes_with_in_range_update_fact", "FStar.Sequence.Base.take_ignores_out_of_range_update_fact", "FStar.Sequence.Base.drop_commutes_with_in_range_update_fact", "FStar.Sequence.Base.drop_ignores_out_of_range_update_fact", "FStar.Sequence.Base.drop_commutes_with_build_fact", "FStar.Sequence.Base.rank_def_fact", "FStar.Sequence.Base.element_ranks_less_fact", "FStar.Sequence.Base.drop_ranks_less_fact", "FStar.Sequence.Base.take_ranks_less_fact", "FStar.Sequence.Base.append_take_drop_ranks_less_fact", "FStar.Sequence.Base.drop_zero_fact", "FStar.Sequence.Base.take_zero_fact", "FStar.Sequence.Base.drop_then_drop_fact" ]
[]
false
false
false
true
true
let all_seq_facts =
length_of_empty_is_zero_fact u#a /\ length_zero_implies_empty_fact u#a /\ singleton_length_one_fact u#a /\ build_increments_length_fact u#a /\ index_into_build_fact u#a () /\ append_sums_lengths_fact u#a /\ index_into_singleton_fact u#a () /\ index_after_append_fact u#a () /\ update_maintains_length_fact u#a /\ update_then_index_fact u#a /\ contains_iff_exists_index_fact u#a /\ empty_doesnt_contain_anything_fact u#a /\ build_contains_equiv_fact u#a /\ take_contains_equiv_exists_fact u#a /\ drop_contains_equiv_exists_fact u#a /\ equal_def_fact u#a /\ extensionality_fact u#a /\ is_prefix_def_fact u#a /\ take_length_fact u#a /\ index_into_take_fact u#a () /\ drop_length_fact u#a /\ index_into_drop_fact u#a () /\ drop_index_offset_fact u#a () /\ append_then_take_or_drop_fact u#a () /\ take_commutes_with_in_range_update_fact u#a () /\ take_ignores_out_of_range_update_fact u#a () /\ drop_commutes_with_in_range_update_fact u#a () /\ drop_ignores_out_of_range_update_fact u#a () /\ drop_commutes_with_build_fact u#a () /\ rank_def_fact u#a /\ element_ranks_less_fact u#a /\ drop_ranks_less_fact u#a /\ take_ranks_less_fact u#a /\ append_take_drop_ranks_less_fact u#a /\ drop_zero_fact u#a /\ take_zero_fact u#a /\ drop_then_drop_fact u#a ()
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.contained_region
val contained_region: mem -> mem -> rid -> Type0
val contained_region: mem -> mem -> rid -> Type0
let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 67, "end_line": 124, "start_col": 15, "start_line": 123 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "Prims.l_and", "Prims.b2t", "FStar.HyperStack.ST.contains_region" ]
[]
false
false
false
true
true
let contained_region: mem -> mem -> rid -> Type0 =
fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.equal_heap_dom
val equal_heap_dom (r: rid) (m0 m1: mem) : Type0
val equal_heap_dom (r: rid) (m0 m1: mem) : Type0
let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r)
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 70, "end_line": 120, "start_col": 15, "start_line": 119 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: FStar.Monotonic.HyperHeap.rid -> m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.Heap.equal_dom", "FStar.Map.sel", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap" ]
[]
false
false
false
true
true
let equal_heap_dom (r: rid) (m0 m1: mem) : Type0 =
Heap.equal_dom ((get_hmap m0) `Map.sel` r) ((get_hmap m1) `Map.sel` r)
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.same_refs_common
val same_refs_common : p: ( _: FStar.Monotonic.HyperStack.mem -> _: FStar.Monotonic.HyperStack.mem -> _: FStar.Monotonic.HyperHeap.rid -> Type0) -> m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
let same_refs_common (p:mem -> mem -> rid -> Type0) (m0 m1:mem) = forall (r:rid). p m0 m1 r ==> equal_heap_dom r m0 m1
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 54, "end_line": 140, "start_col": 15, "start_line": 139 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r) [@@"opaque_to_smt"] unfold private let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r [@@"opaque_to_smt"] unfold private let contained_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> r =!= get_tip m0 /\ r =!= get_tip m1 /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_non_tip_region m0 m1 r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: ( _: FStar.Monotonic.HyperStack.mem -> _: FStar.Monotonic.HyperStack.mem -> _: FStar.Monotonic.HyperHeap.rid -> Type0) -> m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "Prims.l_Forall", "Prims.l_imp", "FStar.HyperStack.ST.equal_heap_dom", "Prims.logical" ]
[]
false
false
false
true
true
let same_refs_common (p: (mem -> mem -> rid -> Type0)) (m0 m1: mem) =
forall (r: rid). p m0 m1 r ==> equal_heap_dom r m0 m1
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.equal_stack_domains
val equal_stack_domains : m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
let equal_stack_domains (m0 m1:mem) = get_tip m0 == get_tip m1 /\ same_refs_in_stack_regions m0 m1
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 218, "start_col": 0, "start_line": 216 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r) [@@"opaque_to_smt"] unfold private let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r [@@"opaque_to_smt"] unfold private let contained_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> r =!= get_tip m0 /\ r =!= get_tip m1 /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_non_tip_region m0 m1 r [@@"opaque_to_smt"] unfold private let same_refs_common (p:mem -> mem -> rid -> Type0) (m0 m1:mem) = forall (r:rid). p m0 m1 r ==> equal_heap_dom r m0 m1 (* predicates *) val same_refs_in_all_regions (m0 m1:mem) :Type0 val same_refs_in_stack_regions (m0 m1:mem) :Type0 val same_refs_in_non_tip_regions (m0 m1:mem) :Type0 val same_refs_in_non_tip_stack_regions (m0 m1:mem) :Type0 (* intro and elim forms *) val lemma_same_refs_in_all_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_region m0 m1)) (ensures (same_refs_in_all_regions m0 m1)) [SMTPat (same_refs_in_all_regions m0 m1)] val lemma_same_refs_in_all_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_all_regions m0 m1 /\ contained_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_all_regions m0 m1); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_all_regions m0 m1); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_stack_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_stack_region m0 m1)) (ensures (same_refs_in_stack_regions m0 m1)) [SMTPat (same_refs_in_stack_regions m0 m1)] val lemma_same_refs_in_stack_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_stack_regions m0 m1 /\ contained_stack_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_non_tip_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_non_tip_region m0 m1)) (ensures (same_refs_in_non_tip_regions m0 m1)) [SMTPat (same_refs_in_non_tip_regions m0 m1)] val lemma_same_refs_in_non_tip_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_non_tip_regions m0 m1 /\ contained_non_tip_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_non_tip_regions m0 m1); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_non_tip_regions m0 m1); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_non_tip_stack_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_non_tip_stack_region m0 m1)) (ensures (same_refs_in_non_tip_stack_regions m0 m1)) [SMTPat (same_refs_in_non_tip_stack_regions m0 m1)] val lemma_same_refs_in_non_tip_stack_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_non_tip_stack_regions m0 m1 /\ contained_non_tip_stack_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_non_tip_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m0 `contains_region` r);]; [SMTPat (same_refs_in_non_tip_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m1 `contains_region` r)]]] (******) let equal_domains (m0 m1:mem) = get_tip m0 == get_tip m1 /\ Set.equal (Map.domain (get_hmap m0)) (Map.domain (get_hmap m1)) /\ same_refs_in_all_regions m0 m1 val lemma_equal_domains_trans (m0 m1 m2:mem) :Lemma (requires (equal_domains m0 m1 /\ equal_domains m1 m2)) (ensures (equal_domains m0 m2)) [SMTPat (equal_domains m0 m1); SMTPat (equal_domains m1 m2)] (** * Effect of stacked based code: the 'equal_domains' clause enforces that * - both mem have the same tip * - both mem reference the same heaps (their map: rid -> heap have the same domain) * - in each region id, the corresponding heaps contain the same references on both sides *) effect Stack (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. (pre h /\ post h a h1 /\ equal_domains h h1) ==> p a h1)) (* WP *) (** * Effect of heap-based code. * - assumes that the stack is empty (tip = root) * - corresponds to the HyperHeap ST effect * - can call to Stack and ST code freely * - respects the stack invariant: the stack has to be empty when returning *) effect Heap (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. (pre h /\ post h a h1 /\ get_tip h = HS.root /\ get_tip h1 = HS.root ) ==> p a h1)) (* WP *)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.get_tip", "FStar.HyperStack.ST.same_refs_in_stack_regions", "Prims.logical" ]
[]
false
false
false
true
true
let equal_stack_domains (m0 m1: mem) =
get_tip m0 == get_tip m1 /\ same_refs_in_stack_regions m0 m1
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.equal_domains
val equal_domains : m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
let equal_domains (m0 m1:mem) = get_tip m0 == get_tip m1 /\ Set.equal (Map.domain (get_hmap m0)) (Map.domain (get_hmap m1)) /\ same_refs_in_all_regions m0 m1
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 32, "end_line": 188, "start_col": 0, "start_line": 185 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r) [@@"opaque_to_smt"] unfold private let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r [@@"opaque_to_smt"] unfold private let contained_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> r =!= get_tip m0 /\ r =!= get_tip m1 /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_non_tip_region m0 m1 r [@@"opaque_to_smt"] unfold private let same_refs_common (p:mem -> mem -> rid -> Type0) (m0 m1:mem) = forall (r:rid). p m0 m1 r ==> equal_heap_dom r m0 m1 (* predicates *) val same_refs_in_all_regions (m0 m1:mem) :Type0 val same_refs_in_stack_regions (m0 m1:mem) :Type0 val same_refs_in_non_tip_regions (m0 m1:mem) :Type0 val same_refs_in_non_tip_stack_regions (m0 m1:mem) :Type0 (* intro and elim forms *) val lemma_same_refs_in_all_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_region m0 m1)) (ensures (same_refs_in_all_regions m0 m1)) [SMTPat (same_refs_in_all_regions m0 m1)] val lemma_same_refs_in_all_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_all_regions m0 m1 /\ contained_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_all_regions m0 m1); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_all_regions m0 m1); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_stack_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_stack_region m0 m1)) (ensures (same_refs_in_stack_regions m0 m1)) [SMTPat (same_refs_in_stack_regions m0 m1)] val lemma_same_refs_in_stack_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_stack_regions m0 m1 /\ contained_stack_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_non_tip_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_non_tip_region m0 m1)) (ensures (same_refs_in_non_tip_regions m0 m1)) [SMTPat (same_refs_in_non_tip_regions m0 m1)] val lemma_same_refs_in_non_tip_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_non_tip_regions m0 m1 /\ contained_non_tip_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_non_tip_regions m0 m1); SMTPat (m0 `contains_region` r)]; [SMTPat (same_refs_in_non_tip_regions m0 m1); SMTPat (m1 `contains_region` r)]]] val lemma_same_refs_in_non_tip_stack_regions_intro (m0 m1:mem) :Lemma (requires (same_refs_common contained_non_tip_stack_region m0 m1)) (ensures (same_refs_in_non_tip_stack_regions m0 m1)) [SMTPat (same_refs_in_non_tip_stack_regions m0 m1)] val lemma_same_refs_in_non_tip_stack_regions_elim (m0 m1:mem) (r:rid) :Lemma (requires (same_refs_in_non_tip_stack_regions m0 m1 /\ contained_non_tip_stack_region m0 m1 r)) (ensures (equal_heap_dom r m0 m1)) [SMTPatOr [[SMTPat (same_refs_in_non_tip_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m0 `contains_region` r);]; [SMTPat (same_refs_in_non_tip_stack_regions m0 m1); SMTPat (is_stack_region r); SMTPat (m1 `contains_region` r)]]] (******)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "Prims.l_and", "Prims.eq2", "FStar.Monotonic.HyperHeap.rid", "FStar.Monotonic.HyperStack.get_tip", "FStar.Set.equal", "FStar.Map.domain", "FStar.Monotonic.Heap.heap", "FStar.Monotonic.HyperStack.get_hmap", "FStar.HyperStack.ST.same_refs_in_all_regions", "Prims.logical" ]
[]
false
false
false
true
true
let equal_domains (m0 m1: mem) =
get_tip m0 == get_tip m1 /\ Set.equal (Map.domain (get_hmap m0)) (Map.domain (get_hmap m1)) /\ same_refs_in_all_regions m0 m1
false
FStar.HyperStack.ST.fsti
FStar.HyperStack.ST.contained_non_tip_stack_region
val contained_non_tip_stack_region: mem -> mem -> rid -> Type0
val contained_non_tip_stack_region: mem -> mem -> rid -> Type0
let contained_non_tip_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_non_tip_region m0 m1 r
{ "file_name": "ulib/FStar.HyperStack.ST.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 72, "end_line": 136, "start_col": 15, "start_line": 135 }
(* Copyright 2008-2018 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module FStar.HyperStack.ST open FStar.HyperStack module HS = FStar.HyperStack open FStar.Preorder (* Setting up the preorder for mem *) (* Starting the predicates that constitute the preorder *) [@@"opaque_to_smt"] private unfold let contains_region (m:mem) (r:rid) = get_hmap m `Map.contains` r (* The preorder is the conjunction of above predicates *) val mem_rel :preorder mem type mem_predicate = mem -> Type0 (* Predicates that we will witness with regions and refs *) val region_contains_pred (r:HS.rid) :mem_predicate val ref_contains_pred (#a:Type) (#rel:preorder a) (r:HS.mreference a rel) :mem_predicate (***** Global ST (GST) effect with put, get, witness, and recall *****) new_effect GST = STATE_h mem let gst_pre = st_pre_h mem let gst_post' (a:Type) (pre:Type) = st_post_h' mem a pre let gst_post (a:Type) = st_post_h mem a let gst_wp (a:Type) = st_wp_h mem a unfold let lift_div_gst (a:Type) (wp:pure_wp a) (p:gst_post a) (h:mem) = wp (fun a -> p a h) sub_effect DIV ~> GST = lift_div_gst (* * AR: A few notes about the interface: * - The interface closely mimics the interface we formalized in our POPL'18 paper * - Specifically, `witnessed` is defined for any mem_predicate (not necessarily stable ones) * - `stable p` is a precondition for `gst_witness` * - `gst_recall` does not have a precondition for `stable p`, since `gst_witness` is the only way * clients would have obtained `witnessed p`, and so, `p` should already be stable * - `lemma_functoriality` does not require stability for either `p` or `q` * Our metatheory ensures that this is sound (without requiring stability of `q`) * This form is useful in defining the MRRef interface (see mr_witness) *) val stable (p:mem_predicate) :Type0 val witnessed (p:mem_predicate) :Type0 (* TODO: we should derive these using DM4F *) private val gst_get: unit -> GST mem (fun p h0 -> p h0 h0) private val gst_put: h1:mem -> GST unit (fun p h0 -> mem_rel h0 h1 /\ p () h1) private val gst_witness: p:mem_predicate -> GST unit (fun post h0 -> p h0 /\ stable p /\ (witnessed p ==> post () h0)) private val gst_recall: p:mem_predicate -> GST unit (fun post h0 -> witnessed p /\ (p h0 ==> post () h0)) val lemma_functoriality (p:mem_predicate{witnessed p}) (q:mem_predicate{(forall (h:mem). p h ==> q h)}) : Lemma (witnessed q) let st_pre = gst_pre let st_post' = gst_post' let st_post = gst_post let st_wp = gst_wp new_effect STATE = GST unfold let lift_gst_state (a:Type) (wp:gst_wp a) = wp sub_effect GST ~> STATE = lift_gst_state (* effect State (a:Type) (wp:st_wp a) = *) (* STATE a wp *) (** WARNING: this effect is unsafe, for C/C++ extraction it shall only be used by code that would later extract to OCaml or by library functions *) effect Unsafe (a:Type) (pre:st_pre) (post: (m0:mem -> Tot (st_post' a (pre m0)))) = STATE a (fun (p:st_post a) (h:mem) -> pre h /\ (forall a h1. pre h /\ post h a h1 ==> p a h1)) (* WP *) (****** defining predicates for equal refs in some regions ******) (* // * AR: (may be this is an overkill) // * various effects below talk about refs being equal in some regions (all regions, stack regions, etc.) // * this was done by defining, for example, an equal_dom predicate with a (forall (r:rid)) quantifier // * this quantifier was only guarded with Map.contains (HS.get_hmap m) r // * which meant it could fire for all the contained regions // * // * instead now we define abstract predicates, e.g. same_refs_in_all_regions, and provide intro and elim forms // * the advantage is that, the (lemma) quantifiers are now guarded additionally by same_refs_in_all_regions kind // * of predicates, and hence should fire more contextually // * should profile the queries to see if it actually helps // *) (* // * marking these opaque, since expect them to be unfolded away beforehand // *) [@@"opaque_to_smt"] unfold private let equal_heap_dom (r:rid) (m0 m1:mem) :Type0 = Heap.equal_dom (get_hmap m0 `Map.sel` r) (get_hmap m1 `Map.sel` r) [@@"opaque_to_smt"] unfold private let contained_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> m0 `contains_region` r /\ m1 `contains_region` r [@@"opaque_to_smt"] unfold private let contained_stack_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> is_stack_region r /\ contained_region m0 m1 r [@@"opaque_to_smt"] unfold private let contained_non_tip_region :mem -> mem -> rid -> Type0 = fun m0 m1 r -> r =!= get_tip m0 /\ r =!= get_tip m1 /\ contained_region m0 m1 r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Set.fsti.checked", "FStar.Preorder.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Map.fsti.checked", "FStar.HyperStack.fst.checked", "FStar.Heap.fst.checked" ], "interface_file": false, "source_file": "FStar.HyperStack.ST.fsti" }
[ { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": true, "full_module": "FStar.Monotonic.Witnessed", "short_module": "W" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Preorder", "short_module": null }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m0: FStar.Monotonic.HyperStack.mem -> m1: FStar.Monotonic.HyperStack.mem -> r: FStar.Monotonic.HyperHeap.rid -> Type0
Prims.Tot
[ "total" ]
[]
[ "FStar.Monotonic.HyperStack.mem", "FStar.Monotonic.HyperHeap.rid", "Prims.l_and", "Prims.b2t", "FStar.Monotonic.HyperStack.is_stack_region", "FStar.HyperStack.ST.contained_non_tip_region" ]
[]
false
false
false
true
true
let contained_non_tip_stack_region: mem -> mem -> rid -> Type0 =
fun m0 m1 r -> is_stack_region r /\ contained_non_tip_region m0 m1 r
false