file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
FStar.FiniteMap.Base.fsti
FStar.FiniteMap.Base.glue_elements_fact
val glue_elements_fact : Prims.logical
let glue_elements_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f
{ "file_name": "ulib/FStar.FiniteMap.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 34, "end_line": 311, "start_col": 0, "start_line": 308 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite maps as they're modeled in Dafny. @summary Type and functions for modeling finite maps *) module FStar.FiniteMap.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot module FSet = FStar.FiniteSet.Base type setfun_t (a: eqtype) (b: Type u#b) (s: FSet.set a) = f: (a ^-> option b){forall (key: a). FSet.mem key s == Some? (f key)} val map (a: eqtype) ([@@@ strictly_positive] b: Type u#b) : Type u#b (** We translate each Dafny sequence function prefixed with `Map#` into an F* function. **) /// We represent the Dafny function `Map#Domain` with `domain`: /// /// function Map#Domain<U,V>(Map U V) : Set U; val domain (#a: eqtype) (#b: Type u#b) (m: map a b) : FSet.set a /// We represent the Dafny function `Map#Elements` with `elements`: /// /// function Map#Elements<U,V>(Map U V) : [U]V; val elements (#a: eqtype) (#b: Type u#b) (m: map a b) : setfun_t a b (domain m) /// We represent the Dafny operator `in` on maps with `mem`: let mem (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) = FSet.mem key (domain m) /// We can convert a map to a list of pairs with `map_as_list`: let rec key_in_item_list (#a: eqtype) (#b: Type u#b) (key: a) (items: list (a * b)) : bool = match items with | [] -> false | (k, v) :: tl -> key = k || key_in_item_list key tl let rec item_list_doesnt_repeat_keys (#a: eqtype) (#b: Type u#b) (items: list (a * b)) : bool = match items with | [] -> true | (k, v) :: tl -> not (key_in_item_list k tl) && item_list_doesnt_repeat_keys tl val map_as_list (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (items: list (a * b){item_list_doesnt_repeat_keys items /\ (forall key. key_in_item_list key items <==> mem key m)}) /// We represent the Dafny operator [] on maps with `lookup`: let lookup (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b{mem key m}) : b = Some?.v ((elements m) key) /// We represent the Dafny function `Map#Card` with `cardinality`: /// /// function Map#Card<U,V>(Map U V) : int; val cardinality (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot nat /// We represent the Dafny function `Map#Values` with `values`: /// /// function Map#Values<U,V>(Map U V) : Set V; val values (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (b -> prop) /// We represent the Dafny function `Map#Items` with `items`: /// /// function Map#Items<U,V>(Map U V) : Set Box; val items (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot ((a * b) -> prop) /// We represent the Dafny function `Map#Empty` with `emptymap`: /// /// function Map#Empty<U, V>(): Map U V; val emptymap (#a: eqtype) (#b: Type u#b) : map a b /// We represent the Dafny function `Map#Glue` with `glue`. /// /// function Map#Glue<U, V>([U]bool, [U]V, Ty): Map U V; val glue (#a: eqtype) (#b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys) : map a b /// We represent the Dafny function `Map#Build` with `insert`: /// /// function Map#Build<U, V>(Map U V, U, V): Map U V; val insert (#a: eqtype) (#b: Type u#b) (k: a) (v: b) (m: map a b) : map a b /// We represent the Dafny function `Map#Merge` with `merge`: /// /// function Map#Merge<U, V>(Map U V, Map U V): Map U V; val merge (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : map a b /// We represent the Dafny function `Map#Subtract` with `subtract`: /// /// function Map#Subtract<U, V>(Map U V, Set U): Map U V; val subtract (#a: eqtype) (#b: Type u#b) (m: map a b) (s: FSet.set a) : map a b /// We represent the Dafny function `Map#Equal` with `equal`: /// /// function Map#Equal<U, V>(Map U V, Map U V): bool; val equal (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny function `Map#Disjoint` with `disjoint`: /// /// function Map#Disjoint<U, V>(Map U V, Map U V): bool; val disjoint (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (#b: Type u#b) (m: map a b{exists key. mem key m}) : GTot (key: a{mem key m}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : map a b = subtract m (FSet.singleton key) let notin (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : bool = not (mem key m) (** We translate each finite map axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); /// We represent the following Dafny axiom with `cardinality_zero_iff_empty_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Card(m) } /// Map#Card(m) == 0 <==> m == Map#Empty()); let cardinality_zero_iff_empty_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern cardinality m} cardinality m = 0 <==> m == emptymap /// We represent the following Dafny axiom with `empty_or_domain_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Domain(m) } /// m == Map#Empty() || (exists k: U :: Map#Domain(m)[k])); let empty_or_domain_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern domain m} m == emptymap \/ (exists k.{:pattern mem k m} mem k m) /// We represent the following Dafny axiom with `empty_or_values_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Values(m) } /// m == Map#Empty() || (exists v: V :: Map#Values(m)[v])); let empty_or_values_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern values m} m == emptymap \/ (exists v. {:pattern values m v } (values m) v) /// We represent the following Dafny axiom with `empty_or_items_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Items(m) } /// m == Map#Empty() || (exists k, v: Box :: Map#Items(m)[$Box(#_System._tuple#2._#Make2(k, v))])); let empty_or_items_occupied_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern items m} m == emptymap \/ (exists item. {:pattern items m item } (items m) item) /// We represent the following Dafny axiom with `map_cardinality_matches_domain_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Domain(m)) } /// Set#Card(Map#Domain(m)) == Map#Card(m)); let map_cardinality_matches_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern FSet.cardinality (domain m)} FSet.cardinality (domain m) = cardinality m /// We don't use the following Dafny axioms, which would require /// treating the values and items as finite sets, which we can't do /// because we want to allow non-eqtypes as values. /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Values(m)) } /// Set#Card(Map#Values(m)) <= Map#Card(m)); /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Items(m)) } /// Set#Card(Map#Items(m)) == Map#Card(m)); /// We represent the following Dafny axiom with `values_contains_fact`: /// /// axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] } /// Map#Values(m)[v] == /// (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] } /// Map#Domain(m)[u] && /// v == Map#Elements(m)[u])); let values_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (v: b).{:pattern (values m) v} (values m) v <==> (exists (u: a).{:pattern FSet.mem u (domain m) \/ ((elements m) u)} FSet.mem u (domain m) /\ (elements m) u == Some v) /// We represent the following Dafny axiom with `items_contains_fact`: /// /// axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] } /// Map#Items(m)[item] <==> /// Map#Domain(m)[_System.Tuple2._0($Unbox(item))] && /// Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item))); let items_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (item: a * b).{:pattern (items m) item} (items m) item <==> FSet.mem (fst item) (domain m) /\ (elements m) (fst item) == Some (snd item) /// We represent the following Dafny axiom with `empty_domain_empty_fact`: /// /// axiom (forall<U, V> u: U :: /// { Map#Domain(Map#Empty(): Map U V)[u] } /// !Map#Domain(Map#Empty(): Map U V)[u]); let empty_domain_empty_fact = forall (a: eqtype) (b: Type u#b) (u: a).{:pattern FSet.mem u (domain (emptymap #a #b))} not (FSet.mem u (domain (emptymap #a #b))) /// We represent the following Dafny axiom with `glue_domain_fact`: /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Domain(Map#Glue(a, b, t)) } /// Map#Domain(Map#Glue(a, b, t)) == a); let glue_domain_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern domain (glue keys f)} domain (glue keys f) == keys /// We represent the following Dafny axiom with `glue_elements_fact`. /// But we have to change it because our version of `Map#Elements` /// returns a map to an optional value. /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Elements(Map#Glue(a, b, t)) } /// Map#Elements(Map#Glue(a, b, t)) == b);
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.FiniteSet.Base.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteMap.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.FiniteSet.Base", "short_module": "FSet" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteSet.Base.set", "FStar.FiniteMap.Base.setfun_t", "Prims.l_and", "Prims.eq2", "FStar.FiniteMap.Base.domain", "FStar.FiniteMap.Base.glue", "FStar.FunctionalExtensionality.op_Hat_Subtraction_Greater", "FStar.Pervasives.Native.option", "Prims.l_or", "Prims.bool", "FStar.FiniteSet.Base.mem", "FStar.Pervasives.Native.uu___is_Some", "FStar.FiniteMap.Base.elements" ]
[]
false
false
false
true
true
let glue_elements_fact =
forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys). {:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f
false
FStar.FiniteMap.Base.fsti
FStar.FiniteMap.Base.all_finite_map_facts
val all_finite_map_facts : Prims.logical
let all_finite_map_facts = cardinality_zero_iff_empty_fact u#b /\ empty_or_domain_occupied_fact u#b /\ empty_or_values_occupied_fact u#b /\ empty_or_items_occupied_fact u#b /\ map_cardinality_matches_domain_fact u#b /\ values_contains_fact u#b /\ items_contains_fact u#b /\ empty_domain_empty_fact u#b /\ glue_domain_fact u#b /\ glue_elements_fact u#b /\ insert_elements_fact u#b /\ insert_member_cardinality_fact u#b /\ insert_nonmember_cardinality_fact u#b /\ merge_domain_is_union_fact u#b /\ merge_element_fact u#b /\ subtract_domain_fact u#b /\ subtract_element_fact u#b /\ map_equal_fact u#b /\ map_extensionality_fact u#b /\ disjoint_fact u#b
{ "file_name": "ulib/FStar.FiniteMap.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 22, "end_line": 460, "start_col": 0, "start_line": 440 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite maps as they're modeled in Dafny. @summary Type and functions for modeling finite maps *) module FStar.FiniteMap.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot module FSet = FStar.FiniteSet.Base type setfun_t (a: eqtype) (b: Type u#b) (s: FSet.set a) = f: (a ^-> option b){forall (key: a). FSet.mem key s == Some? (f key)} val map (a: eqtype) ([@@@ strictly_positive] b: Type u#b) : Type u#b (** We translate each Dafny sequence function prefixed with `Map#` into an F* function. **) /// We represent the Dafny function `Map#Domain` with `domain`: /// /// function Map#Domain<U,V>(Map U V) : Set U; val domain (#a: eqtype) (#b: Type u#b) (m: map a b) : FSet.set a /// We represent the Dafny function `Map#Elements` with `elements`: /// /// function Map#Elements<U,V>(Map U V) : [U]V; val elements (#a: eqtype) (#b: Type u#b) (m: map a b) : setfun_t a b (domain m) /// We represent the Dafny operator `in` on maps with `mem`: let mem (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) = FSet.mem key (domain m) /// We can convert a map to a list of pairs with `map_as_list`: let rec key_in_item_list (#a: eqtype) (#b: Type u#b) (key: a) (items: list (a * b)) : bool = match items with | [] -> false | (k, v) :: tl -> key = k || key_in_item_list key tl let rec item_list_doesnt_repeat_keys (#a: eqtype) (#b: Type u#b) (items: list (a * b)) : bool = match items with | [] -> true | (k, v) :: tl -> not (key_in_item_list k tl) && item_list_doesnt_repeat_keys tl val map_as_list (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (items: list (a * b){item_list_doesnt_repeat_keys items /\ (forall key. key_in_item_list key items <==> mem key m)}) /// We represent the Dafny operator [] on maps with `lookup`: let lookup (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b{mem key m}) : b = Some?.v ((elements m) key) /// We represent the Dafny function `Map#Card` with `cardinality`: /// /// function Map#Card<U,V>(Map U V) : int; val cardinality (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot nat /// We represent the Dafny function `Map#Values` with `values`: /// /// function Map#Values<U,V>(Map U V) : Set V; val values (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (b -> prop) /// We represent the Dafny function `Map#Items` with `items`: /// /// function Map#Items<U,V>(Map U V) : Set Box; val items (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot ((a * b) -> prop) /// We represent the Dafny function `Map#Empty` with `emptymap`: /// /// function Map#Empty<U, V>(): Map U V; val emptymap (#a: eqtype) (#b: Type u#b) : map a b /// We represent the Dafny function `Map#Glue` with `glue`. /// /// function Map#Glue<U, V>([U]bool, [U]V, Ty): Map U V; val glue (#a: eqtype) (#b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys) : map a b /// We represent the Dafny function `Map#Build` with `insert`: /// /// function Map#Build<U, V>(Map U V, U, V): Map U V; val insert (#a: eqtype) (#b: Type u#b) (k: a) (v: b) (m: map a b) : map a b /// We represent the Dafny function `Map#Merge` with `merge`: /// /// function Map#Merge<U, V>(Map U V, Map U V): Map U V; val merge (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : map a b /// We represent the Dafny function `Map#Subtract` with `subtract`: /// /// function Map#Subtract<U, V>(Map U V, Set U): Map U V; val subtract (#a: eqtype) (#b: Type u#b) (m: map a b) (s: FSet.set a) : map a b /// We represent the Dafny function `Map#Equal` with `equal`: /// /// function Map#Equal<U, V>(Map U V, Map U V): bool; val equal (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny function `Map#Disjoint` with `disjoint`: /// /// function Map#Disjoint<U, V>(Map U V, Map U V): bool; val disjoint (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (#b: Type u#b) (m: map a b{exists key. mem key m}) : GTot (key: a{mem key m}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : map a b = subtract m (FSet.singleton key) let notin (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : bool = not (mem key m) (** We translate each finite map axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); /// We represent the following Dafny axiom with `cardinality_zero_iff_empty_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Card(m) } /// Map#Card(m) == 0 <==> m == Map#Empty()); let cardinality_zero_iff_empty_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern cardinality m} cardinality m = 0 <==> m == emptymap /// We represent the following Dafny axiom with `empty_or_domain_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Domain(m) } /// m == Map#Empty() || (exists k: U :: Map#Domain(m)[k])); let empty_or_domain_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern domain m} m == emptymap \/ (exists k.{:pattern mem k m} mem k m) /// We represent the following Dafny axiom with `empty_or_values_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Values(m) } /// m == Map#Empty() || (exists v: V :: Map#Values(m)[v])); let empty_or_values_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern values m} m == emptymap \/ (exists v. {:pattern values m v } (values m) v) /// We represent the following Dafny axiom with `empty_or_items_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Items(m) } /// m == Map#Empty() || (exists k, v: Box :: Map#Items(m)[$Box(#_System._tuple#2._#Make2(k, v))])); let empty_or_items_occupied_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern items m} m == emptymap \/ (exists item. {:pattern items m item } (items m) item) /// We represent the following Dafny axiom with `map_cardinality_matches_domain_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Domain(m)) } /// Set#Card(Map#Domain(m)) == Map#Card(m)); let map_cardinality_matches_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern FSet.cardinality (domain m)} FSet.cardinality (domain m) = cardinality m /// We don't use the following Dafny axioms, which would require /// treating the values and items as finite sets, which we can't do /// because we want to allow non-eqtypes as values. /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Values(m)) } /// Set#Card(Map#Values(m)) <= Map#Card(m)); /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Items(m)) } /// Set#Card(Map#Items(m)) == Map#Card(m)); /// We represent the following Dafny axiom with `values_contains_fact`: /// /// axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] } /// Map#Values(m)[v] == /// (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] } /// Map#Domain(m)[u] && /// v == Map#Elements(m)[u])); let values_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (v: b).{:pattern (values m) v} (values m) v <==> (exists (u: a).{:pattern FSet.mem u (domain m) \/ ((elements m) u)} FSet.mem u (domain m) /\ (elements m) u == Some v) /// We represent the following Dafny axiom with `items_contains_fact`: /// /// axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] } /// Map#Items(m)[item] <==> /// Map#Domain(m)[_System.Tuple2._0($Unbox(item))] && /// Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item))); let items_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (item: a * b).{:pattern (items m) item} (items m) item <==> FSet.mem (fst item) (domain m) /\ (elements m) (fst item) == Some (snd item) /// We represent the following Dafny axiom with `empty_domain_empty_fact`: /// /// axiom (forall<U, V> u: U :: /// { Map#Domain(Map#Empty(): Map U V)[u] } /// !Map#Domain(Map#Empty(): Map U V)[u]); let empty_domain_empty_fact = forall (a: eqtype) (b: Type u#b) (u: a).{:pattern FSet.mem u (domain (emptymap #a #b))} not (FSet.mem u (domain (emptymap #a #b))) /// We represent the following Dafny axiom with `glue_domain_fact`: /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Domain(Map#Glue(a, b, t)) } /// Map#Domain(Map#Glue(a, b, t)) == a); let glue_domain_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern domain (glue keys f)} domain (glue keys f) == keys /// We represent the following Dafny axiom with `glue_elements_fact`. /// But we have to change it because our version of `Map#Elements` /// returns a map to an optional value. /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Elements(Map#Glue(a, b, t)) } /// Map#Elements(Map#Glue(a, b, t)) == b); let glue_elements_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f /// We don't need the following Dafny axiom since the type of `glue` implies it: /// /// axiom (forall a: [Box]bool, b: [Box]Box, t0, t1: Ty :: /// { Map#Glue(a, b, TMap(t0, t1)) } /// // In the following line, no trigger needed, since the quantifier only gets used in negative contexts /// (forall bx: Box :: a[bx] ==> $IsBox(bx, t0) && $IsBox(b[bx], t1)) /// ==> /// $Is(Map#Glue(a, b, TMap(t0, t1)), TMap(t0, t1))); /// We represent the following Dafny axiom with `insert_elements_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, u': U, v: V :: /// { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] } /// (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == v) && /// (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u'])); let insert_elements_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (key': a) (value: b). {:pattern FSet.mem key' (domain (insert key value m)) \/ ((elements (insert key value m)) key')} (key' = key ==> FSet.mem key' (domain (insert key value m)) /\ (elements (insert key value m)) key' == Some value) /\ (key' <> key ==> FSet.mem key' (domain (insert key value m)) = FSet.mem key' (domain m) /\ (elements (insert key value m)) key' == (elements m) key') /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m)); let insert_member_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} FSet.mem key (domain m) ==> cardinality (insert key value m) = cardinality m /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} not (FSet.mem key (domain m)) ==> cardinality (insert key value m) = cardinality m + 1 /// We represent the following Dafny axiom with `merge_domain_is_union_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V :: /// { Map#Domain(Map#Merge(m, n)) } /// Map#Domain(Map#Merge(m, n)) == Set#Union(Map#Domain(m), Map#Domain(n))); let merge_domain_is_union_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern domain (merge m1 m2)} domain (merge m1 m2) == FSet.union (domain m1) (domain m2) /// We represent the following Dafny axiom with `merge_element_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V, u: U :: /// { Map#Elements(Map#Merge(m, n))[u] } /// Map#Domain(Map#Merge(m, n))[u] ==> /// (!Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(m)[u]) && /// (Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(n)[u])); let merge_element_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b) (key: a).{:pattern (elements (merge m1 m2)) key} FSet.mem key (domain (merge m1 m2)) ==> (not (FSet.mem key (domain m2)) ==> FSet.mem key (domain m1) /\ (elements (merge m1 m2)) key == (elements m1) key) /\ (FSet.mem key (domain m2) ==> (elements (merge m1 m2)) key == (elements m2) key) /// We represent the following Dafny axiom with `subtract_domain_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U :: /// { Map#Domain(Map#Subtract(m, s)) } /// Map#Domain(Map#Subtract(m, s)) == Set#Difference(Map#Domain(m), s)); let subtract_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a).{:pattern domain (subtract m s)} domain (subtract m s) == FSet.difference (domain m) s /// We represent the following Dafny axiom with `subtract_element_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U, u: U :: /// { Map#Elements(Map#Subtract(m, s))[u] } /// Map#Domain(Map#Subtract(m, s))[u] ==> /// Map#Elements(Map#Subtract(m, s))[u] == Map#Elements(m)[u]); let subtract_element_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a) (key: a).{:pattern (elements (subtract m s)) key} FSet.mem key (domain (subtract m s)) ==> FSet.mem key (domain m) /\ (elements (subtract m s)) key == (elements m) key /// We represent the following Dafny axiom with `map_equal_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') <==> (forall u : U :: Map#Domain(m)[u] == Map#Domain(m')[u]) && /// (forall u : U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u])); let map_equal_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 <==> (forall key. FSet.mem key (domain m1) = FSet.mem key (domain m2)) /\ (forall key. FSet.mem key (domain m1) ==> (elements m1) key == (elements m2) key) /// We represent the following Dafny axiom with `map_extensionality_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') ==> m == m'); let map_extensionality_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 ==> m1 == m2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V :: /// { Map#Disjoint(m, m') } /// Map#Disjoint(m, m') <==> (forall o: U :: {Map#Domain(m)[o]} {Map#Domain(m')[o]} !Map#Domain(m)[o] || !Map#Domain(m')[o])); let disjoint_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern disjoint m1 m2} disjoint m1 m2 <==> (forall key.{:pattern FSet.mem key (domain m1) \/ FSet.mem key (domain m2)} not (FSet.mem key (domain m1)) || not (FSet.mem key (domain m2))) (** The predicate `all_finite_map_facts` collects all the Dafny finite-map axioms. One can bring all these facts into scope with `all_finite_map_facts_lemma ()`. **)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.FiniteSet.Base.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteMap.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.FiniteSet.Base", "short_module": "FSet" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_and", "FStar.FiniteMap.Base.cardinality_zero_iff_empty_fact", "FStar.FiniteMap.Base.empty_or_domain_occupied_fact", "FStar.FiniteMap.Base.empty_or_values_occupied_fact", "FStar.FiniteMap.Base.empty_or_items_occupied_fact", "FStar.FiniteMap.Base.map_cardinality_matches_domain_fact", "FStar.FiniteMap.Base.values_contains_fact", "FStar.FiniteMap.Base.items_contains_fact", "FStar.FiniteMap.Base.empty_domain_empty_fact", "FStar.FiniteMap.Base.glue_domain_fact", "FStar.FiniteMap.Base.glue_elements_fact", "FStar.FiniteMap.Base.insert_elements_fact", "FStar.FiniteMap.Base.insert_member_cardinality_fact", "FStar.FiniteMap.Base.insert_nonmember_cardinality_fact", "FStar.FiniteMap.Base.merge_domain_is_union_fact", "FStar.FiniteMap.Base.merge_element_fact", "FStar.FiniteMap.Base.subtract_domain_fact", "FStar.FiniteMap.Base.subtract_element_fact", "FStar.FiniteMap.Base.map_equal_fact", "FStar.FiniteMap.Base.map_extensionality_fact", "FStar.FiniteMap.Base.disjoint_fact" ]
[]
false
false
false
true
true
let all_finite_map_facts =
cardinality_zero_iff_empty_fact u#b /\ empty_or_domain_occupied_fact u#b /\ empty_or_values_occupied_fact u#b /\ empty_or_items_occupied_fact u#b /\ map_cardinality_matches_domain_fact u#b /\ values_contains_fact u#b /\ items_contains_fact u#b /\ empty_domain_empty_fact u#b /\ glue_domain_fact u#b /\ glue_elements_fact u#b /\ insert_elements_fact u#b /\ insert_member_cardinality_fact u#b /\ insert_nonmember_cardinality_fact u#b /\ merge_domain_is_union_fact u#b /\ merge_element_fact u#b /\ subtract_domain_fact u#b /\ subtract_element_fact u#b /\ map_equal_fact u#b /\ map_extensionality_fact u#b /\ disjoint_fact u#b
false
STLC.Core.fst
STLC.Core.close_exp_ln
val close_exp_ln (e: stlc_exp) (v: var) (n: nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)]
val close_exp_ln (e: stlc_exp) (v: var) (n: nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)]
let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 60, "end_line": 105, "start_col": 0, "start_line": 95 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> v: STLC.Core.var -> n: Prims.nat -> FStar.Pervasives.Lemma (requires STLC.Core.ln' e (n - 1)) (ensures STLC.Core.ln' (STLC.Core.close_exp' e v n) n) [SMTPat (STLC.Core.ln' (STLC.Core.close_exp' e v n) n)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "Prims.nat", "STLC.Core.index", "STLC.Core.stlc_ty", "STLC.Core.close_exp_ln", "Prims.op_Addition", "Prims.unit", "Prims.b2t", "STLC.Core.ln'", "Prims.op_Subtraction", "Prims.squash", "STLC.Core.close_exp'", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.bool", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec close_exp_ln (e: stlc_exp) (v: var) (n: nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] =
match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n
false
FStar.FiniteMap.Base.fsti
FStar.FiniteMap.Base.map_extensionality_fact
val map_extensionality_fact : Prims.logical
let map_extensionality_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 ==> m1 == m2
{ "file_name": "ulib/FStar.FiniteMap.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 28, "end_line": 422, "start_col": 0, "start_line": 420 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite maps as they're modeled in Dafny. @summary Type and functions for modeling finite maps *) module FStar.FiniteMap.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot module FSet = FStar.FiniteSet.Base type setfun_t (a: eqtype) (b: Type u#b) (s: FSet.set a) = f: (a ^-> option b){forall (key: a). FSet.mem key s == Some? (f key)} val map (a: eqtype) ([@@@ strictly_positive] b: Type u#b) : Type u#b (** We translate each Dafny sequence function prefixed with `Map#` into an F* function. **) /// We represent the Dafny function `Map#Domain` with `domain`: /// /// function Map#Domain<U,V>(Map U V) : Set U; val domain (#a: eqtype) (#b: Type u#b) (m: map a b) : FSet.set a /// We represent the Dafny function `Map#Elements` with `elements`: /// /// function Map#Elements<U,V>(Map U V) : [U]V; val elements (#a: eqtype) (#b: Type u#b) (m: map a b) : setfun_t a b (domain m) /// We represent the Dafny operator `in` on maps with `mem`: let mem (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) = FSet.mem key (domain m) /// We can convert a map to a list of pairs with `map_as_list`: let rec key_in_item_list (#a: eqtype) (#b: Type u#b) (key: a) (items: list (a * b)) : bool = match items with | [] -> false | (k, v) :: tl -> key = k || key_in_item_list key tl let rec item_list_doesnt_repeat_keys (#a: eqtype) (#b: Type u#b) (items: list (a * b)) : bool = match items with | [] -> true | (k, v) :: tl -> not (key_in_item_list k tl) && item_list_doesnt_repeat_keys tl val map_as_list (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (items: list (a * b){item_list_doesnt_repeat_keys items /\ (forall key. key_in_item_list key items <==> mem key m)}) /// We represent the Dafny operator [] on maps with `lookup`: let lookup (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b{mem key m}) : b = Some?.v ((elements m) key) /// We represent the Dafny function `Map#Card` with `cardinality`: /// /// function Map#Card<U,V>(Map U V) : int; val cardinality (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot nat /// We represent the Dafny function `Map#Values` with `values`: /// /// function Map#Values<U,V>(Map U V) : Set V; val values (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (b -> prop) /// We represent the Dafny function `Map#Items` with `items`: /// /// function Map#Items<U,V>(Map U V) : Set Box; val items (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot ((a * b) -> prop) /// We represent the Dafny function `Map#Empty` with `emptymap`: /// /// function Map#Empty<U, V>(): Map U V; val emptymap (#a: eqtype) (#b: Type u#b) : map a b /// We represent the Dafny function `Map#Glue` with `glue`. /// /// function Map#Glue<U, V>([U]bool, [U]V, Ty): Map U V; val glue (#a: eqtype) (#b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys) : map a b /// We represent the Dafny function `Map#Build` with `insert`: /// /// function Map#Build<U, V>(Map U V, U, V): Map U V; val insert (#a: eqtype) (#b: Type u#b) (k: a) (v: b) (m: map a b) : map a b /// We represent the Dafny function `Map#Merge` with `merge`: /// /// function Map#Merge<U, V>(Map U V, Map U V): Map U V; val merge (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : map a b /// We represent the Dafny function `Map#Subtract` with `subtract`: /// /// function Map#Subtract<U, V>(Map U V, Set U): Map U V; val subtract (#a: eqtype) (#b: Type u#b) (m: map a b) (s: FSet.set a) : map a b /// We represent the Dafny function `Map#Equal` with `equal`: /// /// function Map#Equal<U, V>(Map U V, Map U V): bool; val equal (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny function `Map#Disjoint` with `disjoint`: /// /// function Map#Disjoint<U, V>(Map U V, Map U V): bool; val disjoint (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (#b: Type u#b) (m: map a b{exists key. mem key m}) : GTot (key: a{mem key m}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : map a b = subtract m (FSet.singleton key) let notin (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : bool = not (mem key m) (** We translate each finite map axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); /// We represent the following Dafny axiom with `cardinality_zero_iff_empty_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Card(m) } /// Map#Card(m) == 0 <==> m == Map#Empty()); let cardinality_zero_iff_empty_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern cardinality m} cardinality m = 0 <==> m == emptymap /// We represent the following Dafny axiom with `empty_or_domain_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Domain(m) } /// m == Map#Empty() || (exists k: U :: Map#Domain(m)[k])); let empty_or_domain_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern domain m} m == emptymap \/ (exists k.{:pattern mem k m} mem k m) /// We represent the following Dafny axiom with `empty_or_values_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Values(m) } /// m == Map#Empty() || (exists v: V :: Map#Values(m)[v])); let empty_or_values_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern values m} m == emptymap \/ (exists v. {:pattern values m v } (values m) v) /// We represent the following Dafny axiom with `empty_or_items_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Items(m) } /// m == Map#Empty() || (exists k, v: Box :: Map#Items(m)[$Box(#_System._tuple#2._#Make2(k, v))])); let empty_or_items_occupied_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern items m} m == emptymap \/ (exists item. {:pattern items m item } (items m) item) /// We represent the following Dafny axiom with `map_cardinality_matches_domain_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Domain(m)) } /// Set#Card(Map#Domain(m)) == Map#Card(m)); let map_cardinality_matches_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern FSet.cardinality (domain m)} FSet.cardinality (domain m) = cardinality m /// We don't use the following Dafny axioms, which would require /// treating the values and items as finite sets, which we can't do /// because we want to allow non-eqtypes as values. /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Values(m)) } /// Set#Card(Map#Values(m)) <= Map#Card(m)); /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Items(m)) } /// Set#Card(Map#Items(m)) == Map#Card(m)); /// We represent the following Dafny axiom with `values_contains_fact`: /// /// axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] } /// Map#Values(m)[v] == /// (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] } /// Map#Domain(m)[u] && /// v == Map#Elements(m)[u])); let values_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (v: b).{:pattern (values m) v} (values m) v <==> (exists (u: a).{:pattern FSet.mem u (domain m) \/ ((elements m) u)} FSet.mem u (domain m) /\ (elements m) u == Some v) /// We represent the following Dafny axiom with `items_contains_fact`: /// /// axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] } /// Map#Items(m)[item] <==> /// Map#Domain(m)[_System.Tuple2._0($Unbox(item))] && /// Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item))); let items_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (item: a * b).{:pattern (items m) item} (items m) item <==> FSet.mem (fst item) (domain m) /\ (elements m) (fst item) == Some (snd item) /// We represent the following Dafny axiom with `empty_domain_empty_fact`: /// /// axiom (forall<U, V> u: U :: /// { Map#Domain(Map#Empty(): Map U V)[u] } /// !Map#Domain(Map#Empty(): Map U V)[u]); let empty_domain_empty_fact = forall (a: eqtype) (b: Type u#b) (u: a).{:pattern FSet.mem u (domain (emptymap #a #b))} not (FSet.mem u (domain (emptymap #a #b))) /// We represent the following Dafny axiom with `glue_domain_fact`: /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Domain(Map#Glue(a, b, t)) } /// Map#Domain(Map#Glue(a, b, t)) == a); let glue_domain_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern domain (glue keys f)} domain (glue keys f) == keys /// We represent the following Dafny axiom with `glue_elements_fact`. /// But we have to change it because our version of `Map#Elements` /// returns a map to an optional value. /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Elements(Map#Glue(a, b, t)) } /// Map#Elements(Map#Glue(a, b, t)) == b); let glue_elements_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f /// We don't need the following Dafny axiom since the type of `glue` implies it: /// /// axiom (forall a: [Box]bool, b: [Box]Box, t0, t1: Ty :: /// { Map#Glue(a, b, TMap(t0, t1)) } /// // In the following line, no trigger needed, since the quantifier only gets used in negative contexts /// (forall bx: Box :: a[bx] ==> $IsBox(bx, t0) && $IsBox(b[bx], t1)) /// ==> /// $Is(Map#Glue(a, b, TMap(t0, t1)), TMap(t0, t1))); /// We represent the following Dafny axiom with `insert_elements_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, u': U, v: V :: /// { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] } /// (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == v) && /// (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u'])); let insert_elements_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (key': a) (value: b). {:pattern FSet.mem key' (domain (insert key value m)) \/ ((elements (insert key value m)) key')} (key' = key ==> FSet.mem key' (domain (insert key value m)) /\ (elements (insert key value m)) key' == Some value) /\ (key' <> key ==> FSet.mem key' (domain (insert key value m)) = FSet.mem key' (domain m) /\ (elements (insert key value m)) key' == (elements m) key') /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m)); let insert_member_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} FSet.mem key (domain m) ==> cardinality (insert key value m) = cardinality m /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} not (FSet.mem key (domain m)) ==> cardinality (insert key value m) = cardinality m + 1 /// We represent the following Dafny axiom with `merge_domain_is_union_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V :: /// { Map#Domain(Map#Merge(m, n)) } /// Map#Domain(Map#Merge(m, n)) == Set#Union(Map#Domain(m), Map#Domain(n))); let merge_domain_is_union_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern domain (merge m1 m2)} domain (merge m1 m2) == FSet.union (domain m1) (domain m2) /// We represent the following Dafny axiom with `merge_element_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V, u: U :: /// { Map#Elements(Map#Merge(m, n))[u] } /// Map#Domain(Map#Merge(m, n))[u] ==> /// (!Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(m)[u]) && /// (Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(n)[u])); let merge_element_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b) (key: a).{:pattern (elements (merge m1 m2)) key} FSet.mem key (domain (merge m1 m2)) ==> (not (FSet.mem key (domain m2)) ==> FSet.mem key (domain m1) /\ (elements (merge m1 m2)) key == (elements m1) key) /\ (FSet.mem key (domain m2) ==> (elements (merge m1 m2)) key == (elements m2) key) /// We represent the following Dafny axiom with `subtract_domain_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U :: /// { Map#Domain(Map#Subtract(m, s)) } /// Map#Domain(Map#Subtract(m, s)) == Set#Difference(Map#Domain(m), s)); let subtract_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a).{:pattern domain (subtract m s)} domain (subtract m s) == FSet.difference (domain m) s /// We represent the following Dafny axiom with `subtract_element_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U, u: U :: /// { Map#Elements(Map#Subtract(m, s))[u] } /// Map#Domain(Map#Subtract(m, s))[u] ==> /// Map#Elements(Map#Subtract(m, s))[u] == Map#Elements(m)[u]); let subtract_element_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a) (key: a).{:pattern (elements (subtract m s)) key} FSet.mem key (domain (subtract m s)) ==> FSet.mem key (domain m) /\ (elements (subtract m s)) key == (elements m) key /// We represent the following Dafny axiom with `map_equal_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') <==> (forall u : U :: Map#Domain(m)[u] == Map#Domain(m')[u]) && /// (forall u : U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u])); let map_equal_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 <==> (forall key. FSet.mem key (domain m1) = FSet.mem key (domain m2)) /\ (forall key. FSet.mem key (domain m1) ==> (elements m1) key == (elements m2) key) /// We represent the following Dafny axiom with `map_extensionality_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') ==> m == m');
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.FiniteSet.Base.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteMap.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.FiniteSet.Base", "short_module": "FSet" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteMap.Base.map", "Prims.l_imp", "FStar.FiniteMap.Base.equal", "Prims.eq2" ]
[]
false
false
false
true
true
let map_extensionality_fact =
forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b). {:pattern equal m1 m2} equal m1 m2 ==> m1 == m2
false
FStar.FiniteMap.Base.fsti
FStar.FiniteMap.Base.subtract_domain_fact
val subtract_domain_fact : Prims.logical
let subtract_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a).{:pattern domain (subtract m s)} domain (subtract m s) == FSet.difference (domain m) s
{ "file_name": "ulib/FStar.FiniteMap.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 57, "end_line": 389, "start_col": 0, "start_line": 387 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite maps as they're modeled in Dafny. @summary Type and functions for modeling finite maps *) module FStar.FiniteMap.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot module FSet = FStar.FiniteSet.Base type setfun_t (a: eqtype) (b: Type u#b) (s: FSet.set a) = f: (a ^-> option b){forall (key: a). FSet.mem key s == Some? (f key)} val map (a: eqtype) ([@@@ strictly_positive] b: Type u#b) : Type u#b (** We translate each Dafny sequence function prefixed with `Map#` into an F* function. **) /// We represent the Dafny function `Map#Domain` with `domain`: /// /// function Map#Domain<U,V>(Map U V) : Set U; val domain (#a: eqtype) (#b: Type u#b) (m: map a b) : FSet.set a /// We represent the Dafny function `Map#Elements` with `elements`: /// /// function Map#Elements<U,V>(Map U V) : [U]V; val elements (#a: eqtype) (#b: Type u#b) (m: map a b) : setfun_t a b (domain m) /// We represent the Dafny operator `in` on maps with `mem`: let mem (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) = FSet.mem key (domain m) /// We can convert a map to a list of pairs with `map_as_list`: let rec key_in_item_list (#a: eqtype) (#b: Type u#b) (key: a) (items: list (a * b)) : bool = match items with | [] -> false | (k, v) :: tl -> key = k || key_in_item_list key tl let rec item_list_doesnt_repeat_keys (#a: eqtype) (#b: Type u#b) (items: list (a * b)) : bool = match items with | [] -> true | (k, v) :: tl -> not (key_in_item_list k tl) && item_list_doesnt_repeat_keys tl val map_as_list (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (items: list (a * b){item_list_doesnt_repeat_keys items /\ (forall key. key_in_item_list key items <==> mem key m)}) /// We represent the Dafny operator [] on maps with `lookup`: let lookup (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b{mem key m}) : b = Some?.v ((elements m) key) /// We represent the Dafny function `Map#Card` with `cardinality`: /// /// function Map#Card<U,V>(Map U V) : int; val cardinality (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot nat /// We represent the Dafny function `Map#Values` with `values`: /// /// function Map#Values<U,V>(Map U V) : Set V; val values (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (b -> prop) /// We represent the Dafny function `Map#Items` with `items`: /// /// function Map#Items<U,V>(Map U V) : Set Box; val items (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot ((a * b) -> prop) /// We represent the Dafny function `Map#Empty` with `emptymap`: /// /// function Map#Empty<U, V>(): Map U V; val emptymap (#a: eqtype) (#b: Type u#b) : map a b /// We represent the Dafny function `Map#Glue` with `glue`. /// /// function Map#Glue<U, V>([U]bool, [U]V, Ty): Map U V; val glue (#a: eqtype) (#b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys) : map a b /// We represent the Dafny function `Map#Build` with `insert`: /// /// function Map#Build<U, V>(Map U V, U, V): Map U V; val insert (#a: eqtype) (#b: Type u#b) (k: a) (v: b) (m: map a b) : map a b /// We represent the Dafny function `Map#Merge` with `merge`: /// /// function Map#Merge<U, V>(Map U V, Map U V): Map U V; val merge (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : map a b /// We represent the Dafny function `Map#Subtract` with `subtract`: /// /// function Map#Subtract<U, V>(Map U V, Set U): Map U V; val subtract (#a: eqtype) (#b: Type u#b) (m: map a b) (s: FSet.set a) : map a b /// We represent the Dafny function `Map#Equal` with `equal`: /// /// function Map#Equal<U, V>(Map U V, Map U V): bool; val equal (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny function `Map#Disjoint` with `disjoint`: /// /// function Map#Disjoint<U, V>(Map U V, Map U V): bool; val disjoint (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (#b: Type u#b) (m: map a b{exists key. mem key m}) : GTot (key: a{mem key m}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : map a b = subtract m (FSet.singleton key) let notin (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : bool = not (mem key m) (** We translate each finite map axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); /// We represent the following Dafny axiom with `cardinality_zero_iff_empty_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Card(m) } /// Map#Card(m) == 0 <==> m == Map#Empty()); let cardinality_zero_iff_empty_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern cardinality m} cardinality m = 0 <==> m == emptymap /// We represent the following Dafny axiom with `empty_or_domain_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Domain(m) } /// m == Map#Empty() || (exists k: U :: Map#Domain(m)[k])); let empty_or_domain_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern domain m} m == emptymap \/ (exists k.{:pattern mem k m} mem k m) /// We represent the following Dafny axiom with `empty_or_values_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Values(m) } /// m == Map#Empty() || (exists v: V :: Map#Values(m)[v])); let empty_or_values_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern values m} m == emptymap \/ (exists v. {:pattern values m v } (values m) v) /// We represent the following Dafny axiom with `empty_or_items_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Items(m) } /// m == Map#Empty() || (exists k, v: Box :: Map#Items(m)[$Box(#_System._tuple#2._#Make2(k, v))])); let empty_or_items_occupied_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern items m} m == emptymap \/ (exists item. {:pattern items m item } (items m) item) /// We represent the following Dafny axiom with `map_cardinality_matches_domain_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Domain(m)) } /// Set#Card(Map#Domain(m)) == Map#Card(m)); let map_cardinality_matches_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern FSet.cardinality (domain m)} FSet.cardinality (domain m) = cardinality m /// We don't use the following Dafny axioms, which would require /// treating the values and items as finite sets, which we can't do /// because we want to allow non-eqtypes as values. /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Values(m)) } /// Set#Card(Map#Values(m)) <= Map#Card(m)); /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Items(m)) } /// Set#Card(Map#Items(m)) == Map#Card(m)); /// We represent the following Dafny axiom with `values_contains_fact`: /// /// axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] } /// Map#Values(m)[v] == /// (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] } /// Map#Domain(m)[u] && /// v == Map#Elements(m)[u])); let values_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (v: b).{:pattern (values m) v} (values m) v <==> (exists (u: a).{:pattern FSet.mem u (domain m) \/ ((elements m) u)} FSet.mem u (domain m) /\ (elements m) u == Some v) /// We represent the following Dafny axiom with `items_contains_fact`: /// /// axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] } /// Map#Items(m)[item] <==> /// Map#Domain(m)[_System.Tuple2._0($Unbox(item))] && /// Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item))); let items_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (item: a * b).{:pattern (items m) item} (items m) item <==> FSet.mem (fst item) (domain m) /\ (elements m) (fst item) == Some (snd item) /// We represent the following Dafny axiom with `empty_domain_empty_fact`: /// /// axiom (forall<U, V> u: U :: /// { Map#Domain(Map#Empty(): Map U V)[u] } /// !Map#Domain(Map#Empty(): Map U V)[u]); let empty_domain_empty_fact = forall (a: eqtype) (b: Type u#b) (u: a).{:pattern FSet.mem u (domain (emptymap #a #b))} not (FSet.mem u (domain (emptymap #a #b))) /// We represent the following Dafny axiom with `glue_domain_fact`: /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Domain(Map#Glue(a, b, t)) } /// Map#Domain(Map#Glue(a, b, t)) == a); let glue_domain_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern domain (glue keys f)} domain (glue keys f) == keys /// We represent the following Dafny axiom with `glue_elements_fact`. /// But we have to change it because our version of `Map#Elements` /// returns a map to an optional value. /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Elements(Map#Glue(a, b, t)) } /// Map#Elements(Map#Glue(a, b, t)) == b); let glue_elements_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f /// We don't need the following Dafny axiom since the type of `glue` implies it: /// /// axiom (forall a: [Box]bool, b: [Box]Box, t0, t1: Ty :: /// { Map#Glue(a, b, TMap(t0, t1)) } /// // In the following line, no trigger needed, since the quantifier only gets used in negative contexts /// (forall bx: Box :: a[bx] ==> $IsBox(bx, t0) && $IsBox(b[bx], t1)) /// ==> /// $Is(Map#Glue(a, b, TMap(t0, t1)), TMap(t0, t1))); /// We represent the following Dafny axiom with `insert_elements_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, u': U, v: V :: /// { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] } /// (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == v) && /// (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u'])); let insert_elements_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (key': a) (value: b). {:pattern FSet.mem key' (domain (insert key value m)) \/ ((elements (insert key value m)) key')} (key' = key ==> FSet.mem key' (domain (insert key value m)) /\ (elements (insert key value m)) key' == Some value) /\ (key' <> key ==> FSet.mem key' (domain (insert key value m)) = FSet.mem key' (domain m) /\ (elements (insert key value m)) key' == (elements m) key') /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m)); let insert_member_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} FSet.mem key (domain m) ==> cardinality (insert key value m) = cardinality m /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} not (FSet.mem key (domain m)) ==> cardinality (insert key value m) = cardinality m + 1 /// We represent the following Dafny axiom with `merge_domain_is_union_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V :: /// { Map#Domain(Map#Merge(m, n)) } /// Map#Domain(Map#Merge(m, n)) == Set#Union(Map#Domain(m), Map#Domain(n))); let merge_domain_is_union_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern domain (merge m1 m2)} domain (merge m1 m2) == FSet.union (domain m1) (domain m2) /// We represent the following Dafny axiom with `merge_element_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V, u: U :: /// { Map#Elements(Map#Merge(m, n))[u] } /// Map#Domain(Map#Merge(m, n))[u] ==> /// (!Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(m)[u]) && /// (Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(n)[u])); let merge_element_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b) (key: a).{:pattern (elements (merge m1 m2)) key} FSet.mem key (domain (merge m1 m2)) ==> (not (FSet.mem key (domain m2)) ==> FSet.mem key (domain m1) /\ (elements (merge m1 m2)) key == (elements m1) key) /\ (FSet.mem key (domain m2) ==> (elements (merge m1 m2)) key == (elements m2) key) /// We represent the following Dafny axiom with `subtract_domain_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U :: /// { Map#Domain(Map#Subtract(m, s)) } /// Map#Domain(Map#Subtract(m, s)) == Set#Difference(Map#Domain(m), s));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.FiniteSet.Base.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteMap.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.FiniteSet.Base", "short_module": "FSet" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteMap.Base.map", "FStar.FiniteSet.Base.set", "Prims.eq2", "FStar.FiniteMap.Base.domain", "FStar.FiniteMap.Base.subtract", "FStar.FiniteSet.Base.difference" ]
[]
false
false
false
true
true
let subtract_domain_fact =
forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a). {:pattern domain (subtract m s)} domain (subtract m s) == FSet.difference (domain m) s
false
FStar.FiniteMap.Base.fsti
FStar.FiniteMap.Base.disjoint_fact
val disjoint_fact : Prims.logical
let disjoint_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern disjoint m1 m2} disjoint m1 m2 <==> (forall key.{:pattern FSet.mem key (domain m1) \/ FSet.mem key (domain m2)} not (FSet.mem key (domain m1)) || not (FSet.mem key (domain m2)))
{ "file_name": "ulib/FStar.FiniteMap.Base.fsti", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 91, "end_line": 433, "start_col": 0, "start_line": 430 }
(* Copyright 2008-2021 John Li, Jay Lorch, Rustan Leino, Alex Summers, Dan Rosen, Nikhil Swamy, Microsoft Research, and contributors to the Dafny Project Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Includes material from the Dafny project (https://github.com/dafny-lang/dafny) which carries this license information: Created 9 February 2008 by Rustan Leino. Converted to Boogie 2 on 28 June 2008. Edited sequence axioms 20 October 2009 by Alex Summers. Modified 2014 by Dan Rosen. Copyright (c) 2008-2014, Microsoft. Copyright by the contributors to the Dafny Project SPDX-License-Identifier: MIT *) (** This module declares a type and functions used for modeling finite maps as they're modeled in Dafny. @summary Type and functions for modeling finite maps *) module FStar.FiniteMap.Base open FStar.FunctionalExtensionality module FLT = FStar.List.Tot module FSet = FStar.FiniteSet.Base type setfun_t (a: eqtype) (b: Type u#b) (s: FSet.set a) = f: (a ^-> option b){forall (key: a). FSet.mem key s == Some? (f key)} val map (a: eqtype) ([@@@ strictly_positive] b: Type u#b) : Type u#b (** We translate each Dafny sequence function prefixed with `Map#` into an F* function. **) /// We represent the Dafny function `Map#Domain` with `domain`: /// /// function Map#Domain<U,V>(Map U V) : Set U; val domain (#a: eqtype) (#b: Type u#b) (m: map a b) : FSet.set a /// We represent the Dafny function `Map#Elements` with `elements`: /// /// function Map#Elements<U,V>(Map U V) : [U]V; val elements (#a: eqtype) (#b: Type u#b) (m: map a b) : setfun_t a b (domain m) /// We represent the Dafny operator `in` on maps with `mem`: let mem (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) = FSet.mem key (domain m) /// We can convert a map to a list of pairs with `map_as_list`: let rec key_in_item_list (#a: eqtype) (#b: Type u#b) (key: a) (items: list (a * b)) : bool = match items with | [] -> false | (k, v) :: tl -> key = k || key_in_item_list key tl let rec item_list_doesnt_repeat_keys (#a: eqtype) (#b: Type u#b) (items: list (a * b)) : bool = match items with | [] -> true | (k, v) :: tl -> not (key_in_item_list k tl) && item_list_doesnt_repeat_keys tl val map_as_list (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (items: list (a * b){item_list_doesnt_repeat_keys items /\ (forall key. key_in_item_list key items <==> mem key m)}) /// We represent the Dafny operator [] on maps with `lookup`: let lookup (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b{mem key m}) : b = Some?.v ((elements m) key) /// We represent the Dafny function `Map#Card` with `cardinality`: /// /// function Map#Card<U,V>(Map U V) : int; val cardinality (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot nat /// We represent the Dafny function `Map#Values` with `values`: /// /// function Map#Values<U,V>(Map U V) : Set V; val values (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot (b -> prop) /// We represent the Dafny function `Map#Items` with `items`: /// /// function Map#Items<U,V>(Map U V) : Set Box; val items (#a: eqtype) (#b: Type u#b) (m: map a b) : GTot ((a * b) -> prop) /// We represent the Dafny function `Map#Empty` with `emptymap`: /// /// function Map#Empty<U, V>(): Map U V; val emptymap (#a: eqtype) (#b: Type u#b) : map a b /// We represent the Dafny function `Map#Glue` with `glue`. /// /// function Map#Glue<U, V>([U]bool, [U]V, Ty): Map U V; val glue (#a: eqtype) (#b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys) : map a b /// We represent the Dafny function `Map#Build` with `insert`: /// /// function Map#Build<U, V>(Map U V, U, V): Map U V; val insert (#a: eqtype) (#b: Type u#b) (k: a) (v: b) (m: map a b) : map a b /// We represent the Dafny function `Map#Merge` with `merge`: /// /// function Map#Merge<U, V>(Map U V, Map U V): Map U V; val merge (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : map a b /// We represent the Dafny function `Map#Subtract` with `subtract`: /// /// function Map#Subtract<U, V>(Map U V, Set U): Map U V; val subtract (#a: eqtype) (#b: Type u#b) (m: map a b) (s: FSet.set a) : map a b /// We represent the Dafny function `Map#Equal` with `equal`: /// /// function Map#Equal<U, V>(Map U V, Map U V): bool; val equal (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny function `Map#Disjoint` with `disjoint`: /// /// function Map#Disjoint<U, V>(Map U V, Map U V): bool; val disjoint (#a: eqtype) (#b: Type u#b) (m1: map a b) (m2: map a b) : prop /// We represent the Dafny choice operator by `choose`: /// /// var x: T :| x in s; val choose (#a: eqtype) (#b: Type u#b) (m: map a b{exists key. mem key m}) : GTot (key: a{mem key m}) /// We add the utility functions `remove` and `notin`: let remove (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : map a b = subtract m (FSet.singleton key) let notin (#a: eqtype) (#b: Type u#b) (key: a) (m: map a b) : bool = not (mem key m) (** We translate each finite map axiom from the Dafny prelude into an F* predicate ending in `_fact`. **) /// We don't need the following axiom since we return a nat from cardinality: /// /// axiom (forall<U,V> m: Map U V :: { Map#Card(m) } 0 <= Map#Card(m)); /// We represent the following Dafny axiom with `cardinality_zero_iff_empty_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Card(m) } /// Map#Card(m) == 0 <==> m == Map#Empty()); let cardinality_zero_iff_empty_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern cardinality m} cardinality m = 0 <==> m == emptymap /// We represent the following Dafny axiom with `empty_or_domain_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Domain(m) } /// m == Map#Empty() || (exists k: U :: Map#Domain(m)[k])); let empty_or_domain_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern domain m} m == emptymap \/ (exists k.{:pattern mem k m} mem k m) /// We represent the following Dafny axiom with `empty_or_values_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Values(m) } /// m == Map#Empty() || (exists v: V :: Map#Values(m)[v])); let empty_or_values_occupied_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern values m} m == emptymap \/ (exists v. {:pattern values m v } (values m) v) /// We represent the following Dafny axiom with `empty_or_items_occupied_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Map#Items(m) } /// m == Map#Empty() || (exists k, v: Box :: Map#Items(m)[$Box(#_System._tuple#2._#Make2(k, v))])); let empty_or_items_occupied_fact = forall (a: eqtype) (b:Type u#b) (m: map a b).{:pattern items m} m == emptymap \/ (exists item. {:pattern items m item } (items m) item) /// We represent the following Dafny axiom with `map_cardinality_matches_domain_fact`: /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Domain(m)) } /// Set#Card(Map#Domain(m)) == Map#Card(m)); let map_cardinality_matches_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b).{:pattern FSet.cardinality (domain m)} FSet.cardinality (domain m) = cardinality m /// We don't use the following Dafny axioms, which would require /// treating the values and items as finite sets, which we can't do /// because we want to allow non-eqtypes as values. /// /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Values(m)) } /// Set#Card(Map#Values(m)) <= Map#Card(m)); /// axiom (forall<U, V> m: Map U V :: /// { Set#Card(Map#Items(m)) } /// Set#Card(Map#Items(m)) == Map#Card(m)); /// We represent the following Dafny axiom with `values_contains_fact`: /// /// axiom (forall<U,V> m: Map U V, v: V :: { Map#Values(m)[v] } /// Map#Values(m)[v] == /// (exists u: U :: { Map#Domain(m)[u] } { Map#Elements(m)[u] } /// Map#Domain(m)[u] && /// v == Map#Elements(m)[u])); let values_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (v: b).{:pattern (values m) v} (values m) v <==> (exists (u: a).{:pattern FSet.mem u (domain m) \/ ((elements m) u)} FSet.mem u (domain m) /\ (elements m) u == Some v) /// We represent the following Dafny axiom with `items_contains_fact`: /// /// axiom (forall m: Map Box Box, item: Box :: { Map#Items(m)[item] } /// Map#Items(m)[item] <==> /// Map#Domain(m)[_System.Tuple2._0($Unbox(item))] && /// Map#Elements(m)[_System.Tuple2._0($Unbox(item))] == _System.Tuple2._1($Unbox(item))); let items_contains_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (item: a * b).{:pattern (items m) item} (items m) item <==> FSet.mem (fst item) (domain m) /\ (elements m) (fst item) == Some (snd item) /// We represent the following Dafny axiom with `empty_domain_empty_fact`: /// /// axiom (forall<U, V> u: U :: /// { Map#Domain(Map#Empty(): Map U V)[u] } /// !Map#Domain(Map#Empty(): Map U V)[u]); let empty_domain_empty_fact = forall (a: eqtype) (b: Type u#b) (u: a).{:pattern FSet.mem u (domain (emptymap #a #b))} not (FSet.mem u (domain (emptymap #a #b))) /// We represent the following Dafny axiom with `glue_domain_fact`: /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Domain(Map#Glue(a, b, t)) } /// Map#Domain(Map#Glue(a, b, t)) == a); let glue_domain_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern domain (glue keys f)} domain (glue keys f) == keys /// We represent the following Dafny axiom with `glue_elements_fact`. /// But we have to change it because our version of `Map#Elements` /// returns a map to an optional value. /// /// axiom (forall<U, V> a: [U]bool, b: [U]V, t: Ty :: /// { Map#Elements(Map#Glue(a, b, t)) } /// Map#Elements(Map#Glue(a, b, t)) == b); let glue_elements_fact = forall (a: eqtype) (b: Type u#b) (keys: FSet.set a) (f: setfun_t a b keys).{:pattern elements (glue keys f)} domain (glue keys f) == keys /\ elements (glue keys f) == f /// We don't need the following Dafny axiom since the type of `glue` implies it: /// /// axiom (forall a: [Box]bool, b: [Box]Box, t0, t1: Ty :: /// { Map#Glue(a, b, TMap(t0, t1)) } /// // In the following line, no trigger needed, since the quantifier only gets used in negative contexts /// (forall bx: Box :: a[bx] ==> $IsBox(bx, t0) && $IsBox(b[bx], t1)) /// ==> /// $Is(Map#Glue(a, b, TMap(t0, t1)), TMap(t0, t1))); /// We represent the following Dafny axiom with `insert_elements_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, u': U, v: V :: /// { Map#Domain(Map#Build(m, u, v))[u'] } { Map#Elements(Map#Build(m, u, v))[u'] } /// (u' == u ==> Map#Domain(Map#Build(m, u, v))[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == v) && /// (u' != u ==> Map#Domain(Map#Build(m, u, v))[u'] == Map#Domain(m)[u'] && /// Map#Elements(Map#Build(m, u, v))[u'] == Map#Elements(m)[u'])); let insert_elements_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (key': a) (value: b). {:pattern FSet.mem key' (domain (insert key value m)) \/ ((elements (insert key value m)) key')} (key' = key ==> FSet.mem key' (domain (insert key value m)) /\ (elements (insert key value m)) key' == Some value) /\ (key' <> key ==> FSet.mem key' (domain (insert key value m)) = FSet.mem key' (domain m) /\ (elements (insert key value m)) key' == (elements m) key') /// We represent the following Dafny axiom with `insert_member_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m)); let insert_member_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} FSet.mem key (domain m) ==> cardinality (insert key value m) = cardinality m /// We represent the following Dafny axiom with `insert_nonmember_cardinality_fact`: /// /// axiom (forall<U, V> m: Map U V, u: U, v: V :: { Map#Card(Map#Build(m, u, v)) } /// !Map#Domain(m)[u] ==> Map#Card(Map#Build(m, u, v)) == Map#Card(m) + 1); let insert_nonmember_cardinality_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (key: a) (value: b).{:pattern cardinality (insert key value m)} not (FSet.mem key (domain m)) ==> cardinality (insert key value m) = cardinality m + 1 /// We represent the following Dafny axiom with `merge_domain_is_union_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V :: /// { Map#Domain(Map#Merge(m, n)) } /// Map#Domain(Map#Merge(m, n)) == Set#Union(Map#Domain(m), Map#Domain(n))); let merge_domain_is_union_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern domain (merge m1 m2)} domain (merge m1 m2) == FSet.union (domain m1) (domain m2) /// We represent the following Dafny axiom with `merge_element_fact`: /// /// axiom (forall<U, V> m: Map U V, n: Map U V, u: U :: /// { Map#Elements(Map#Merge(m, n))[u] } /// Map#Domain(Map#Merge(m, n))[u] ==> /// (!Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(m)[u]) && /// (Map#Domain(n)[u] ==> Map#Elements(Map#Merge(m, n))[u] == Map#Elements(n)[u])); let merge_element_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b) (key: a).{:pattern (elements (merge m1 m2)) key} FSet.mem key (domain (merge m1 m2)) ==> (not (FSet.mem key (domain m2)) ==> FSet.mem key (domain m1) /\ (elements (merge m1 m2)) key == (elements m1) key) /\ (FSet.mem key (domain m2) ==> (elements (merge m1 m2)) key == (elements m2) key) /// We represent the following Dafny axiom with `subtract_domain_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U :: /// { Map#Domain(Map#Subtract(m, s)) } /// Map#Domain(Map#Subtract(m, s)) == Set#Difference(Map#Domain(m), s)); let subtract_domain_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a).{:pattern domain (subtract m s)} domain (subtract m s) == FSet.difference (domain m) s /// We represent the following Dafny axiom with `subtract_element_fact`: /// /// axiom (forall<U, V> m: Map U V, s: Set U, u: U :: /// { Map#Elements(Map#Subtract(m, s))[u] } /// Map#Domain(Map#Subtract(m, s))[u] ==> /// Map#Elements(Map#Subtract(m, s))[u] == Map#Elements(m)[u]); let subtract_element_fact = forall (a: eqtype) (b: Type u#b) (m: map a b) (s: FSet.set a) (key: a).{:pattern (elements (subtract m s)) key} FSet.mem key (domain (subtract m s)) ==> FSet.mem key (domain m) /\ (elements (subtract m s)) key == (elements m) key /// We represent the following Dafny axiom with `map_equal_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') <==> (forall u : U :: Map#Domain(m)[u] == Map#Domain(m')[u]) && /// (forall u : U :: Map#Domain(m)[u] ==> Map#Elements(m)[u] == Map#Elements(m')[u])); let map_equal_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 <==> (forall key. FSet.mem key (domain m1) = FSet.mem key (domain m2)) /\ (forall key. FSet.mem key (domain m1) ==> (elements m1) key == (elements m2) key) /// We represent the following Dafny axiom with `map_extensionality_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V:: /// { Map#Equal(m, m') } /// Map#Equal(m, m') ==> m == m'); let map_extensionality_fact = forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b).{:pattern equal m1 m2} equal m1 m2 ==> m1 == m2 /// We represent the following Dafny axiom with `disjoint_fact`: /// /// axiom (forall<U, V> m: Map U V, m': Map U V :: /// { Map#Disjoint(m, m') } /// Map#Disjoint(m, m') <==> (forall o: U :: {Map#Domain(m)[o]} {Map#Domain(m')[o]} !Map#Domain(m)[o] || !Map#Domain(m')[o]));
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.fst.checked", "FStar.FunctionalExtensionality.fsti.checked", "FStar.FiniteSet.Base.fsti.checked" ], "interface_file": false, "source_file": "FStar.FiniteMap.Base.fsti" }
[ { "abbrev": true, "full_module": "FStar.FiniteSet.Base", "short_module": "FSet" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "FLT" }, { "abbrev": false, "full_module": "FStar.FunctionalExtensionality", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.FiniteMap", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Prims.l_Forall", "Prims.eqtype", "FStar.FiniteMap.Base.map", "Prims.l_iff", "FStar.FiniteMap.Base.disjoint", "Prims.b2t", "Prims.op_BarBar", "Prims.op_Negation", "FStar.FiniteSet.Base.mem", "FStar.FiniteMap.Base.domain" ]
[]
false
false
false
true
true
let disjoint_fact =
forall (a: eqtype) (b: Type u#b) (m1: map a b) (m2: map a b). {:pattern disjoint m1 m2} disjoint m1 m2 <==> (forall key. {:pattern FSet.mem key (domain m1)\/FSet.mem key (domain m2)} not (FSet.mem key (domain m1)) || not (FSet.mem key (domain m2)))
false
EverParse3d.Prelude.fst
EverParse3d.Prelude.parse_nlist_total_fixed_size_aux
val parse_nlist_total_fixed_size_aux (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: _) (p: parser k t) (x: LP.bytes) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n)) (ensures (Some? (LP.parse (parse_nlist n p) x)))
val parse_nlist_total_fixed_size_aux (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: _) (p: parser k t) (x: LP.bytes) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n)) (ensures (Some? (LP.parse (parse_nlist n p) x)))
let parse_nlist_total_fixed_size_aux (n:U32.t) (#wk: _) (#k:parser_kind true wk) #t (p:parser k t) (x: LP.bytes) : Lemma (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n )) (ensures ( Some? (LP.parse (parse_nlist n p) x) )) = let x' = Seq.slice x 0 (U32.v n) in let cnt = (U32.v n / k.LP.parser_kind_low) in FStar.Math.Lemmas.lemma_div_exact (U32.v n) k.LP.parser_kind_low; FStar.Math.Lemmas.nat_over_pos_is_nat (U32.v n) k.LP.parser_kind_low; LowParse.Spec.List.parse_list_total_constant_size p cnt x'; LP.parser_kind_prop_equiv LowParse.Spec.List.parse_list_kind (LowParse.Spec.List.parse_list p)
{ "file_name": "src/3d/prelude/EverParse3d.Prelude.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 96, "end_line": 202, "start_col": 0, "start_line": 182 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Prelude friend EverParse3d.Kinds module BF = LowParse.BitFields module LP = LowParse.Spec.Base module LPC = LowParse.Spec.Combinators module LPL = LowParse.Low.Base module LPLC = LowParse.Low.Combinators module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 //////////////////////////////////////////////////////////////////////////////// // Parsers //////////////////////////////////////////////////////////////////////////////// let parser k t = LP.parser k t let is_weaker_than #nz1 #wk1 (k:parser_kind nz1 wk1) #nz2 #wk2 (k':parser_kind nz2 wk2) = k `LP.is_weaker_than` k' let is_weaker_than_refl #nz #wk (k:parser_kind nz wk) : Lemma (ensures (is_weaker_than k k)) [SMTPat (is_weaker_than k k)] = () let is_weaker_than_glb #nz1 #wk1 (k1:parser_kind nz1 wk1) #nz2 #wk2 (k2:parser_kind nz2 wk2) : Lemma (is_weaker_than (glb k1 k2) k1 /\ is_weaker_than (glb k1 k2) k2) [SMTPatOr [[SMTPat (is_weaker_than (glb k1 k2) k1)]; [SMTPat (is_weaker_than (glb k1 k2) k2)]]] = () /// Parser: return inline_for_extraction noextract let parse_ret #t (v:t) : Tot (parser ret_kind t) = LPC.parse_ret #t v /// Parser: bind inline_for_extraction noextract let parse_dep_pair p1 p2 = LPC.parse_dtuple2 p1 p2 /// Parser: sequencing inline_for_extraction noextract let parse_pair p1 p2 = LPC.nondep_then p1 p2 /// Parser: map let injective_map a b = (a -> Tot b) //{LPC.synth_injective f} inline_for_extraction noextract let parse_filter p f = LPC.parse_filter p f /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken #nz #wk (#k:parser_kind nz wk) #t (p:parser k t) #nz' #wk' (k':parser_kind nz' wk' {k' `is_weaker_than` k}) : Tot (parser k' t) = LP.weaken k' p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_left #nz #wk #k p k' = LP.weaken (glb k' k) p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_right #nz #wk #k p k' = LP.weaken (glb k k') p /// Parser: unreachable, for default cases of exhaustive pattern matching inline_for_extraction noextract let parse_impos () : parser impos_kind False = let p : LP.bare_parser False = fun b -> None in LP.parser_kind_prop_equiv impos_kind p; p let parse_ite e p1 p2 = if e then p1 () else p2 () let nlist (n:U32.t) (t:Type) = list t inline_for_extraction noextract let parse_nlist n #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix #(parse_fldata_kind (U32.v n) parse_list_kind) #(list t) (LowParse.Spec.FLData.parse_fldata (LowParse.Spec.List.parse_list p) (U32.v n)) #false kind_nlist let all_bytes = Seq.seq LP.byte let parse_all_bytes' : LP.bare_parser all_bytes = fun input -> Some (input, (Seq.length input <: LP.consumed_length input)) let parse_all_bytes = LP.parser_kind_prop_equiv kind_all_bytes parse_all_bytes'; parse_all_bytes' //////////////////////////////////////////////////////////////////////////////// module B32 = FStar.Bytes let t_at_most (n:U32.t) (t:Type) = t & all_bytes inline_for_extraction noextract let parse_t_at_most n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata (LPC.nondep_then p parse_all_bytes) (U32.v n)) #false kind_t_at_most //////////////////////////////////////////////////////////////////////////////// let t_exact (n:U32.t) (t:Type) = t inline_for_extraction noextract let parse_t_exact n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata p (U32.v n)) #false kind_t_exact //////////////////////////////////////////////////////////////////////////////// // Readers //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let reader p = LPLC.leaf_reader p inline_for_extraction noextract let read_filter p32 f = LPLC.read_filter p32 f let read_impos : reader (parse_impos()) = fun #rrel #rel sl pos -> let h = FStar.HyperStack.ST.get() in assert (LPLC.valid (parse_impos()) h sl pos); LowParse.Low.Base.Spec.valid_equiv (parse_impos()) h sl pos; false_elim () // //////////////////////////////////////////////////////////////////////////////// // // Validators // //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let validator #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator #k #t p inline_for_extraction noextract let validator_no_read #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator_no_read #k #t p
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Spec.List.fsti.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.FLData.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.Combinators.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "LowParse.Low.Base.Spec.fsti.checked", "LowParse.Low.Base.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked", "EverParse3d.Kinds.fst.checked" ], "interface_file": true, "source_file": "EverParse3d.Prelude.fst" }
[ { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "LowParse.Low.Combinators", "short_module": "LPLC" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LPL" }, { "abbrev": true, "full_module": "LowParse.Spec.Combinators", "short_module": "LPC" }, { "abbrev": true, "full_module": "LowParse.Spec.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Range", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Kinds", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Prelude.StaticHeader", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: FStar.UInt32.t -> p: EverParse3d.Prelude.parser k t -> x: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (requires Mkparser_kind'?.parser_kind_subkind k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ Mkparser_kind'?.parser_kind_high k == FStar.Pervasives.Native.Some (Mkparser_kind'?.parser_kind_low k) /\ FStar.UInt32.v n % Mkparser_kind'?.parser_kind_low k == 0 /\ Mkparser_kind'?.parser_kind_metadata k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserKindMetadataTotal /\ FStar.Seq.Base.length x >= FStar.UInt32.v n) (ensures Some? (LowParse.Spec.Base.parse (EverParse3d.Prelude.parse_nlist n p) x))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt32.t", "EverParse3d.Kinds.weak_kind", "EverParse3d.Kinds.parser_kind", "EverParse3d.Prelude.parser", "LowParse.Bytes.bytes", "LowParse.Spec.Base.parser_kind_prop_equiv", "Prims.list", "LowParse.Spec.List.parse_list_kind", "LowParse.Spec.List.parse_list", "Prims.unit", "LowParse.Spec.List.parse_list_total_constant_size", "FStar.Math.Lemmas.nat_over_pos_is_nat", "FStar.UInt32.v", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "FStar.Math.Lemmas.lemma_div_exact", "Prims.int", "Prims.op_Division", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.nat", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "Prims.op_Modulus", "LowParse.Spec.Base.parser_kind_metadata_some", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_metadata", "LowParse.Spec.Base.ParserKindMetadataTotal", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "Prims.squash", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "EverParse3d.Prelude.nlist", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "EverParse3d.Prelude.parse_nlist", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let parse_nlist_total_fixed_size_aux (n: U32.t) (#wk: _) (#k: parser_kind true wk) #t (p: parser k t) (x: LP.bytes) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n)) (ensures (Some? (LP.parse (parse_nlist n p) x))) =
let x' = Seq.slice x 0 (U32.v n) in let cnt = (U32.v n / k.LP.parser_kind_low) in FStar.Math.Lemmas.lemma_div_exact (U32.v n) k.LP.parser_kind_low; FStar.Math.Lemmas.nat_over_pos_is_nat (U32.v n) k.LP.parser_kind_low; LowParse.Spec.List.parse_list_total_constant_size p cnt x'; LP.parser_kind_prop_equiv LowParse.Spec.List.parse_list_kind (LowParse.Spec.List.parse_list p)
false
STLC.Core.fst
STLC.Core.open_exp'
val open_exp' (e: stlc_exp) (v: var) (n: index) : e': stlc_exp{size e == size e'}
val open_exp' (e: stlc_exp) (v: var) (n: index) : e': stlc_exp{size e == size e'}
let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n)
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 62, "end_line": 49, "start_col": 0, "start_line": 42 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> v: STLC.Core.var -> n: STLC.Core.index -> e': STLC.Core.stlc_exp{STLC.Core.size e == STLC.Core.size e'}
Prims.Tot
[ "total" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "STLC.Core.index", "STLC.Core.EUnit", "STLC.Core.EVar", "Prims.op_Equality", "Prims.bool", "STLC.Core.EBVar", "Prims.eq2", "Prims.nat", "STLC.Core.size", "STLC.Core.stlc_ty", "STLC.Core.ELam", "STLC.Core.open_exp'", "Prims.op_Addition", "STLC.Core.EApp" ]
[ "recursion" ]
false
false
false
false
false
let rec open_exp' (e: stlc_exp) (v: var) (n: index) : e': stlc_exp{size e == size e'} =
match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n)
false
STLC.Core.fst
STLC.Core.lookup
val lookup (e: list (var & 'a)) (x: var) : option 'a
val lookup (e: list (var & 'a)) (x: var) : option 'a
let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 15, "end_line": 143, "start_col": 0, "start_line": 141 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Prims.list (STLC.Core.var * 'a) -> x: STLC.Core.var -> FStar.Pervasives.Native.option 'a
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "FStar.List.Tot.Base.assoc", "FStar.Pervasives.Native.option" ]
[]
false
false
false
true
false
let lookup (e: list (var & 'a)) (x: var) : option 'a =
L.assoc x e
false
EverParse3d.Prelude.fst
EverParse3d.Prelude.parse_nlist_total_fixed_size_kind_correct
val parse_nlist_total_fixed_size_kind_correct (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: _) (p: parser k t) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures (LP.parser_kind_prop (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)))
val parse_nlist_total_fixed_size_kind_correct (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: _) (p: parser k t) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures (LP.parser_kind_prop (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)))
let parse_nlist_total_fixed_size_kind_correct (n:U32.t) (#wk: _) (#k:parser_kind true wk) #t (p:parser k t) : Lemma (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures ( LP.parser_kind_prop (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p) )) = LP.parser_kind_prop_equiv (LowParse.Spec.FLData.parse_fldata_kind (U32.v n) LowParse.Spec.List.parse_list_kind) (parse_nlist n p); LP.parser_kind_prop_equiv (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p); Classical.forall_intro (Classical.move_requires (parse_nlist_total_fixed_size_aux n p))
{ "file_name": "src/3d/prelude/EverParse3d.Prelude.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 89, "end_line": 219, "start_col": 0, "start_line": 204 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Prelude friend EverParse3d.Kinds module BF = LowParse.BitFields module LP = LowParse.Spec.Base module LPC = LowParse.Spec.Combinators module LPL = LowParse.Low.Base module LPLC = LowParse.Low.Combinators module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 //////////////////////////////////////////////////////////////////////////////// // Parsers //////////////////////////////////////////////////////////////////////////////// let parser k t = LP.parser k t let is_weaker_than #nz1 #wk1 (k:parser_kind nz1 wk1) #nz2 #wk2 (k':parser_kind nz2 wk2) = k `LP.is_weaker_than` k' let is_weaker_than_refl #nz #wk (k:parser_kind nz wk) : Lemma (ensures (is_weaker_than k k)) [SMTPat (is_weaker_than k k)] = () let is_weaker_than_glb #nz1 #wk1 (k1:parser_kind nz1 wk1) #nz2 #wk2 (k2:parser_kind nz2 wk2) : Lemma (is_weaker_than (glb k1 k2) k1 /\ is_weaker_than (glb k1 k2) k2) [SMTPatOr [[SMTPat (is_weaker_than (glb k1 k2) k1)]; [SMTPat (is_weaker_than (glb k1 k2) k2)]]] = () /// Parser: return inline_for_extraction noextract let parse_ret #t (v:t) : Tot (parser ret_kind t) = LPC.parse_ret #t v /// Parser: bind inline_for_extraction noextract let parse_dep_pair p1 p2 = LPC.parse_dtuple2 p1 p2 /// Parser: sequencing inline_for_extraction noextract let parse_pair p1 p2 = LPC.nondep_then p1 p2 /// Parser: map let injective_map a b = (a -> Tot b) //{LPC.synth_injective f} inline_for_extraction noextract let parse_filter p f = LPC.parse_filter p f /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken #nz #wk (#k:parser_kind nz wk) #t (p:parser k t) #nz' #wk' (k':parser_kind nz' wk' {k' `is_weaker_than` k}) : Tot (parser k' t) = LP.weaken k' p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_left #nz #wk #k p k' = LP.weaken (glb k' k) p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_right #nz #wk #k p k' = LP.weaken (glb k k') p /// Parser: unreachable, for default cases of exhaustive pattern matching inline_for_extraction noextract let parse_impos () : parser impos_kind False = let p : LP.bare_parser False = fun b -> None in LP.parser_kind_prop_equiv impos_kind p; p let parse_ite e p1 p2 = if e then p1 () else p2 () let nlist (n:U32.t) (t:Type) = list t inline_for_extraction noextract let parse_nlist n #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix #(parse_fldata_kind (U32.v n) parse_list_kind) #(list t) (LowParse.Spec.FLData.parse_fldata (LowParse.Spec.List.parse_list p) (U32.v n)) #false kind_nlist let all_bytes = Seq.seq LP.byte let parse_all_bytes' : LP.bare_parser all_bytes = fun input -> Some (input, (Seq.length input <: LP.consumed_length input)) let parse_all_bytes = LP.parser_kind_prop_equiv kind_all_bytes parse_all_bytes'; parse_all_bytes' //////////////////////////////////////////////////////////////////////////////// module B32 = FStar.Bytes let t_at_most (n:U32.t) (t:Type) = t & all_bytes inline_for_extraction noextract let parse_t_at_most n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata (LPC.nondep_then p parse_all_bytes) (U32.v n)) #false kind_t_at_most //////////////////////////////////////////////////////////////////////////////// let t_exact (n:U32.t) (t:Type) = t inline_for_extraction noextract let parse_t_exact n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata p (U32.v n)) #false kind_t_exact //////////////////////////////////////////////////////////////////////////////// // Readers //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let reader p = LPLC.leaf_reader p inline_for_extraction noextract let read_filter p32 f = LPLC.read_filter p32 f let read_impos : reader (parse_impos()) = fun #rrel #rel sl pos -> let h = FStar.HyperStack.ST.get() in assert (LPLC.valid (parse_impos()) h sl pos); LowParse.Low.Base.Spec.valid_equiv (parse_impos()) h sl pos; false_elim () // //////////////////////////////////////////////////////////////////////////////// // // Validators // //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let validator #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator #k #t p inline_for_extraction noextract let validator_no_read #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator_no_read #k #t p let parse_nlist_total_fixed_size_aux (n:U32.t) (#wk: _) (#k:parser_kind true wk) #t (p:parser k t) (x: LP.bytes) : Lemma (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n )) (ensures ( Some? (LP.parse (parse_nlist n p) x) )) = let x' = Seq.slice x 0 (U32.v n) in let cnt = (U32.v n / k.LP.parser_kind_low) in FStar.Math.Lemmas.lemma_div_exact (U32.v n) k.LP.parser_kind_low; FStar.Math.Lemmas.nat_over_pos_is_nat (U32.v n) k.LP.parser_kind_low; LowParse.Spec.List.parse_list_total_constant_size p cnt x'; LP.parser_kind_prop_equiv LowParse.Spec.List.parse_list_kind (LowParse.Spec.List.parse_list p)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Spec.List.fsti.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.FLData.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.Combinators.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "LowParse.Low.Base.Spec.fsti.checked", "LowParse.Low.Base.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked", "EverParse3d.Kinds.fst.checked" ], "interface_file": true, "source_file": "EverParse3d.Prelude.fst" }
[ { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "LowParse.Low.Combinators", "short_module": "LPLC" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LPL" }, { "abbrev": true, "full_module": "LowParse.Spec.Combinators", "short_module": "LPC" }, { "abbrev": true, "full_module": "LowParse.Spec.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Range", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Kinds", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Prelude.StaticHeader", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: FStar.UInt32.t -> p: EverParse3d.Prelude.parser k t -> FStar.Pervasives.Lemma (requires Mkparser_kind'?.parser_kind_subkind k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserStrong /\ Mkparser_kind'?.parser_kind_high k == FStar.Pervasives.Native.Some (Mkparser_kind'?.parser_kind_low k) /\ FStar.UInt32.v n % Mkparser_kind'?.parser_kind_low k == 0 /\ Mkparser_kind'?.parser_kind_metadata k == FStar.Pervasives.Native.Some LowParse.Spec.Base.ParserKindMetadataTotal) (ensures LowParse.Spec.Base.parser_kind_prop (LowParse.Spec.Base.total_constant_size_parser_kind (FStar.UInt32.v n)) (EverParse3d.Prelude.parse_nlist n p))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.UInt32.t", "EverParse3d.Kinds.weak_kind", "EverParse3d.Kinds.parser_kind", "EverParse3d.Prelude.parser", "FStar.Classical.forall_intro", "LowParse.Bytes.bytes", "Prims.l_imp", "Prims.l_and", "Prims.eq2", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.nat", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "Prims.int", "Prims.op_Modulus", "FStar.UInt32.v", "LowParse.Spec.Base.parser_kind_metadata_some", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_metadata", "LowParse.Spec.Base.ParserKindMetadataTotal", "Prims.b2t", "Prims.op_GreaterThanOrEqual", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "FStar.Pervasives.Native.uu___is_Some", "FStar.Pervasives.Native.tuple2", "EverParse3d.Prelude.nlist", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "EverParse3d.Prelude.parse_nlist", "FStar.Classical.move_requires", "EverParse3d.Prelude.parse_nlist_total_fixed_size_aux", "Prims.unit", "LowParse.Spec.Base.parser_kind_prop_equiv", "LowParse.Spec.Base.total_constant_size_parser_kind", "LowParse.Spec.FLData.parse_fldata_kind", "LowParse.Spec.List.parse_list_kind", "Prims.squash", "LowParse.Spec.Base.parser_kind_prop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_nlist_total_fixed_size_kind_correct (n: U32.t) (#wk: _) (#k: parser_kind true wk) #t (p: parser k t) : Lemma (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures (LP.parser_kind_prop (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p))) =
LP.parser_kind_prop_equiv (LowParse.Spec.FLData.parse_fldata_kind (U32.v n) LowParse.Spec.List.parse_list_kind) (parse_nlist n p); LP.parser_kind_prop_equiv (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p); Classical.forall_intro (Classical.move_requires (parse_nlist_total_fixed_size_aux n p))
false
STLC.Core.fst
STLC.Core.fresh
val fresh (e: list (var & 'a)) : var
val fresh (e: list (var & 'a)) : var
let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 33, "end_line": 152, "start_col": 0, "start_line": 147 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Prims.list (STLC.Core.var * 'a) -> STLC.Core.var
Prims.Tot
[ "total" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "Prims.op_Addition", "STLC.Core.max", "STLC.Core.fresh", "FStar.Pervasives.Native.fst" ]
[ "recursion" ]
false
false
false
true
false
let rec fresh (e: list (var & 'a)) : var =
match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1
false
STLC.Core.fst
STLC.Core.fresh_is_fresh
val fresh_is_fresh (e: list (var & 'a)) : Lemma (None? (lookup e (fresh e)))
val fresh_is_fresh (e: list (var & 'a)) : Lemma (None? (lookup e (fresh e)))
let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e)
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 53, "end_line": 175, "start_col": 0, "start_line": 169 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Prims.list (STLC.Core.var * 'a) -> FStar.Pervasives.Lemma (ensures None? (STLC.Core.lookup e (STLC.Core.fresh e)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "STLC.Core.lookup", "STLC.Core.fresh", "FStar.Classical.forall_intro", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.b2t", "Prims.op_GreaterThan", "FStar.Pervasives.Native.fst", "STLC.Core.fresh_not_mem", "Prims.unit", "STLC.Core.lookup_mem", "Prims.l_True", "Prims.squash", "FStar.Pervasives.Native.uu___is_None", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let fresh_is_fresh (e: list (var & 'a)) : Lemma (None? (lookup e (fresh e))) =
match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e)
false
STLC.Core.fst
STLC.Core.freevars_open
val freevars_open (e: stlc_exp) (x: var) (n: nat) : Lemma ((freevars (open_exp' e x n)) `Set.subset` ((freevars e) `Set.union` (Set.singleton x)))
val freevars_open (e: stlc_exp) (x: var) (n: nat) : Lemma ((freevars (open_exp' e x n)) `Set.subset` ((freevars e) `Set.union` (Set.singleton x)))
let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 137, "start_col": 0, "start_line": 127 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> x: STLC.Core.var -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Set.subset (STLC.Core.freevars (STLC.Core.open_exp' e x n)) (FStar.Set.union (STLC.Core.freevars e) (FStar.Set.singleton x)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "Prims.nat", "STLC.Core.index", "STLC.Core.stlc_ty", "STLC.Core.freevars_open", "Prims.op_Addition", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Set.subset", "STLC.Core.freevars", "STLC.Core.open_exp'", "FStar.Set.union", "FStar.Set.singleton", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec freevars_open (e: stlc_exp) (x: var) (n: nat) : Lemma ((freevars (open_exp' e x n)) `Set.subset` ((freevars e) `Set.union` (Set.singleton x))) =
match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n
false
STLC.Core.fst
STLC.Core.elab_exp
val elab_exp (e: stlc_exp) : Tot R.term (decreases (size e))
val elab_exp (e: stlc_exp) : Tot R.term (decreases (size e))
let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit))
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 44, "end_line": 320, "start_col": 0, "start_line": 297 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2)))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> Prims.Tot FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total", "" ]
[]
[ "STLC.Core.stlc_exp", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Const", "FStar.Stubs.Reflection.V2.Data.C_Unit", "STLC.Core.index", "FStar.Stubs.Reflection.V2.Data.Tv_BVar", "FStar.Stubs.Reflection.Types.bv", "FStar.Stubs.Reflection.V2.Builtins.pack_bv", "FStar.Reflection.Typing.make_bv", "STLC.Core.var", "FStar.Stubs.Reflection.V2.Data.Tv_Var", "FStar.Stubs.Reflection.Types.namedv", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.Typing.make_namedv", "STLC.Core.stlc_ty", "FStar.Stubs.Reflection.V2.Data.Tv_Abs", "FStar.Reflection.Typing.mk_simple_binder", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.Types.term", "STLC.Core.elab_exp", "STLC.Core.elab_ty", "FStar.Stubs.Reflection.V2.Data.Tv_App", "FStar.Pervasives.Native.Mktuple2", "FStar.Stubs.Reflection.V2.Data.aqualv", "FStar.Stubs.Reflection.V2.Data.Q_Explicit" ]
[ "recursion" ]
false
false
false
true
false
let rec elab_exp (e: stlc_exp) : Tot R.term (decreases (size e)) =
let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit))
false
STLC.Core.fst
STLC.Core.freevars
val freevars (e: stlc_exp) : Set.set var
val freevars (e: stlc_exp) : Set.set var
let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 114, "start_col": 0, "start_line": 107 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> FStar.Set.set STLC.Core.var
Prims.Tot
[ "total" ]
[]
[ "STLC.Core.stlc_exp", "FStar.Set.empty", "STLC.Core.var", "STLC.Core.index", "FStar.Set.singleton", "STLC.Core.stlc_ty", "STLC.Core.freevars", "FStar.Set.union", "FStar.Set.set" ]
[ "recursion" ]
false
false
false
true
false
let rec freevars (e: stlc_exp) : Set.set var =
match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> (freevars e1) `Set.union` (freevars e2)
false
STLC.Core.fst
STLC.Core.stlc_types_are_closed1
val stlc_types_are_closed1 (ty: stlc_ty) (v: R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)]
val stlc_types_are_closed1 (ty: stlc_ty) (v: R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)]
let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 357, "start_col": 0, "start_line": 353 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: STLC.Core.stlc_ty -> v: FStar.Stubs.Reflection.Types.term -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.open_with (STLC.Core.elab_ty ty) v == STLC.Core.elab_ty ty) [SMTPat (FStar.Reflection.Typing.open_with (STLC.Core.elab_ty ty) v)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_ty", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.open_with_spec", "STLC.Core.elab_ty", "Prims.unit", "STLC.Core.stlc_types_are_closed_core", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.DT", "Prims.Nil", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Reflection.Typing.open_with", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat" ]
[]
true
false
true
false
false
let stlc_types_are_closed1 (ty: stlc_ty) (v: R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] =
stlc_types_are_closed_core ty [RT.DT 0 v]; RT.open_with_spec (elab_ty ty) v
false
STLC.Core.fst
STLC.Core.lookup_mem
val lookup_mem (e: list (var & 'a)) (x: var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x)
val lookup_mem (e: list (var & 'a)) (x: var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x)
let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 45, "end_line": 167, "start_col": 0, "start_line": 162 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Prims.list (STLC.Core.var * 'a) -> x: STLC.Core.var -> FStar.Pervasives.Lemma (requires Some? (STLC.Core.lookup e x)) (ensures exists (elt: (STLC.Core.var * 'a)). FStar.List.Tot.Base.memP elt e /\ FStar.Pervasives.Native.fst elt == x)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "FStar.List.Tot.Properties.assoc_memP_some", "Prims.unit", "FStar.Pervasives.Native.option", "STLC.Core.lookup", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "Prims.squash", "Prims.l_Exists", "Prims.l_and", "FStar.List.Tot.Base.memP", "Prims.eq2", "FStar.Pervasives.Native.fst", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let lookup_mem (e: list (var & 'a)) (x: var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) =
let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bcvli_payload_kind
val parse_bcvli_payload_kind : LowParse.Spec.Base.parser_kind'
let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; }
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 1, "end_line": 13, "start_col": 0, "start_line": 8 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind'
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Base.Mkparser_kind'", "FStar.Pervasives.Native.Some", "Prims.nat", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.ParserStrong", "FStar.Pervasives.Native.None", "LowParse.Spec.Base.parser_kind_metadata_some" ]
[]
false
false
false
true
false
let parse_bcvli_payload_kind =
{ parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None }
false
STLC.Core.fst
STLC.Core.vars_of_env
val vars_of_env (sg: list (var & stlc_ty)) : GTot (Set.set var)
val vars_of_env (sg: list (var & stlc_ty)) : GTot (Set.set var)
let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg)
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 31, "end_line": 236, "start_col": 0, "start_line": 234 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sg: Prims.list (STLC.Core.var * STLC.Core.stlc_ty) -> Prims.GTot (FStar.Set.set STLC.Core.var)
Prims.GTot
[ "sometrivial" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "STLC.Core.stlc_ty", "FStar.Set.intension", "STLC.Core.contains", "FStar.Set.set" ]
[]
false
false
false
false
false
let vars_of_env (sg: list (var & stlc_ty)) : GTot (Set.set var) =
Set.intension (contains sg)
false
STLC.Core.fst
STLC.Core.close_exp'
val close_exp' (e: stlc_exp) (v: var) (n: nat) : e': stlc_exp{size e == size e'}
val close_exp' (e: stlc_exp) (v: var) (n: nat) : e': stlc_exp{size e == size e'}
let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n)
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 64, "end_line": 58, "start_col": 0, "start_line": 51 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> v: STLC.Core.var -> n: Prims.nat -> e': STLC.Core.stlc_exp{STLC.Core.size e == STLC.Core.size e'}
Prims.Tot
[ "total" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "Prims.nat", "STLC.Core.EUnit", "Prims.op_Equality", "STLC.Core.EBVar", "Prims.bool", "STLC.Core.EVar", "Prims.eq2", "STLC.Core.size", "STLC.Core.index", "STLC.Core.stlc_ty", "STLC.Core.ELam", "STLC.Core.close_exp'", "Prims.op_Addition", "STLC.Core.EApp" ]
[ "recursion" ]
false
false
false
false
false
let rec close_exp' (e: stlc_exp) (v: var) (n: nat) : e': stlc_exp{size e == size e'} =
match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n)
false
STLC.Core.fst
STLC.Core.stlc_types_are_closed_core
val stlc_types_are_closed_core (ty: stlc_ty) (ss: RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)]
val stlc_types_are_closed_core (ty: stlc_ty) (ss: RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)]
let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss)
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 55, "end_line": 351, "start_col": 0, "start_line": 342 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: STLC.Core.stlc_ty -> ss: FStar.Reflection.Typing.subst -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.subst_term (STLC.Core.elab_ty ty) ss == STLC.Core.elab_ty ty) (decreases ty) [SMTPat (FStar.Reflection.Typing.subst_term (STLC.Core.elab_ty ty) ss)]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "STLC.Core.stlc_ty", "FStar.Reflection.Typing.subst", "STLC.Core.stlc_types_are_closed_core", "FStar.Reflection.Typing.shift_subst", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.subst_term", "STLC.Core.elab_ty", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec stlc_types_are_closed_core (ty: stlc_ty) (ss: RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] =
match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss)
false
STLC.Core.fst
STLC.Core.stlc_types_are_closed2
val stlc_types_are_closed2 (ty: stlc_ty) (x: R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)]
val stlc_types_are_closed2 (ty: stlc_ty) (x: R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)]
let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 363, "start_col": 0, "start_line": 359 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: STLC.Core.stlc_ty -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.close_term (STLC.Core.elab_ty ty) x == STLC.Core.elab_ty ty) [SMTPat (FStar.Reflection.Typing.close_term (STLC.Core.elab_ty ty) x)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_ty", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.close_term_spec", "STLC.Core.elab_ty", "Prims.unit", "STLC.Core.stlc_types_are_closed_core", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.ND", "Prims.Nil", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.close_term", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat" ]
[]
true
false
true
false
false
let stlc_types_are_closed2 (ty: stlc_ty) (x: R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] =
stlc_types_are_closed_core ty [RT.ND x 0]; RT.close_term_spec (elab_ty ty) x
false
STLC.Core.fst
STLC.Core.closed
val closed (e: stlc_exp) : b: bool{b <==> ((freevars e) `Set.equal` Set.empty)}
val closed (e: stlc_exp) : b: bool{b <==> ((freevars e) `Set.equal` Set.empty)}
let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 42, "end_line": 125, "start_col": 0, "start_line": 116 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> b: Prims.bool{b <==> FStar.Set.equal (STLC.Core.freevars e) FStar.Set.empty}
Prims.Tot
[ "total" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.index", "STLC.Core.var", "Prims.unit", "Prims._assert", "Prims.b2t", "FStar.Set.mem", "STLC.Core.freevars", "STLC.Core.stlc_ty", "STLC.Core.closed", "Prims.op_AmpAmp", "Prims.bool", "Prims.l_iff", "FStar.Set.equal", "FStar.Set.empty" ]
[ "recursion" ]
false
false
false
false
false
let rec closed (e: stlc_exp) : b: bool{b <==> ((freevars e) `Set.equal` Set.empty)} =
match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` (freevars e)); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bounded_bcvli
val parse_bounded_bcvli (min: nat) (max: nat { min <= max }) : Tot (parser (parse_bounded_bcvli_kind min max) (bounded_int32 min max))
val parse_bounded_bcvli (min: nat) (max: nat { min <= max }) : Tot (parser (parse_bounded_bcvli_kind min max) (bounded_int32 min max))
let parse_bounded_bcvli min max = parse_bounded_bcvli_kind_correct min max; strengthen (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 78, "end_line": 132, "start_col": 0, "start_line": 129 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = () let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max) let parse_bounded_bcvli_size_correct (min: nat) (max: nat { min <= max }) : Lemma (parse_bounded_bcvli_size min `parses_at_least` parse_bounded_bcvli' min max /\ parse_bounded_bcvli_size max `parses_at_most` parse_bounded_bcvli' min max) = Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4) let parse_bounded_bcvli_kind_correct (min: nat) (max: nat { min <= max }) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)) = parse_bounded_bcvli_size_correct min max; parser_kind_prop_equiv (parse_filter_kind parse_bcvli_kind) (parse_bounded_bcvli' min max); parser_kind_prop_equiv (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> LowParse.Spec.Base.parser (LowParse.Spec.BCVLI.parse_bounded_bcvli_kind min max) (LowParse.Spec.BoundedInt.bounded_int32 min max)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.strengthen", "LowParse.Spec.BCVLI.parse_bounded_bcvli_kind", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.BCVLI.parse_bounded_bcvli'", "Prims.unit", "LowParse.Spec.BCVLI.parse_bounded_bcvli_kind_correct", "LowParse.Spec.Base.parser" ]
[]
false
false
false
false
false
let parse_bounded_bcvli min max =
parse_bounded_bcvli_kind_correct min max; strengthen (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
false
STLC.Core.fst
STLC.Core.elab_open_commute
val elab_open_commute (e: stlc_exp) (x: var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)]
val elab_open_commute (e: stlc_exp) (x: var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)]
let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 411, "start_col": 0, "start_line": 407 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> x: STLC.Core.var -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.open_term (STLC.Core.elab_exp e) x == STLC.Core.elab_exp (STLC.Core.open_exp e x)) [SMTPat (FStar.Reflection.Typing.open_term (STLC.Core.elab_exp e) x)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "FStar.Reflection.Typing.open_term_spec", "STLC.Core.elab_exp", "Prims.unit", "STLC.Core.elab_open_commute'", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.open_term", "STLC.Core.open_exp", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let elab_open_commute (e: stlc_exp) (x: var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] =
elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x
false
STLC.Core.fst
STLC.Core.elab_ty
val elab_ty (t: stlc_ty) : R.term
val elab_ty (t: stlc_ty) : R.term
let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2)))
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 37, "end_line": 295, "start_col": 0, "start_line": 281 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
t: STLC.Core.stlc_ty -> FStar.Stubs.Reflection.Types.term
Prims.Tot
[ "total" ]
[]
[ "STLC.Core.stlc_ty", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_FVar", "FStar.Stubs.Reflection.V2.Builtins.pack_fv", "FStar.Reflection.Const.unit_lid", "FStar.Stubs.Reflection.V2.Data.Tv_Arrow", "FStar.Reflection.Typing.mk_simple_binder", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.V2.Builtins.pack_comp", "FStar.Stubs.Reflection.V2.Data.C_Total", "FStar.Stubs.Reflection.Types.term", "STLC.Core.elab_ty" ]
[ "recursion" ]
false
false
false
true
false
let rec elab_ty (t: stlc_ty) : R.term =
let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2)))
false
STLC.Core.fst
STLC.Core.stlc_types_are_closed3
val stlc_types_are_closed3 (ty: stlc_ty) (x: R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)]
val stlc_types_are_closed3 (ty: stlc_ty) (x: R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)]
let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 369, "start_col": 0, "start_line": 365 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: STLC.Core.stlc_ty -> x: FStar.Stubs.Reflection.V2.Data.var -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.open_term (STLC.Core.elab_ty ty) x == STLC.Core.elab_ty ty) [SMTPat (FStar.Reflection.Typing.open_term (STLC.Core.elab_ty ty) x)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_ty", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.open_term_spec", "STLC.Core.elab_ty", "Prims.unit", "STLC.Core.stlc_types_are_closed_core", "Prims.Cons", "FStar.Reflection.Typing.subst_elt", "FStar.Reflection.Typing.DT", "FStar.Reflection.Typing.var_as_term", "Prims.Nil", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.open_term", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat" ]
[]
true
false
true
false
false
let stlc_types_are_closed3 (ty: stlc_ty) (x: R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] =
stlc_types_are_closed_core ty [RT.DT 0 (RT.var_as_term x)]; RT.open_term_spec (elab_ty ty) x
false
EverParse3d.Prelude.fst
EverParse3d.Prelude.validate_nlist_total_constant_size_mod_ok
val validate_nlist_total_constant_size_mod_ok (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: Type) (p: parser k t) : Pure (validator_no_read (parse_nlist n p)) (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low < 4294967296 /\ U32.v n % k.LP.parser_kind_low == 0)) (ensures (fun _ -> True))
val validate_nlist_total_constant_size_mod_ok (n: U32.t) (#wk: _) (#k: parser_kind true wk) (#t: Type) (p: parser k t) : Pure (validator_no_read (parse_nlist n p)) (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low < 4294967296 /\ U32.v n % k.LP.parser_kind_low == 0)) (ensures (fun _ -> True))
let validate_nlist_total_constant_size_mod_ok (n:U32.t) #wk (#k:parser_kind true wk) (#t: Type) (p:parser k t) : Pure (validator_no_read (parse_nlist n p)) (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low < 4294967296 /\ U32.v n % k.LP.parser_kind_low == 0 )) (ensures (fun _ -> True)) = (fun #rrel #rel sl len pos -> let h = FStar.HyperStack.ST.get () in [@inline_let] let _ = parse_nlist_total_fixed_size_kind_correct n p; LPL.valid_facts (parse_nlist n p) h sl (LPL.uint64_to_uint32 pos); LPL.valid_facts (LP.strengthen (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)) h sl (LPL.uint64_to_uint32 pos) in LPL.validate_total_constant_size_no_read (LP.strengthen (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)) (FStar.Int.Cast.uint32_to_uint64 n) () sl len pos )
{ "file_name": "src/3d/prelude/EverParse3d.Prelude.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 7, "end_line": 243, "start_col": 0, "start_line": 222 }
(* Copyright 2019 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module EverParse3d.Prelude friend EverParse3d.Kinds module BF = LowParse.BitFields module LP = LowParse.Spec.Base module LPC = LowParse.Spec.Combinators module LPL = LowParse.Low.Base module LPLC = LowParse.Low.Combinators module U16 = FStar.UInt16 module U32 = FStar.UInt32 module U64 = FStar.UInt64 //////////////////////////////////////////////////////////////////////////////// // Parsers //////////////////////////////////////////////////////////////////////////////// let parser k t = LP.parser k t let is_weaker_than #nz1 #wk1 (k:parser_kind nz1 wk1) #nz2 #wk2 (k':parser_kind nz2 wk2) = k `LP.is_weaker_than` k' let is_weaker_than_refl #nz #wk (k:parser_kind nz wk) : Lemma (ensures (is_weaker_than k k)) [SMTPat (is_weaker_than k k)] = () let is_weaker_than_glb #nz1 #wk1 (k1:parser_kind nz1 wk1) #nz2 #wk2 (k2:parser_kind nz2 wk2) : Lemma (is_weaker_than (glb k1 k2) k1 /\ is_weaker_than (glb k1 k2) k2) [SMTPatOr [[SMTPat (is_weaker_than (glb k1 k2) k1)]; [SMTPat (is_weaker_than (glb k1 k2) k2)]]] = () /// Parser: return inline_for_extraction noextract let parse_ret #t (v:t) : Tot (parser ret_kind t) = LPC.parse_ret #t v /// Parser: bind inline_for_extraction noextract let parse_dep_pair p1 p2 = LPC.parse_dtuple2 p1 p2 /// Parser: sequencing inline_for_extraction noextract let parse_pair p1 p2 = LPC.nondep_then p1 p2 /// Parser: map let injective_map a b = (a -> Tot b) //{LPC.synth_injective f} inline_for_extraction noextract let parse_filter p f = LPC.parse_filter p f /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken #nz #wk (#k:parser_kind nz wk) #t (p:parser k t) #nz' #wk' (k':parser_kind nz' wk' {k' `is_weaker_than` k}) : Tot (parser k' t) = LP.weaken k' p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_left #nz #wk #k p k' = LP.weaken (glb k' k) p /// Parser: weakening kinds inline_for_extraction noextract let parse_weaken_right #nz #wk #k p k' = LP.weaken (glb k k') p /// Parser: unreachable, for default cases of exhaustive pattern matching inline_for_extraction noextract let parse_impos () : parser impos_kind False = let p : LP.bare_parser False = fun b -> None in LP.parser_kind_prop_equiv impos_kind p; p let parse_ite e p1 p2 = if e then p1 () else p2 () let nlist (n:U32.t) (t:Type) = list t inline_for_extraction noextract let parse_nlist n #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix #(parse_fldata_kind (U32.v n) parse_list_kind) #(list t) (LowParse.Spec.FLData.parse_fldata (LowParse.Spec.List.parse_list p) (U32.v n)) #false kind_nlist let all_bytes = Seq.seq LP.byte let parse_all_bytes' : LP.bare_parser all_bytes = fun input -> Some (input, (Seq.length input <: LP.consumed_length input)) let parse_all_bytes = LP.parser_kind_prop_equiv kind_all_bytes parse_all_bytes'; parse_all_bytes' //////////////////////////////////////////////////////////////////////////////// module B32 = FStar.Bytes let t_at_most (n:U32.t) (t:Type) = t & all_bytes inline_for_extraction noextract let parse_t_at_most n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata (LPC.nondep_then p parse_all_bytes) (U32.v n)) #false kind_t_at_most //////////////////////////////////////////////////////////////////////////////// let t_exact (n:U32.t) (t:Type) = t inline_for_extraction noextract let parse_t_exact n #nz #wk #k #t p = let open LowParse.Spec.FLData in let open LowParse.Spec.List in parse_weaken #false #WeakKindStrongPrefix (LowParse.Spec.FLData.parse_fldata p (U32.v n)) #false kind_t_exact //////////////////////////////////////////////////////////////////////////////// // Readers //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let reader p = LPLC.leaf_reader p inline_for_extraction noextract let read_filter p32 f = LPLC.read_filter p32 f let read_impos : reader (parse_impos()) = fun #rrel #rel sl pos -> let h = FStar.HyperStack.ST.get() in assert (LPLC.valid (parse_impos()) h sl pos); LowParse.Low.Base.Spec.valid_equiv (parse_impos()) h sl pos; false_elim () // //////////////////////////////////////////////////////////////////////////////// // // Validators // //////////////////////////////////////////////////////////////////////////////// inline_for_extraction noextract let validator #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator #k #t p inline_for_extraction noextract let validator_no_read #nz #wk (#k:parser_kind nz wk) (#t:Type) (p:parser k t) : Type = LPL.validator_no_read #k #t p let parse_nlist_total_fixed_size_aux (n:U32.t) (#wk: _) (#k:parser_kind true wk) #t (p:parser k t) (x: LP.bytes) : Lemma (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ Seq.length x >= U32.v n )) (ensures ( Some? (LP.parse (parse_nlist n p) x) )) = let x' = Seq.slice x 0 (U32.v n) in let cnt = (U32.v n / k.LP.parser_kind_low) in FStar.Math.Lemmas.lemma_div_exact (U32.v n) k.LP.parser_kind_low; FStar.Math.Lemmas.nat_over_pos_is_nat (U32.v n) k.LP.parser_kind_low; LowParse.Spec.List.parse_list_total_constant_size p cnt x'; LP.parser_kind_prop_equiv LowParse.Spec.List.parse_list_kind (LowParse.Spec.List.parse_list p) let parse_nlist_total_fixed_size_kind_correct (n:U32.t) (#wk: _) (#k:parser_kind true wk) #t (p:parser k t) : Lemma (requires ( let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ U32.v n % k.parser_kind_low == 0 /\ k.parser_kind_metadata == Some ParserKindMetadataTotal )) (ensures ( LP.parser_kind_prop (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p) )) = LP.parser_kind_prop_equiv (LowParse.Spec.FLData.parse_fldata_kind (U32.v n) LowParse.Spec.List.parse_list_kind) (parse_nlist n p); LP.parser_kind_prop_equiv (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p); Classical.forall_intro (Classical.move_requires (parse_nlist_total_fixed_size_aux n p))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.ListUpTo.fsti.checked", "LowParse.Spec.List.fsti.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.FLData.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "LowParse.Spec.Base.fsti.checked", "LowParse.Low.Int.fsti.checked", "LowParse.Low.Combinators.fsti.checked", "LowParse.Low.BoundedInt.fsti.checked", "LowParse.Low.Base.Spec.fsti.checked", "LowParse.Low.Base.fst.checked", "LowParse.BitFields.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt64.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.UInt16.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Math.Lemmas.fst.checked", "FStar.Int.Cast.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.Classical.fsti.checked", "FStar.Bytes.fsti.checked", "EverParse3d.Kinds.fst.checked" ], "interface_file": true, "source_file": "EverParse3d.Prelude.fst" }
[ { "abbrev": true, "full_module": "FStar.Bytes", "short_module": "B32" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "LowParse.Low.Combinators", "short_module": "LPLC" }, { "abbrev": true, "full_module": "LowParse.Low.Base", "short_module": "LPL" }, { "abbrev": true, "full_module": "LowParse.Spec.Combinators", "short_module": "LPC" }, { "abbrev": true, "full_module": "LowParse.Spec.Base", "short_module": "LP" }, { "abbrev": true, "full_module": "LowParse.BitFields", "short_module": "BF" }, { "abbrev": true, "full_module": "FStar.Int.Cast", "short_module": "C" }, { "abbrev": true, "full_module": "FStar.UInt64", "short_module": "U64" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": true, "full_module": "FStar.UInt16", "short_module": "U16" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": false, "full_module": "FStar.Range", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Kinds", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d.Prelude.StaticHeader", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "EverParse3d", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 2, "max_fuel": 0, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [ "smt.qi.eager_threshold=10" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: FStar.UInt32.t -> p: EverParse3d.Prelude.parser k t -> Prims.Pure (EverParse3d.Prelude.validator_no_read (EverParse3d.Prelude.parse_nlist n p))
Prims.Pure
[]
[]
[ "FStar.UInt32.t", "EverParse3d.Kinds.weak_kind", "EverParse3d.Kinds.parser_kind", "EverParse3d.Prelude.parser", "LowParse.Slice.srel", "LowParse.Bytes.byte", "FStar.Ghost.erased", "LowParse.Slice.slice", "Prims.eq2", "LowParse.Slice.__proj__Mkslice__item__len", "FStar.Ghost.reveal", "FStar.UInt64.t", "LowParse.Low.Base.validate_total_constant_size_no_read", "LowParse.Spec.Base.total_constant_size_parser_kind", "FStar.UInt32.v", "EverParse3d.Prelude.nlist", "LowParse.Spec.Base.strengthen", "EverParse3d.Prelude.parse_nlist", "FStar.Int.Cast.uint32_to_uint64", "Prims.unit", "LowParse.Low.Base.Spec.valid_facts", "LowParse.Low.ErrorCode.uint64_to_uint32", "EverParse3d.Kinds.kind_nlist", "EverParse3d.Prelude.parse_nlist_total_fixed_size_kind_correct", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "EverParse3d.Prelude.validator_no_read", "EverParse3d.Kinds.WeakKindStrongPrefix", "Prims.l_and", "FStar.Pervasives.Native.option", "LowParse.Spec.Base.parser_subkind", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_subkind", "FStar.Pervasives.Native.Some", "LowParse.Spec.Base.ParserStrong", "Prims.nat", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_high", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_low", "LowParse.Spec.Base.parser_kind_metadata_some", "LowParse.Spec.Base.__proj__Mkparser_kind'__item__parser_kind_metadata", "LowParse.Spec.Base.ParserKindMetadataTotal", "Prims.b2t", "Prims.op_LessThan", "Prims.int", "Prims.op_Modulus", "Prims.l_True" ]
[]
false
false
false
false
false
let validate_nlist_total_constant_size_mod_ok (n: U32.t) #wk (#k: parser_kind true wk) (#t: Type) (p: parser k t) : Pure (validator_no_read (parse_nlist n p)) (requires (let open LP in k.parser_kind_subkind == Some ParserStrong /\ k.parser_kind_high == Some k.parser_kind_low /\ k.parser_kind_metadata == Some ParserKindMetadataTotal /\ k.parser_kind_low < 4294967296 /\ U32.v n % k.LP.parser_kind_low == 0)) (ensures (fun _ -> True)) =
(fun #rrel #rel sl len pos -> let h = FStar.HyperStack.ST.get () in [@@ inline_let ]let _ = parse_nlist_total_fixed_size_kind_correct n p; LPL.valid_facts (parse_nlist n p) h sl (LPL.uint64_to_uint32 pos); LPL.valid_facts (LP.strengthen (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)) h sl (LPL.uint64_to_uint32 pos) in LPL.validate_total_constant_size_no_read (LP.strengthen (LP.total_constant_size_parser_kind (U32.v n)) (parse_nlist n p)) (FStar.Int.Cast.uint32_to_uint64 n) () sl len pos)
false
STLC.Core.fst
STLC.Core.soundness_lemma
val soundness_lemma (sg: stlc_env) (se: stlc_exp) (st: stlc_ty) (g: RT.fstar_top_env) : Lemma (requires stlc_typing sg se st) (ensures RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st))
val soundness_lemma (sg: stlc_env) (se: stlc_exp) (st: stlc_ty) (g: RT.fstar_top_env) : Lemma (requires stlc_typing sg se st) (ensures RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st))
let soundness_lemma (sg:stlc_env) (se:stlc_exp) (st:stlc_ty) (g:RT.fstar_top_env) : Lemma (requires stlc_typing sg se st) (ensures RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) = FStar.Squash.bind_squash #(stlc_typing sg se st) () (fun dd -> FStar.Squash.return_squash (soundness dd g))
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 61, "end_line": 537, "start_col": 0, "start_line": 525 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv let rec elab_ty_soundness (g:RT.fstar_top_env) (sg:stlc_env) (t:stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) = match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1)::sg) t2 in let arr_max : RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max let rec elab_exp_freevars (e:stlc_exp) : Lemma (freevars e `Set.equal` RT.freevars (elab_exp e)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam t e -> elab_ty_freevars t; elab_exp_freevars e | EApp e1 e2 -> elab_exp_freevars e1; elab_exp_freevars e2 let rec soundness (#sg:stlc_env) (#se:stlc_exp) (#st:stlc_ty) (dd:stlc_typing sg se st) (g:RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd) = match dd with | T_Unit _ -> RT.T_Const _ _ _ RT.CT_Unit | T_Var _ x -> RT.T_Var _ (R.pack_namedv (RT.make_namedv x)) | T_Lam _ t e t' x de -> let de : RT.tot_typing (extend_env_l g ((x,t)::sg)) (elab_exp (open_exp e x)) (elab_ty t') = soundness de g in let de : RT.tot_typing (RT.extend_env (extend_env_l g sg) x (elab_ty t)) (elab_exp (open_exp e x)) (elab_ty t') = de in fresh_is_fresh sg; elab_exp_freevars e; let dd = RT.T_Abs (extend_env_l g sg) x (elab_ty t) (elab_exp e) (T.E_Total, elab_ty t') _ RT.pp_name_default R.Q_Explicit _ (elab_ty_soundness g sg t) de in dd | T_App _ e1 e2 t t' d1 d2 -> let dt1 : RT.tot_typing (extend_env_l g sg) (elab_exp e1) (elab_ty (TArrow t t')) = soundness d1 g in let dt2 : RT.tot_typing (extend_env_l g sg) (elab_exp e2) (elab_ty t) = soundness d2 g in let dt : RT.tot_typing (extend_env_l g sg) (elab_exp (EApp e1 e2)) (RT.open_with (elab_ty t') (elab_exp e2)) = RT.T_App _ _ _ _ _ _ dt1 dt2 in dt
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sg: STLC.Core.stlc_env -> se: STLC.Core.stlc_exp -> st: STLC.Core.stlc_ty -> g: FStar.Reflection.Typing.fstar_top_env -> FStar.Pervasives.Lemma (requires STLC.Core.stlc_typing sg se st) (ensures FStar.Reflection.Typing.tot_typing (STLC.Core.extend_env_l g sg) (STLC.Core.elab_exp se) (STLC.Core.elab_ty st))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_env", "STLC.Core.stlc_exp", "STLC.Core.stlc_ty", "FStar.Reflection.Typing.fstar_top_env", "FStar.Squash.bind_squash", "STLC.Core.stlc_typing", "FStar.Reflection.Typing.tot_typing", "STLC.Core.extend_env_l", "STLC.Core.elab_exp", "STLC.Core.elab_ty", "FStar.Squash.return_squash", "STLC.Core.soundness", "Prims.squash", "Prims.unit", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let soundness_lemma (sg: stlc_env) (se: stlc_exp) (st: stlc_ty) (g: RT.fstar_top_env) : Lemma (requires stlc_typing sg se st) (ensures RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) =
FStar.Squash.bind_squash #(stlc_typing sg se st) () (fun dd -> FStar.Squash.return_squash (soundness dd g))
false
STLC.Core.fst
STLC.Core.fresh_not_mem
val fresh_not_mem (e: list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt)
val fresh_not_mem (e: list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt)
let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 38, "end_line": 160, "start_col": 0, "start_line": 156 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: Prims.list (STLC.Core.var * 'a) -> elt: (STLC.Core.var * 'a) -> FStar.Pervasives.Lemma (ensures FStar.List.Tot.Base.memP elt e ==> STLC.Core.fresh e > FStar.Pervasives.Native.fst elt)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "STLC.Core.fresh_not_mem", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.l_imp", "FStar.List.Tot.Base.memP", "Prims.b2t", "Prims.op_GreaterThan", "STLC.Core.fresh", "FStar.Pervasives.Native.fst", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec fresh_not_mem (e: list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) =
match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt
false
STLC.Core.fst
STLC.Core.elab_ty_soundness
val elab_ty_soundness (g: RT.fstar_top_env) (sg: stlc_env) (t: stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t)
val elab_ty_soundness (g: RT.fstar_top_env) (sg: stlc_env) (t: stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t)
let rec elab_ty_soundness (g:RT.fstar_top_env) (sg:stlc_env) (t:stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) = match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1)::sg) t2 in let arr_max : RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 30, "end_line": 446, "start_col": 0, "start_line": 423 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Reflection.Typing.fstar_top_env -> sg: STLC.Core.stlc_env -> t: STLC.Core.stlc_ty -> Prims.GTot (FStar.Reflection.Typing.tot_typing (STLC.Core.extend_env_l g sg) (STLC.Core.elab_ty t) (FStar.Reflection.Typing.tm_type FStar.Reflection.Typing.u_zero))
Prims.GTot
[ "sometrivial", "" ]
[]
[ "FStar.Reflection.Typing.fstar_top_env", "STLC.Core.stlc_env", "STLC.Core.stlc_ty", "FStar.Reflection.Typing.T_FVar", "STLC.Core.extend_env_l", "FStar.Reflection.Typing.unit_fv", "FStar.Reflection.Typing.simplify_umax", "STLC.Core.elab_ty", "FStar.Reflection.Typing.u_zero", "FStar.Reflection.Typing.tot_typing", "FStar.Reflection.Typing.tm_type", "FStar.Reflection.Typing.u_max", "FStar.Reflection.Typing.T_Arrow", "FStar.Reflection.Typing.pp_name_default", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "FStar.Stubs.TypeChecker.Core.E_Total", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "FStar.Pervasives.Native.Mktuple2", "STLC.Core.elab_ty_soundness", "Prims.unit", "STLC.Core.elab_ty_freevars", "STLC.Core.fresh_is_fresh", "STLC.Core.fresh" ]
[ "recursion" ]
false
false
false
false
false
let rec elab_ty_soundness (g: RT.fstar_top_env) (sg: stlc_env) (t: stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) =
match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1) :: sg) t2 in let arr_max:RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max
false
STLC.Core.fst
STLC.Core.extend_env_l_lookup_bvar
val extend_env_l_lookup_bvar (g: R.env) (sg: stlc_env) (x: var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures (match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)]
val extend_env_l_lookup_bvar (g: R.env) (sg: stlc_env) (x: var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures (match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)]
let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 336, "start_col": 0, "start_line": 325 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> sg: STLC.Core.stlc_env -> x: STLC.Core.var -> FStar.Pervasives.Lemma (requires forall (x: Prims.int). FStar.Reflection.Typing.lookup_bvar g x == FStar.Pervasives.Native.None) (ensures ((match STLC.Core.lookup sg x with | FStar.Pervasives.Native.Some #_ t -> FStar.Reflection.Typing.lookup_bvar (STLC.Core.extend_env_l g sg) x == FStar.Pervasives.Native.Some (STLC.Core.elab_ty t) | FStar.Pervasives.Native.None #_ -> FStar.Reflection.Typing.lookup_bvar (STLC.Core.extend_env_l g sg) x == FStar.Pervasives.Native.None) <: Type0)) (decreases sg) [SMTPat (FStar.Reflection.Typing.lookup_bvar (STLC.Core.extend_env_l g sg) x)]
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "STLC.Core.stlc_env", "STLC.Core.var", "FStar.Pervasives.Native.tuple2", "STLC.Core.stlc_ty", "Prims.list", "STLC.Core.extend_env_l_lookup_bvar", "Prims.unit", "Prims.l_Forall", "Prims.int", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.lookup_bvar", "FStar.Pervasives.Native.None", "Prims.squash", "STLC.Core.lookup", "STLC.Core.extend_env_l", "FStar.Pervasives.Native.Some", "STLC.Core.elab_ty", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec extend_env_l_lookup_bvar (g: R.env) (sg: stlc_env) (x: var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures (match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] =
match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x
false
STLC.Core.fst
STLC.Core.extend_env_l_lookup_fvar
val extend_env_l_lookup_fvar (g: R.env) (sg: stlc_env) (fv: R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)]
val extend_env_l_lookup_fvar (g: R.env) (sg: stlc_env) (fv: R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)]
let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 48, "end_line": 421, "start_col": 0, "start_line": 413 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> sg: STLC.Core.stlc_env -> fv: FStar.Stubs.Reflection.Types.fv -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.lookup_fvar (STLC.Core.extend_env_l g sg) fv == FStar.Reflection.Typing.lookup_fvar g fv) [SMTPat (FStar.Reflection.Typing.lookup_fvar (STLC.Core.extend_env_l g sg) fv)]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "FStar.Stubs.Reflection.Types.env", "STLC.Core.stlc_env", "FStar.Stubs.Reflection.Types.fv", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "STLC.Core.stlc_ty", "Prims.list", "STLC.Core.extend_env_l_lookup_fvar", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Stubs.Reflection.Types.term", "FStar.Reflection.Typing.lookup_fvar", "STLC.Core.extend_env_l", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[ "recursion" ]
false
false
true
false
false
let rec extend_env_l_lookup_fvar (g: R.env) (sg: stlc_env) (fv: R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] =
match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_fvar g tl fv
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.lbytes
val lbytes : len: Lib.IntTypes.size_t -> Type0
let lbytes len = lbuffer uint8 len
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 28, "start_col": 0, "start_line": 28 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
len: Lib.IntTypes.size_t -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Lib.Buffer.lbuffer", "Lib.IntTypes.uint8" ]
[]
false
false
false
true
true
let lbytes len =
lbuffer uint8 len
false
STLC.Core.fst
STLC.Core.main
val main (nm: string) (src: stlc_exp) : RT.dsl_tac_t
val main (nm: string) (src: stlc_exp) : RT.dsl_tac_t
let main (nm:string) (src:stlc_exp) : RT.dsl_tac_t = fun g -> if ln src && closed src then let (| src_ty, d |) = check g [] src in soundness_lemma [] src src_ty g; [RT.mk_checked_let g nm (elab_exp src) (elab_ty src_ty)] else T.fail "Not locally nameless"
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 36, "end_line": 546, "start_col": 0, "start_line": 539 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv let rec elab_ty_soundness (g:RT.fstar_top_env) (sg:stlc_env) (t:stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) = match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1)::sg) t2 in let arr_max : RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max let rec elab_exp_freevars (e:stlc_exp) : Lemma (freevars e `Set.equal` RT.freevars (elab_exp e)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam t e -> elab_ty_freevars t; elab_exp_freevars e | EApp e1 e2 -> elab_exp_freevars e1; elab_exp_freevars e2 let rec soundness (#sg:stlc_env) (#se:stlc_exp) (#st:stlc_ty) (dd:stlc_typing sg se st) (g:RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd) = match dd with | T_Unit _ -> RT.T_Const _ _ _ RT.CT_Unit | T_Var _ x -> RT.T_Var _ (R.pack_namedv (RT.make_namedv x)) | T_Lam _ t e t' x de -> let de : RT.tot_typing (extend_env_l g ((x,t)::sg)) (elab_exp (open_exp e x)) (elab_ty t') = soundness de g in let de : RT.tot_typing (RT.extend_env (extend_env_l g sg) x (elab_ty t)) (elab_exp (open_exp e x)) (elab_ty t') = de in fresh_is_fresh sg; elab_exp_freevars e; let dd = RT.T_Abs (extend_env_l g sg) x (elab_ty t) (elab_exp e) (T.E_Total, elab_ty t') _ RT.pp_name_default R.Q_Explicit _ (elab_ty_soundness g sg t) de in dd | T_App _ e1 e2 t t' d1 d2 -> let dt1 : RT.tot_typing (extend_env_l g sg) (elab_exp e1) (elab_ty (TArrow t t')) = soundness d1 g in let dt2 : RT.tot_typing (extend_env_l g sg) (elab_exp e2) (elab_ty t) = soundness d2 g in let dt : RT.tot_typing (extend_env_l g sg) (elab_exp (EApp e1 e2)) (RT.open_with (elab_ty t') (elab_exp e2)) = RT.T_App _ _ _ _ _ _ dt1 dt2 in dt let soundness_lemma (sg:stlc_env) (se:stlc_exp) (st:stlc_ty) (g:RT.fstar_top_env) : Lemma (requires stlc_typing sg se st) (ensures RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) = FStar.Squash.bind_squash #(stlc_typing sg se st) () (fun dd -> FStar.Squash.return_squash (soundness dd g))
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
nm: Prims.string -> src: STLC.Core.stlc_exp -> FStar.Reflection.Typing.dsl_tac_t
Prims.Tot
[ "total" ]
[]
[ "Prims.string", "STLC.Core.stlc_exp", "FStar.Reflection.Typing.fstar_top_env", "Prims.op_AmpAmp", "STLC.Core.ln", "STLC.Core.closed", "STLC.Core.stlc_ty", "STLC.Core.stlc_typing", "Prims.Nil", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "Prims.Cons", "FStar.Reflection.Typing.sigelt_for", "FStar.Reflection.Typing.dsl_tac_result_t", "FStar.Reflection.Typing.mk_checked_let", "STLC.Core.elab_exp", "STLC.Core.elab_ty", "Prims.unit", "STLC.Core.soundness_lemma", "Prims.dtuple2", "STLC.Core.check", "Prims.bool", "FStar.Tactics.V2.Derived.fail", "FStar.Reflection.Typing.dsl_tac_t" ]
[]
false
false
false
true
false
let main (nm: string) (src: stlc_exp) : RT.dsl_tac_t =
fun g -> if ln src && closed src then let (| src_ty , d |) = check g [] src in soundness_lemma [] src src_ty g; [RT.mk_checked_let g nm (elab_exp src) (elab_ty src_ty)] else T.fail "Not locally nameless"
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.elem
val elem : Type0
let elem = uint16
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 17, "end_line": 25, "start_col": 0, "start_line": 25 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0"
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.uint16" ]
[]
false
false
false
true
true
let elem =
uint16
false
STLC.Core.fst
STLC.Core.elab_ty_freevars
val elab_ty_freevars (ty: stlc_ty) : Lemma ((RT.freevars (elab_ty ty)) `Set.equal` Set.empty)
val elab_ty_freevars (ty: stlc_ty) : Lemma ((RT.freevars (elab_ty ty)) `Set.equal` Set.empty)
let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 25, "end_line": 377, "start_col": 0, "start_line": 371 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ty: STLC.Core.stlc_ty -> FStar.Pervasives.Lemma (ensures FStar.Set.equal (FStar.Reflection.Typing.freevars (STLC.Core.elab_ty ty)) FStar.Set.empty)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_ty", "STLC.Core.elab_ty_freevars", "Prims.unit", "Prims.l_True", "Prims.squash", "FStar.Set.equal", "FStar.Stubs.Reflection.V2.Data.var", "FStar.Reflection.Typing.freevars", "STLC.Core.elab_ty", "FStar.Set.empty", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec elab_ty_freevars (ty: stlc_ty) : Lemma ((RT.freevars (elab_ty ty)) `Set.equal` Set.empty) =
match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2
false
STLC.Core.fst
STLC.Core.soundness
val soundness (#sg: stlc_env) (#se: stlc_exp) (#st: stlc_ty) (dd: stlc_typing sg se st) (g: RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd)
val soundness (#sg: stlc_env) (#se: stlc_exp) (#st: stlc_ty) (dd: stlc_typing sg se st) (g: RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd)
let rec soundness (#sg:stlc_env) (#se:stlc_exp) (#st:stlc_ty) (dd:stlc_typing sg se st) (g:RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd) = match dd with | T_Unit _ -> RT.T_Const _ _ _ RT.CT_Unit | T_Var _ x -> RT.T_Var _ (R.pack_namedv (RT.make_namedv x)) | T_Lam _ t e t' x de -> let de : RT.tot_typing (extend_env_l g ((x,t)::sg)) (elab_exp (open_exp e x)) (elab_ty t') = soundness de g in let de : RT.tot_typing (RT.extend_env (extend_env_l g sg) x (elab_ty t)) (elab_exp (open_exp e x)) (elab_ty t') = de in fresh_is_fresh sg; elab_exp_freevars e; let dd = RT.T_Abs (extend_env_l g sg) x (elab_ty t) (elab_exp e) (T.E_Total, elab_ty t') _ RT.pp_name_default R.Q_Explicit _ (elab_ty_soundness g sg t) de in dd | T_App _ e1 e2 t t' d1 d2 -> let dt1 : RT.tot_typing (extend_env_l g sg) (elab_exp e1) (elab_ty (TArrow t t')) = soundness d1 g in let dt2 : RT.tot_typing (extend_env_l g sg) (elab_exp e2) (elab_ty t) = soundness d2 g in let dt : RT.tot_typing (extend_env_l g sg) (elab_exp (EApp e1 e2)) (RT.open_with (elab_ty t') (elab_exp e2)) = RT.T_App _ _ _ _ _ _ dt1 dt2 in dt
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 8, "end_line": 523, "start_col": 0, "start_line": 461 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv let rec elab_ty_soundness (g:RT.fstar_top_env) (sg:stlc_env) (t:stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) = match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1)::sg) t2 in let arr_max : RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max let rec elab_exp_freevars (e:stlc_exp) : Lemma (freevars e `Set.equal` RT.freevars (elab_exp e)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam t e -> elab_ty_freevars t; elab_exp_freevars e | EApp e1 e2 -> elab_exp_freevars e1; elab_exp_freevars e2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
dd: STLC.Core.stlc_typing sg se st -> g: FStar.Reflection.Typing.fstar_top_env -> Prims.GTot (FStar.Reflection.Typing.tot_typing (STLC.Core.extend_env_l g sg) (STLC.Core.elab_exp se) (STLC.Core.elab_ty st))
Prims.GTot
[ "sometrivial", "" ]
[]
[ "STLC.Core.stlc_env", "STLC.Core.stlc_exp", "STLC.Core.stlc_ty", "STLC.Core.stlc_typing", "FStar.Reflection.Typing.fstar_top_env", "FStar.Reflection.Typing.T_Const", "STLC.Core.extend_env_l", "FStar.Stubs.Reflection.V2.Data.C_Unit", "FStar.Reflection.Typing.unit_ty", "FStar.Reflection.Typing.CT_Unit", "STLC.Core.var", "Prims.b2t", "FStar.Pervasives.Native.uu___is_Some", "STLC.Core.lookup", "FStar.Reflection.Typing.T_Var", "FStar.Stubs.Reflection.V2.Builtins.pack_namedv", "FStar.Reflection.Typing.make_namedv", "Prims.l_and", "FStar.Pervasives.Native.uu___is_None", "Prims.l_not", "FStar.Set.mem", "STLC.Core.freevars", "Prims.Cons", "FStar.Pervasives.Native.tuple2", "FStar.Pervasives.Native.Mktuple2", "STLC.Core.open_exp", "FStar.Reflection.Typing.typing", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Abs", "FStar.Reflection.Typing.mk_binder", "FStar.Reflection.Typing.pp_name_default", "STLC.Core.elab_ty", "FStar.Stubs.Reflection.V2.Data.Q_Explicit", "STLC.Core.elab_exp", "FStar.Stubs.TypeChecker.Core.tot_or_ghost", "FStar.Stubs.Reflection.Types.typ", "FStar.Stubs.TypeChecker.Core.E_Total", "FStar.Stubs.Reflection.V2.Data.Tv_Arrow", "FStar.Reflection.Typing.mk_comp", "FStar.Reflection.Typing.close_comp_typ", "FStar.Reflection.Typing.T_Abs", "FStar.Reflection.Typing.u_zero", "STLC.Core.elab_ty_soundness", "Prims.unit", "STLC.Core.elab_exp_freevars", "STLC.Core.fresh_is_fresh", "FStar.Reflection.Typing.tot_typing", "FStar.Reflection.Typing.extend_env", "STLC.Core.soundness", "STLC.Core.TArrow", "STLC.Core.EApp", "FStar.Reflection.Typing.open_with", "FStar.Reflection.Typing.T_App", "FStar.Reflection.Typing.mk_simple_binder" ]
[ "recursion" ]
false
false
false
false
false
let rec soundness (#sg: stlc_env) (#se: stlc_exp) (#st: stlc_ty) (dd: stlc_typing sg se st) (g: RT.fstar_top_env) : GTot (RT.tot_typing (extend_env_l g sg) (elab_exp se) (elab_ty st)) (decreases dd) =
match dd with | T_Unit _ -> RT.T_Const _ _ _ RT.CT_Unit | T_Var _ x -> RT.T_Var _ (R.pack_namedv (RT.make_namedv x)) | T_Lam _ t e t' x de -> let de:RT.tot_typing (extend_env_l g ((x, t) :: sg)) (elab_exp (open_exp e x)) (elab_ty t') = soundness de g in let de:RT.tot_typing (RT.extend_env (extend_env_l g sg) x (elab_ty t)) (elab_exp (open_exp e x)) (elab_ty t') = de in fresh_is_fresh sg; elab_exp_freevars e; let dd = RT.T_Abs (extend_env_l g sg) x (elab_ty t) (elab_exp e) (T.E_Total, elab_ty t') _ RT.pp_name_default R.Q_Explicit _ (elab_ty_soundness g sg t) de in dd | T_App _ e1 e2 t t' d1 d2 -> let dt1:RT.tot_typing (extend_env_l g sg) (elab_exp e1) (elab_ty (TArrow t t')) = soundness d1 g in let dt2:RT.tot_typing (extend_env_l g sg) (elab_exp e2) (elab_ty t) = soundness d2 g in let dt:RT.tot_typing (extend_env_l g sg) (elab_exp (EApp e1 e2)) (RT.open_with (elab_ty t') (elab_exp e2)) = RT.T_App _ _ _ _ _ _ dt1 dt2 in dt
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bcvli
val parse_bcvli : parser parse_bcvli_kind U32.t
val parse_bcvli : parser parse_bcvli_kind U32.t
let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 59, "end_line": 34, "start_col": 0, "start_line": 33 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser LowParse.Spec.BCVLI.parse_bcvli_kind FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.and_then", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.BCVLI.parse_bcvli_payload_kind", "FStar.UInt32.t", "LowParse.Spec.BCVLI.parse_bcvli_payload", "LowParse.Spec.Base.parser", "LowParse.Spec.BCVLI.parse_bcvli_kind" ]
[]
false
false
false
true
false
let parse_bcvli:parser parse_bcvli_kind U32.t =
(parse_bounded_integer_le 1) `and_then` parse_bcvli_payload
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bounded_bcvli'
val parse_bounded_bcvli' (min: nat) (max: nat{min <= max}) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max))
val parse_bounded_bcvli' (min: nat) (max: nat{min <= max}) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max))
let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 46, "end_line": 106, "start_col": 0, "start_line": 102 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> LowParse.Spec.Base.parser (LowParse.Spec.Combinators.parse_filter_kind LowParse.Spec.BCVLI.parse_bcvli_kind ) (LowParse.Spec.BoundedInt.bounded_int32 min max)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BCVLI.parse_bcvli_kind", "FStar.UInt32.t", "LowParse.Spec.BCVLI.parse_bcvli", "LowParse.Spec.BoundedInt.in_bounds", "LowParse.Spec.Base.parser", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BoundedInt.bounded_int32" ]
[]
false
false
false
false
false
let parse_bounded_bcvli' (min: nat) (max: nat{min <= max}) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) =
parse_filter parse_bcvli (in_bounds min max)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bcvli_payload
val parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t)
val parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t)
let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 44, "end_line": 19, "start_col": 0, "start_line": 15 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; }
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: LowParse.Spec.BoundedInt.bounded_integer 1 -> LowParse.Spec.Base.parser LowParse.Spec.BCVLI.parse_bcvli_payload_kind FStar.UInt32.t
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BoundedInt.bounded_integer", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "LowParse.Spec.Base.weaken", "LowParse.Spec.BCVLI.parse_bcvli_payload_kind", "LowParse.Spec.Combinators.parse_ret_kind", "FStar.UInt32.t", "LowParse.Spec.Combinators.parse_ret", "Prims.bool", "Prims.op_Equality", "Prims.int", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Combinators.parse_filter_refine", "Prims.op_GreaterThanOrEqual", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.Combinators.fail_parser", "LowParse.Spec.Base.parser" ]
[]
false
false
false
false
false
let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) =
if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind (((parse_bounded_integer_le 2) `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind (((parse_bounded_integer_le 4) `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t
false
STLC.Core.fst
STLC.Core.elab_open_commute'
val elab_open_commute' (e: stlc_exp) (x: var) (n: nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e)
val elab_open_commute' (e: stlc_exp) (x: var) (n: nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e)
let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); }
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 7, "end_line": 405, "start_col": 0, "start_line": 379 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> x: STLC.Core.var -> n: Prims.nat -> FStar.Pervasives.Lemma (ensures FStar.Reflection.Typing.subst_term (STLC.Core.elab_exp e) (FStar.Reflection.Typing.open_with_var x n) == STLC.Core.elab_exp (STLC.Core.open_exp' e x n)) (decreases e)
FStar.Pervasives.Lemma
[ "lemma", "" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.var", "Prims.nat", "STLC.Core.index", "STLC.Core.elab_open_commute'", "Prims.unit", "STLC.Core.stlc_ty", "FStar.Calc.calc_finish", "FStar.Stubs.Reflection.Types.term", "Prims.eq2", "STLC.Core.elab_exp", "STLC.Core.open_exp'", "STLC.Core.ELam", "FStar.Reflection.Typing.subst_term", "FStar.Stubs.Reflection.V2.Builtins.pack_ln", "FStar.Stubs.Reflection.V2.Data.Tv_Abs", "FStar.Reflection.Typing.mk_simple_binder", "FStar.Reflection.Typing.pp_name_default", "STLC.Core.elab_ty", "FStar.Reflection.Typing.open_with_var", "Prims.Cons", "FStar.Preorder.relation", "Prims.Nil", "FStar.Calc.calc_step", "Prims.op_Addition", "FStar.Calc.calc_init", "FStar.Calc.calc_pack", "Prims.squash", "STLC.Core.stlc_types_are_closed_core", "Prims.l_True", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec elab_open_commute' (e: stlc_exp) (x: var) (n: nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) =
match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc ( == ) { elab_exp (open_exp' (ELam t e) x n); ( == ) { () } elab_exp (ELam t (open_exp' e x (n + 1))); ( == ) { () } let open R in pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1)))); ( == ) { elab_open_commute' e x (n + 1) } let open R in pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1)))); ( == ) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); }
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.serialize_bounded_bcvli
val serialize_bounded_bcvli (min: nat) (max: nat { min <= max }) : Tot (serializer (parse_bounded_bcvli min max))
val serialize_bounded_bcvli (min: nat) (max: nat { min <= max }) : Tot (serializer (parse_bounded_bcvli min max))
let serialize_bounded_bcvli min max = assert_norm (parse_filter_refine (in_bounds min max) == bounded_int32 min max); serialize_ext _ (serialize_filter serialize_bcvli (in_bounds min max)) (parse_bounded_bcvli min max)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 33, "end_line": 145, "start_col": 0, "start_line": 139 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = () let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max) let parse_bounded_bcvli_size_correct (min: nat) (max: nat { min <= max }) : Lemma (parse_bounded_bcvli_size min `parses_at_least` parse_bounded_bcvli' min max /\ parse_bounded_bcvli_size max `parses_at_most` parse_bounded_bcvli' min max) = Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4) let parse_bounded_bcvli_kind_correct (min: nat) (max: nat { min <= max }) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)) = parse_bounded_bcvli_size_correct min max; parser_kind_prop_equiv (parse_filter_kind parse_bcvli_kind) (parse_bounded_bcvli' min max); parser_kind_prop_equiv (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max) let parse_bounded_bcvli min max = parse_bounded_bcvli_kind_correct min max; strengthen (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max) let parse_bounded_bcvli_eq min max input = parse_filter_eq parse_bcvli (in_bounds min max) input; parse_bcvli_eq input
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> LowParse.Spec.Base.serializer (LowParse.Spec.BCVLI.parse_bounded_bcvli min max)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.serialize_ext", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BCVLI.parse_bcvli_kind", "LowParse.Spec.Combinators.parse_filter_refine", "FStar.UInt32.t", "LowParse.Spec.BoundedInt.in_bounds", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BCVLI.parse_bcvli", "LowParse.Spec.Combinators.serialize_filter", "LowParse.Spec.BCVLI.serialize_bcvli", "LowParse.Spec.BCVLI.parse_bounded_bcvli_kind", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.BCVLI.parse_bounded_bcvli", "Prims.unit", "FStar.Pervasives.assert_norm", "Prims.eq2", "LowParse.Spec.Base.serializer" ]
[]
false
false
false
false
false
let serialize_bounded_bcvli min max =
assert_norm (parse_filter_refine (in_bounds min max) == bounded_int32 min max); serialize_ext _ (serialize_filter serialize_bcvli (in_bounds min max)) (parse_bounded_bcvli min max)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.serialize_bcvli
val serialize_bcvli : serializer parse_bcvli
val serialize_bcvli : serializer parse_bcvli
let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 67, "end_line": 98, "start_col": 0, "start_line": 98 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.serializer LowParse.Spec.BCVLI.parse_bcvli
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.BCVLI.bare_serialize_bcvli", "LowParse.Spec.Base.serializer", "LowParse.Spec.BCVLI.parse_bcvli_kind", "FStar.UInt32.t", "LowParse.Spec.BCVLI.parse_bcvli" ]
[]
false
false
false
true
false
let serialize_bcvli:serializer parse_bcvli =
bare_serialize_bcvli
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.bare_serialize_bcvli
val bare_serialize_bcvli (x: U32.t) : GTot bytes
val bare_serialize_bcvli (x: U32.t) : GTot bytes
let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x )
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 5, "end_line": 63, "start_col": 0, "start_line": 48 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b'
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt32.t -> Prims.GTot LowParse.Bytes.bytes
Prims.GTot
[ "sometrivial" ]
[]
[ "FStar.UInt32.t", "FStar.Seq.Base.append", "LowParse.Bytes.byte", "LowParse.Spec.Base.serialize", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.BoundedInt.serialize_bounded_integer_le", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "FStar.Seq.Base.empty", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.seq", "FStar.UInt32.__uint_to_t", "LowParse.Bytes.bytes" ]
[]
false
false
false
false
false
let bare_serialize_bcvli (x: U32.t) : GTot bytes =
let c1:bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) (if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bounded_bcvli_eq
val parse_bounded_bcvli_eq (min: nat) (max: nat { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_bcvli min max) input == ( match parse parse_bcvli input with | Some (n, consumed) -> if in_bounds min max n then Some (n, consumed) else None | _ -> None ))
val parse_bounded_bcvli_eq (min: nat) (max: nat { min <= max }) (input: bytes) : Lemma (parse (parse_bounded_bcvli min max) input == ( match parse parse_bcvli input with | Some (n, consumed) -> if in_bounds min max n then Some (n, consumed) else None | _ -> None ))
let parse_bounded_bcvli_eq min max input = parse_filter_eq parse_bcvli (in_bounds min max) input; parse_bcvli_eq input
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 22, "end_line": 137, "start_col": 0, "start_line": 134 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = () let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max) let parse_bounded_bcvli_size_correct (min: nat) (max: nat { min <= max }) : Lemma (parse_bounded_bcvli_size min `parses_at_least` parse_bounded_bcvli' min max /\ parse_bounded_bcvli_size max `parses_at_most` parse_bounded_bcvli' min max) = Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4) let parse_bounded_bcvli_kind_correct (min: nat) (max: nat { min <= max }) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)) = parse_bounded_bcvli_size_correct min max; parser_kind_prop_equiv (parse_filter_kind parse_bcvli_kind) (parse_bounded_bcvli' min max); parser_kind_prop_equiv (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max) let parse_bounded_bcvli min max = parse_bounded_bcvli_kind_correct min max; strengthen (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> input: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse (LowParse.Spec.BCVLI.parse_bounded_bcvli min max) input == (match LowParse.Spec.Base.parse LowParse.Spec.BCVLI.parse_bcvli input with | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ n consumed) -> (match LowParse.Spec.BoundedInt.in_bounds min max n with | true -> FStar.Pervasives.Native.Some (n, consumed) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (LowParse.Spec.BoundedInt.bounded_int32 min max * LowParse.Spec.Base.consumed_length input) | _ -> FStar.Pervasives.Native.None))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Bytes.bytes", "LowParse.Spec.BCVLI.parse_bcvli_eq", "Prims.unit", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.BCVLI.parse_bcvli_kind", "FStar.UInt32.t", "LowParse.Spec.BCVLI.parse_bcvli", "LowParse.Spec.BoundedInt.in_bounds" ]
[]
true
false
true
false
false
let parse_bounded_bcvli_eq min max input =
parse_filter_eq parse_bcvli (in_bounds min max) input; parse_bcvli_eq input
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bounded_bcvli_kind_correct
val parse_bounded_bcvli_kind_correct (min: nat) (max: nat{min <= max}) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max))
val parse_bounded_bcvli_kind_correct (min: nat) (max: nat{min <= max}) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max))
let parse_bounded_bcvli_kind_correct (min: nat) (max: nat { min <= max }) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)) = parse_bounded_bcvli_size_correct min max; parser_kind_prop_equiv (parse_filter_kind parse_bcvli_kind) (parse_bounded_bcvli' min max); parser_kind_prop_equiv (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 90, "end_line": 127, "start_col": 0, "start_line": 120 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = () let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max) let parse_bounded_bcvli_size_correct (min: nat) (max: nat { min <= max }) : Lemma (parse_bounded_bcvli_size min `parses_at_least` parse_bounded_bcvli' min max /\ parse_bounded_bcvli_size max `parses_at_most` parse_bounded_bcvli' min max) = Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parser_kind_prop (LowParse.Spec.BCVLI.parse_bounded_bcvli_kind min max) (LowParse.Spec.BCVLI.parse_bounded_bcvli' min max))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.parser_kind_prop_equiv", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.BCVLI.parse_bounded_bcvli_kind", "LowParse.Spec.BCVLI.parse_bounded_bcvli'", "Prims.unit", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BCVLI.parse_bcvli_kind", "LowParse.Spec.BCVLI.parse_bounded_bcvli_size_correct", "Prims.l_True", "Prims.squash", "LowParse.Spec.Base.parser_kind_prop", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
true
false
true
false
false
let parse_bounded_bcvli_kind_correct (min: nat) (max: nat{min <= max}) : Lemma (parser_kind_prop (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)) =
parse_bounded_bcvli_size_correct min max; parser_kind_prop_equiv (parse_filter_kind parse_bcvli_kind) (parse_bounded_bcvli' min max); parser_kind_prop_equiv (parse_bounded_bcvli_kind min max) (parse_bounded_bcvli' min max)
false
Steel.Utils.fst
Steel.Utils.emp_unit
val emp_unit (p: vprop) : Lemma (((p `star` emp) `equiv` p) /\ ((emp `star` p) `equiv` p)) [SMTPatOr [[SMTPat (p `star` emp)]; [SMTPat (emp `star` p)]]]
val emp_unit (p: vprop) : Lemma (((p `star` emp) `equiv` p) /\ ((emp `star` p) `equiv` p)) [SMTPatOr [[SMTPat (p `star` emp)]; [SMTPat (emp `star` p)]]]
let emp_unit (p:vprop) : Lemma (((p `star` emp) `equiv` p) /\ ((emp `star` p) `equiv` p)) [SMTPatOr [[SMTPat (p `star` emp)]; [SMTPat (emp `star` p)]]] = reveal_equiv (p `star` emp) p; reveal_equiv (emp `star` p) p; reveal_emp (); Steel.Memory.emp_unit (hp_of p); Steel.Memory.star_commutative Steel.Memory.emp (hp_of p)
{ "file_name": "lib/steel/Steel.Utils.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 60, "end_line": 75, "start_col": 0, "start_line": 66 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Utils open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference let pts_to_not_null (#a:Type) (#opened:inames) (#p:perm) (#v:FStar.Ghost.erased a) (r:ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null) = extract_info_raw (pts_to r p v) (r =!= null) (fun m -> pts_to_not_null r p v m) let change_slprop_ens (p:vprop) (q:vprop) (r:prop) (f:(m:mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ r))) : Steel unit p (fun _ -> q) (requires fun _ -> True) (ensures fun _ _ _ -> r) = rewrite_slprop p (q `star` pure r) (fun m -> f m; Steel.Memory.emp_unit (hp_of q); Steel.Memory.pure_star_interp (hp_of q) r m); elim_pure r let pure_as_ens (#p:prop) () : Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_ens (pure p) (pure p) p (Steel.Memory.pure_interp p) let rewrite #a (#p:a -> vprop) (x y:a) : Steel unit (p x) (fun _ -> p y) (requires fun _ -> x == y) (ensures fun _ _ _ -> True) = rewrite_slprop (p x) (p y) (fun _ -> ()) let extract_pure (p:prop) : Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p) = elim_pure p; intro_pure p let dup_pure (p:prop) : SteelT unit (pure p) (fun _ -> pure p `star` pure p) = extract_pure p; intro_pure p
{ "checked_file": "/", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Utils.fst" }
[ { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
p: Steel.Effect.Common.vprop -> FStar.Pervasives.Lemma (ensures Steel.Effect.Common.equiv (Steel.Effect.Common.star p Steel.Effect.Common.emp) p /\ Steel.Effect.Common.equiv (Steel.Effect.Common.star Steel.Effect.Common.emp p) p) [ SMTPatOr [ [SMTPat (Steel.Effect.Common.star p Steel.Effect.Common.emp)]; [SMTPat (Steel.Effect.Common.star Steel.Effect.Common.emp p)] ] ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Steel.Effect.Common.vprop", "Steel.Memory.star_commutative", "Steel.Memory.emp", "Steel.Effect.Common.hp_of", "Prims.unit", "Steel.Memory.emp_unit", "Steel.Effect.Common.reveal_emp", "Steel.Effect.Common.reveal_equiv", "Steel.Effect.Common.star", "Steel.Effect.Common.emp", "Prims.l_True", "Prims.squash", "Prims.l_and", "Steel.Effect.Common.equiv", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat_or", "Prims.list", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
true
false
true
false
false
let emp_unit (p: vprop) : Lemma (((p `star` emp) `equiv` p) /\ ((emp `star` p) `equiv` p)) [SMTPatOr [[SMTPat (p `star` emp)]; [SMTPat (emp `star` p)]]] =
reveal_equiv (p `star` emp) p; reveal_equiv (emp `star` p) p; reveal_emp (); Steel.Memory.emp_unit (hp_of p); Steel.Memory.star_commutative Steel.Memory.emp (hp_of p)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.bare_serialize_bcvli_correct
val bare_serialize_bcvli_correct:squash (serializer_correct parse_bcvli bare_serialize_bcvli)
val bare_serialize_bcvli_correct:squash (serializer_correct parse_bcvli bare_serialize_bcvli)
let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 54, "end_line": 94, "start_col": 0, "start_line": 67 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.squash (LowParse.Spec.Base.serializer_correct LowParse.Spec.BCVLI.parse_bcvli LowParse.Spec.BCVLI.bare_serialize_bcvli)
Prims.Tot
[ "total" ]
[]
[ "FStar.Classical.forall_intro", "FStar.UInt32.t", "Prims.l_imp", "Prims.l_True", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.BCVLI.bare_serialize_bcvli", "LowParse.Spec.Base.parse", "LowParse.Spec.BCVLI.parse_bcvli", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.length", "LowParse.Bytes.byte", "FStar.Classical.move_requires", "Prims.unit", "Prims.squash", "Prims.Nil", "FStar.Pervasives.pattern", "Prims.op_LessThanOrEqual", "FStar.UInt32.v", "Prims._assert", "FStar.Seq.Base.equal", "Prims.bool", "Prims.op_Equality", "Prims.int", "LowParse.Spec.Base.serialize", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.BoundedInt.serialize_bounded_integer_le", "Prims.b2t", "LowParse.Spec.BCVLI.parse_bcvli_eq", "FStar.Seq.Base.seq", "FStar.Seq.Base.slice", "LowParse.Spec.Base.parse_strong_prefix", "LowParse.Bytes.bytes", "FStar.UInt32.__uint_to_t" ]
[]
false
false
true
true
false
let bare_serialize_bcvli_correct:squash (serializer_correct parse_bcvli bare_serialize_bcvli) =
let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1:bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then assert (y `Seq.equal` sc1) else if U32.v c1 = 253 then (assert (U32.v x <= 65535); assert (y' `Seq.equal` (serialize (serialize_bounded_integer_le 2) x))) else assert (y' `Seq.equal` (serialize (serialize_bounded_integer_le 4) x)) in Classical.forall_intro (Classical.move_requires prf)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bounded_bcvli_size_correct
val parse_bounded_bcvli_size_correct (min: nat) (max: nat{min <= max}) : Lemma ((parse_bounded_bcvli_size min) `parses_at_least` (parse_bounded_bcvli' min max) /\ (parse_bounded_bcvli_size max) `parses_at_most` (parse_bounded_bcvli' min max))
val parse_bounded_bcvli_size_correct (min: nat) (max: nat{min <= max}) : Lemma ((parse_bounded_bcvli_size min) `parses_at_least` (parse_bounded_bcvli' min max) /\ (parse_bounded_bcvli_size max) `parses_at_most` (parse_bounded_bcvli' min max))
let parse_bounded_bcvli_size_correct (min: nat) (max: nat { min <= max }) : Lemma (parse_bounded_bcvli_size min `parses_at_least` parse_bounded_bcvli' min max /\ parse_bounded_bcvli_size max `parses_at_most` parse_bounded_bcvli' min max) = Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4)
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 84, "end_line": 118, "start_col": 0, "start_line": 108 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b' let bare_serialize_bcvli (x: U32.t) : GTot bytes = let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in Seq.append (serialize (serialize_bounded_integer_le 1) c1) ( if U32.v c1 <= 252 then Seq.empty else if U32.v c1 = 253 then serialize (serialize_bounded_integer_le 2) x else serialize (serialize_bounded_integer_le 4) x ) #push-options "--z3rlimit 32" let bare_serialize_bcvli_correct : squash (serializer_correct parse_bcvli bare_serialize_bcvli) = let prf (x: U32.t) : Lemma (let y = bare_serialize_bcvli x in parse parse_bcvli y == Some (x, Seq.length y)) = let y = bare_serialize_bcvli x in let c1 : bounded_integer 1 = if U32.v x <= 252 then x else if U32.v x <= 65535 then 253ul else 254ul in let sc1 = serialize (serialize_bounded_integer_le 1) c1 in parse_strong_prefix (parse_bounded_integer_le 1) sc1 y; let y' = Seq.slice y (Seq.length sc1) (Seq.length y) in parse_bcvli_eq y; if U32.v c1 <= 252 then begin assert (y `Seq.equal` sc1) end else if U32.v c1 = 253 then begin assert (U32.v x <= 65535); assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 2) x) end else begin assert (y' `Seq.equal` serialize (serialize_bounded_integer_le 4) x) end in Classical.forall_intro (Classical.move_requires prf) #pop-options let serialize_bcvli : serializer parse_bcvli = bare_serialize_bcvli let serialize_bcvli_eq x = () let parse_bounded_bcvli' (min: nat) (max: nat { min <= max }) : Tot (parser (parse_filter_kind parse_bcvli_kind) (bounded_int32 min max)) = parse_filter parse_bcvli (in_bounds min max)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parses_at_least (LowParse.Spec.BCVLI.parse_bounded_bcvli_size min) (LowParse.Spec.BCVLI.parse_bounded_bcvli' min max) /\ LowParse.Spec.Base.parses_at_most (LowParse.Spec.BCVLI.parse_bounded_bcvli_size max) (LowParse.Spec.BCVLI.parse_bounded_bcvli' min max))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.parser_kind_prop_equiv", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "Prims.unit", "FStar.Classical.forall_intro", "LowParse.Bytes.bytes", "Prims.eq2", "FStar.Pervasives.Native.option", "FStar.Pervasives.Native.tuple2", "FStar.UInt32.t", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Base.parse", "LowParse.Spec.BCVLI.parse_bcvli", "FStar.Pervasives.Native.None", "FStar.UInt32.v", "FStar.Pervasives.Native.Some", "FStar.Pervasives.Native.Mktuple2", "Prims.bool", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.slice", "LowParse.Bytes.byte", "FStar.Seq.Base.length", "Prims.op_LessThan", "Prims.op_Addition", "LowParse.Spec.BCVLI.parse_bcvli_eq", "LowParse.Spec.Combinators.parse_filter_refine", "LowParse.Spec.BoundedInt.in_bounds", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BCVLI.parse_bcvli_kind", "LowParse.Spec.Combinators.parse_filter_eq", "Prims.l_True", "Prims.squash", "Prims.l_and", "LowParse.Spec.Base.parses_at_least", "LowParse.Spec.BCVLI.parse_bounded_bcvli_size", "LowParse.Spec.BoundedInt.bounded_int32", "LowParse.Spec.BCVLI.parse_bounded_bcvli'", "LowParse.Spec.Base.parses_at_most", "Prims.Nil", "FStar.Pervasives.pattern" ]
[]
false
false
true
false
false
let parse_bounded_bcvli_size_correct (min: nat) (max: nat{min <= max}) : Lemma ((parse_bounded_bcvli_size min) `parses_at_least` (parse_bounded_bcvli' min max) /\ (parse_bounded_bcvli_size max) `parses_at_most` (parse_bounded_bcvli' min max)) =
Classical.forall_intro (parse_filter_eq parse_bcvli (in_bounds min max)); Classical.forall_intro parse_bcvli_eq; parser_kind_prop_equiv (parse_bounded_integer_kind 1) (parse_bounded_integer_le 1); parser_kind_prop_equiv (parse_bounded_integer_kind 2) (parse_bounded_integer_le 2); parser_kind_prop_equiv (parse_bounded_integer_kind 4) (parse_bounded_integer_le 4)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bcvli_eq
val parse_bcvli_eq (b: bytes) : Lemma (parse parse_bcvli b == (match parse (parse_bounded_integer_le 1) b with | None -> None | Some (x32, consumed_x) -> let x = U32.v x32 in if x <= 252 then Some (x32, consumed_x) else let b' = Seq.slice b consumed_x (Seq.length b) in if x = 253 then match parse (parse_bounded_integer_le 2) b' with | None -> None | Some (y, consumed_y) -> if U32.v y < 253 then None (* redundant representations not supported, non-malleability *) else Some (y, consumed_x + consumed_y) else if x = 254 then match parse (parse_bounded_integer_le 4) b' with | None -> None | Some (y, consumed_y) -> if U32.v y < 65536 then None (* redundant representations not supported, non-malleability *) else Some (y, consumed_x + consumed_y) else None (* 64-bit integers not supported *) ))
val parse_bcvli_eq (b: bytes) : Lemma (parse parse_bcvli b == (match parse (parse_bounded_integer_le 1) b with | None -> None | Some (x32, consumed_x) -> let x = U32.v x32 in if x <= 252 then Some (x32, consumed_x) else let b' = Seq.slice b consumed_x (Seq.length b) in if x = 253 then match parse (parse_bounded_integer_le 2) b' with | None -> None | Some (y, consumed_y) -> if U32.v y < 253 then None (* redundant representations not supported, non-malleability *) else Some (y, consumed_x + consumed_y) else if x = 254 then match parse (parse_bounded_integer_le 4) b' with | None -> None | Some (y, consumed_y) -> if U32.v y < 65536 then None (* redundant representations not supported, non-malleability *) else Some (y, consumed_x + consumed_y) else None (* 64-bit integers not supported *) ))
let parse_bcvli_eq b = and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b'
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 79, "end_line": 46, "start_col": 0, "start_line": 36 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32" let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 ) #pop-options let parse_bcvli : parser parse_bcvli_kind U32.t = parse_bounded_integer_le 1 `and_then` parse_bcvli_payload
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: LowParse.Bytes.bytes -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Base.parse LowParse.Spec.BCVLI.parse_bcvli b == (match LowParse.Spec.Base.parse (LowParse.Spec.BoundedInt.parse_bounded_integer_le 1) b with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ x32 consumed_x) -> let x = FStar.UInt32.v x32 in (match x <= 252 with | true -> FStar.Pervasives.Native.Some (x32, consumed_x) | _ -> let b' = FStar.Seq.Base.slice b consumed_x (FStar.Seq.Base.length b) in (match x = 253 with | true -> (match LowParse.Spec.Base.parse (LowParse.Spec.BoundedInt.parse_bounded_integer_le 2) b' with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> (match FStar.UInt32.v y < 253 with | true -> FStar.Pervasives.Native.None | _ -> FStar.Pervasives.Native.Some (y, consumed_x + consumed_y)) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b)) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b) | _ -> (match x = 254 with | true -> (match LowParse.Spec.Base.parse (LowParse.Spec.BoundedInt.parse_bounded_integer_le 4) b' with | FStar.Pervasives.Native.None #_ -> FStar.Pervasives.Native.None | FStar.Pervasives.Native.Some #_ (FStar.Pervasives.Native.Mktuple2 #_ #_ y consumed_y) -> (match FStar.UInt32.v y < 65536 with | true -> FStar.Pervasives.Native.None | _ -> FStar.Pervasives.Native.Some (y, consumed_x + consumed_y)) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b)) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b) | _ -> FStar.Pervasives.Native.None) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b)) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b) ) <: FStar.Pervasives.Native.option (FStar.UInt32.t * LowParse.Spec.Base.consumed_length b)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "LowParse.Bytes.bytes", "LowParse.Spec.Base.parse", "LowParse.Spec.BoundedInt.bounded_integer", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "LowParse.Spec.Base.consumed_length", "LowParse.Spec.Combinators.parse_filter_eq", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.bool", "Prims.unit", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Combinators.parse_filter_refine", "FStar.UInt32.t", "LowParse.Spec.Combinators.parse_filter", "FStar.Seq.Base.seq", "LowParse.Bytes.byte", "FStar.Seq.Base.slice", "FStar.Seq.Base.length", "LowParse.Spec.Combinators.and_then_eq", "LowParse.Spec.BCVLI.parse_bcvli_payload_kind", "LowParse.Spec.BCVLI.parse_bcvli_payload" ]
[]
false
false
true
false
false
let parse_bcvli_eq b =
and_then_eq (parse_bounded_integer_le 1) parse_bcvli_payload b; match parse (parse_bounded_integer_le 1) b with | None -> () | Some (x32, consumed_x) -> let b' = Seq.slice b consumed_x (Seq.length b) in parse_synth_eq ((parse_bounded_integer_le 2) `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 2) (fun x -> U32.v x >= 253) b'; parse_synth_eq ((parse_bounded_integer_le 4) `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b'; parse_filter_eq (parse_bounded_integer_le 4) (fun x -> U32.v x >= 65536) b'
false
STLC.Core.fst
STLC.Core.check
val check (g: R.env) (sg: list (var & stlc_ty)) (e: stlc_exp{ln e /\ ((freevars e) `Set.subset` (vars_of_env sg))}) : T.Tac (t: stlc_ty & stlc_typing sg e t)
val check (g: R.env) (sg: list (var & stlc_ty)) (e: stlc_exp{ln e /\ ((freevars e) `Set.subset` (vars_of_env sg))}) : T.Tac (t: stlc_ty & stlc_typing sg e t)
let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1))
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 49, "end_line": 279, "start_col": 0, "start_line": 238 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
g: FStar.Stubs.Reflection.Types.env -> sg: Prims.list (STLC.Core.var * STLC.Core.stlc_ty) -> e: STLC.Core.stlc_exp {STLC.Core.ln e /\ FStar.Set.subset (STLC.Core.freevars e) (STLC.Core.vars_of_env sg)} -> FStar.Tactics.Effect.Tac (Prims.dtuple2 STLC.Core.stlc_ty (fun t -> STLC.Core.stlc_typing sg e t))
FStar.Tactics.Effect.Tac
[]
[]
[ "FStar.Stubs.Reflection.Types.env", "Prims.list", "FStar.Pervasives.Native.tuple2", "STLC.Core.var", "STLC.Core.stlc_ty", "STLC.Core.stlc_exp", "Prims.l_and", "Prims.b2t", "STLC.Core.ln", "FStar.Set.subset", "STLC.Core.freevars", "STLC.Core.vars_of_env", "Prims.Mkdtuple2", "STLC.Core.stlc_typing", "STLC.Core.TUnit", "STLC.Core.EUnit", "STLC.Core.T_Unit", "Prims.dtuple2", "STLC.Core.lookup", "FStar.Tactics.V2.Derived.fail", "STLC.Core.EVar", "FStar.Pervasives.Native.__proj__Some__item__v", "STLC.Core.T_Var", "Prims.Cons", "FStar.Pervasives.Native.Mktuple2", "STLC.Core.open_exp", "STLC.Core.TArrow", "STLC.Core.T_Lam", "STLC.Core.check", "Prims.unit", "STLC.Core.freevars_open", "STLC.Core.fresh_is_fresh", "STLC.Core.fresh", "Prims.op_Equality", "STLC.Core.T_App", "Prims.bool", "FStar.Printf.sprintf", "STLC.Core.ty_to_string" ]
[ "recursion" ]
false
true
false
false
false
let rec check (g: R.env) (sg: list (var & stlc_ty)) (e: stlc_exp{ln e /\ ((freevars e) `Set.subset` (vars_of_env sg))}) : T.Tac (t: stlc_ty & stlc_typing sg e t) =
match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> (match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |)) | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody , dbody |) = check g ((x, t) :: sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1 , d1 |) = check g sg e1 in let (| t2 , d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1))
false
STLC.Core.fst
STLC.Core.elab_exp_freevars
val elab_exp_freevars (e: stlc_exp) : Lemma ((freevars e) `Set.equal` (RT.freevars (elab_exp e)))
val elab_exp_freevars (e: stlc_exp) : Lemma ((freevars e) `Set.equal` (RT.freevars (elab_exp e)))
let rec elab_exp_freevars (e:stlc_exp) : Lemma (freevars e `Set.equal` RT.freevars (elab_exp e)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam t e -> elab_ty_freevars t; elab_exp_freevars e | EApp e1 e2 -> elab_exp_freevars e1; elab_exp_freevars e2
{ "file_name": "examples/dsls/stlc/STLC.Core.fst", "git_rev": "10183ea187da8e8c426b799df6c825e24c0767d3", "git_url": "https://github.com/FStarLang/FStar.git", "project_name": "FStar" }
{ "end_col": 26, "end_line": 459, "start_col": 0, "start_line": 448 }
module STLC.Core module T = FStar.Tactics.V2 module R = FStar.Reflection.V2 module L = FStar.List.Tot module RT = FStar.Reflection.Typing type stlc_ty = | TUnit | TArrow : stlc_ty -> stlc_ty -> stlc_ty let var = nat let index = nat noeq type stlc_exp = | EUnit : stlc_exp | EBVar : index -> stlc_exp | EVar : var -> stlc_exp | ELam : stlc_ty -> stlc_exp -> stlc_exp | EApp : stlc_exp -> stlc_exp -> stlc_exp let rec size (e:stlc_exp) : nat = match e with | EUnit | EBVar _ | EVar _ -> 1 | ELam _ e -> 1 + size e | EApp e1 e2 -> 1 + size e1 + size e2 let rec ln' (e:stlc_exp) (n:int) : bool = match e with | EUnit | EVar _ -> true | EBVar m -> m <= n | ELam _ e -> ln' e (n + 1) | EApp e1 e2 -> ln' e1 n && ln' e2 n let ln e = ln' e (-1) let rec open_exp' (e:stlc_exp) (v:var) (n:index) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> EVar m | EBVar m -> if m = n then EVar v else EBVar m | ELam t e -> ELam t (open_exp' e v (n + 1)) | EApp e1 e2 -> EApp (open_exp' e1 v n) (open_exp' e2 v n) let rec close_exp' (e:stlc_exp) (v:var) (n:nat) : e':stlc_exp { size e == size e'} = match e with | EUnit -> EUnit | EVar m -> if m = v then EBVar n else EVar m | EBVar m -> EBVar m | ELam t e -> ELam t (close_exp' e v (n + 1)) | EApp e1 e2 -> EApp (close_exp' e1 v n) (close_exp' e2 v n) let open_exp e v = open_exp' e v 0 let close_exp e v = close_exp' e v 0 let rec open_close' (e:stlc_exp) (x:var) (n:nat { ln' e (n - 1) }) : Lemma (open_exp' (close_exp' e x n) x n == e) = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_close' e x (n + 1) | EApp e1 e2 -> open_close' e1 x n; open_close' e2 x n let open_close (e:stlc_exp) (x:var) : Lemma (requires ln e) (ensures open_exp (close_exp e x) x == e) [SMTPat (open_exp (close_exp e x) x)] = open_close' e x 0 let rec open_exp_ln (e:stlc_exp) (v:var) (n:index) (m:int) : Lemma (requires ln' e n /\ m == n - 1) (ensures ln' (open_exp' e v n) m) [SMTPat (ln' e n); SMTPat (ln' (open_exp' e v n) m)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> open_exp_ln e v (n + 1) (m + 1) | EApp e1 e2 -> open_exp_ln e1 v n m; open_exp_ln e2 v n m let rec close_exp_ln (e:stlc_exp) (v:var) (n:nat) : Lemma (requires ln' e (n - 1)) (ensures ln' (close_exp' e v n) n) [SMTPat (ln' (close_exp' e v n) n)] = match e with | EUnit -> () | EVar _ -> () | EBVar m -> () | ELam _ e -> close_exp_ln e v (n + 1) | EApp e1 e2 -> close_exp_ln e1 v n; close_exp_ln e2 v n let rec freevars (e:stlc_exp) : Set.set var = match e with | EUnit | EBVar _ -> Set.empty | EVar x -> Set.singleton x | ELam _ e -> freevars e | EApp e1 e2 -> freevars e1 `Set.union` freevars e2 let rec closed (e:stlc_exp) : b:bool { b <==> (freevars e `Set.equal` Set.empty) } = match e with | EUnit | EBVar _ -> true | EVar x -> assert (x `Set.mem` freevars e); false | ELam _ e -> closed e | EApp e1 e2 -> closed e1 && closed e2 let rec freevars_open (e:stlc_exp) (x:var) (n:nat) : Lemma (freevars (open_exp' e x n) `Set.subset` (freevars e `Set.union` Set.singleton x)) = match e with | EUnit | EBVar _ | EVar _ -> () | ELam _ e -> freevars_open e x (n + 1) | EApp e1 e2 -> freevars_open e1 x n; freevars_open e2 x n let stlc_env = list (var & stlc_ty) let lookup (e:list (var & 'a)) (x:var) : option 'a = L.assoc x e let max (n1 n2:nat) = if n1 < n2 then n2 else n1 let rec fresh (e:list (var & 'a)) : var = match e with | [] -> 0 | hd :: tl -> max (fresh tl) (fst hd) + 1 let _ = assert (fresh [1,();2,();3,();4,()] == 8) // odd.. but ok let rec fresh_not_mem (e:list (var & 'a)) (elt: (var & 'a)) : Lemma (ensures L.memP elt e ==> fresh e > fst elt) = match e with | [] -> () | hd :: tl -> fresh_not_mem tl elt let lookup_mem (e:list (var & 'a)) (x:var) : Lemma (requires Some? (lookup e x)) (ensures exists elt. L.memP elt e /\ fst elt == x) = let Some y = lookup e x in List.Tot.Properties.assoc_memP_some x y e let fresh_is_fresh (e:list (var & 'a)) : Lemma (None? (lookup e (fresh e))) = match lookup e (fresh e) with | None -> () | Some _ -> lookup_mem e (fresh e); FStar.Classical.forall_intro (fresh_not_mem e) [@@erasable] noeq type stlc_typing : stlc_env -> stlc_exp -> stlc_ty -> Type = | T_Unit : g:stlc_env -> stlc_typing g EUnit TUnit | T_Var : g:stlc_env -> x:var { Some? (lookup g x) } -> stlc_typing g (EVar x) (Some?.v (lookup g x)) | T_Lam : g:stlc_env -> t:stlc_ty -> e:stlc_exp -> t':stlc_ty -> x:var { None? (lookup g x) /\ ~ (Set.mem x (freevars e)) } -> stlc_typing ((x,t)::g) (open_exp e x) t' -> stlc_typing g (ELam t e) (TArrow t t') | T_App : g:stlc_env -> e1:stlc_exp -> e2:stlc_exp -> t:stlc_ty -> t':stlc_ty -> stlc_typing g e1 (TArrow t t') -> stlc_typing g e2 t -> stlc_typing g (EApp e1 e2) t' let tun = R.pack_ln R.Tv_Unknown let rec ty_to_string' should_paren (t:stlc_ty) : Tot string (decreases t) = match t with | TUnit -> "unit" | TArrow t1 t2 -> let t = Printf.sprintf "%s -> %s" (ty_to_string' true t1) (ty_to_string' false t2) in if should_paren then Printf.sprintf "(%s)" t else t let ty_to_string = ty_to_string' false let mem_intension_pat (#a:eqtype) (x:a) (f:(a -> Tot bool)) : Lemma (ensures FStar.Set.(mem x (intension f) = f x)) [SMTPat FStar.Set.(mem x (intension f))] = Set.mem_intension x f let contains (sg:list (var & stlc_ty)) (x:var) = Some? (lookup sg x) let vars_of_env (sg:list (var & stlc_ty)) : GTot (Set.set var) = Set.intension (contains sg) let rec check (g:R.env) (sg:list (var & stlc_ty)) (e:stlc_exp { ln e /\ (freevars e `Set.subset` vars_of_env sg)}) : T.Tac (t:stlc_ty & stlc_typing sg e t) = match e with | EUnit -> let d = T_Unit sg in (| TUnit, d |) | EVar n -> begin match lookup sg n with | None -> T.fail "Ill-typed" | Some t -> let d = T_Var sg n in (| t, d |) end | ELam t e -> let x = fresh sg in fresh_is_fresh sg; freevars_open e x 0; let (| tbody, dbody |) = check g ((x,t)::sg) (open_exp e x) in (| TArrow t tbody, T_Lam sg t e tbody x dbody |) | EApp e1 e2 -> let (| t1, d1 |) = check g sg e1 in let (| t2, d2 |) = check g sg e2 in match t1 with | TArrow t2' t -> if t2' = t2 then (| t, T_App _ _ _ _ _ d1 d2 |) else T.fail (Printf.sprintf "Expected argument of type %s got %s" (ty_to_string t2') (ty_to_string t2)) | _ -> T.fail (Printf.sprintf "Expected an arrow, got %s" (ty_to_string t1)) let rec elab_ty (t:stlc_ty) : R.term = let open R in match t with | TUnit -> R.pack_ln (R.Tv_FVar (R.pack_fv unit_lid)) | TArrow t1 t2 -> let t1 = elab_ty t1 in let t2 = elab_ty t2 in R.pack_ln (R.Tv_Arrow (RT.mk_simple_binder RT.pp_name_default t1) (R.pack_comp (C_Total t2))) let rec elab_exp (e:stlc_exp) : Tot R.term (decreases (size e)) = let open R in match e with | EUnit -> pack_ln (Tv_Const C_Unit) | EBVar n -> let bv = R.pack_bv (RT.make_bv n) in R.pack_ln (Tv_BVar bv) | EVar n -> let bv = R.pack_namedv (RT.make_namedv n) in R.pack_ln (Tv_Var bv) | ELam t e -> let t = elab_ty t in let e = elab_exp e in R.pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default t) e) | EApp e1 e2 -> let e1 = elab_exp e1 in let e2 = elab_exp e2 in R.pack_ln (Tv_App e1 (e2, Q_Explicit)) let extend_env_l (g:R.env) (sg:stlc_env) = L.fold_right (fun (x, t) g -> RT.extend_env g x (elab_ty t)) sg g let rec extend_env_l_lookup_bvar (g:R.env) (sg:stlc_env) (x:var) : Lemma (requires (forall x. RT.lookup_bvar g x == None)) (ensures ( match lookup sg x with | Some t -> RT.lookup_bvar (extend_env_l g sg) x == Some (elab_ty t) | None -> RT.lookup_bvar (extend_env_l g sg) x == None)) (decreases sg) [SMTPat (RT.lookup_bvar (extend_env_l g sg) x)] = match sg with | [] -> () | hd :: tl -> extend_env_l_lookup_bvar g tl x open FStar.Calc //key lemma about STLC types: Their elaborations are closed let rec stlc_types_are_closed_core (ty:stlc_ty) (ss:RT.subst) : Lemma (ensures RT.subst_term (elab_ty ty) ss == elab_ty ty) (decreases ty) [SMTPat (RT.subst_term (elab_ty ty) ss)] = match ty with | TUnit -> () | TArrow t1 t2 -> stlc_types_are_closed_core t1 ss; stlc_types_are_closed_core t2 (RT.shift_subst ss) let stlc_types_are_closed1 (ty:stlc_ty) (v:R.term) : Lemma (RT.open_with (elab_ty ty) v == elab_ty ty) [SMTPat (RT.open_with (elab_ty ty) v)] = stlc_types_are_closed_core ty [ RT.DT 0 v ]; RT.open_with_spec (elab_ty ty) v let stlc_types_are_closed2 (ty:stlc_ty) (x:R.var) : Lemma (RT.close_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.close_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.ND x 0 ]; RT.close_term_spec (elab_ty ty) x let stlc_types_are_closed3 (ty:stlc_ty) (x:R.var) : Lemma (RT.open_term (elab_ty ty) x == elab_ty ty) [SMTPat (RT.open_term (elab_ty ty) x)] = stlc_types_are_closed_core ty [ RT.DT 0 (RT.var_as_term x) ]; RT.open_term_spec (elab_ty ty) x let rec elab_ty_freevars (ty:stlc_ty) : Lemma (RT.freevars (elab_ty ty) `Set.equal` Set.empty) = match ty with | TUnit -> () | TArrow t1 t2 -> elab_ty_freevars t1; elab_ty_freevars t2 let rec elab_open_commute' (e:stlc_exp) (x:var) (n:nat) : Lemma (ensures RT.subst_term (elab_exp e) (RT.open_with_var x n) == elab_exp (open_exp' e x n)) (decreases e) = match e with | EUnit -> () | EBVar _ -> () | EVar _ -> () | EApp e1 e2 -> elab_open_commute' e1 x n; elab_open_commute' e2 x n | ELam t e -> calc (==) { elab_exp (open_exp' (ELam t e) x n); (==) {} elab_exp (ELam t (open_exp' e x (n + 1))); (==) { } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp (open_exp' e x (n + 1))))); (==) { elab_open_commute' e x (n + 1) } R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (RT.subst_term (elab_exp e) RT.(open_with_var x (n + 1))))); (==) { stlc_types_are_closed_core t (RT.open_with_var x n) } RT.subst_term R.(pack_ln (Tv_Abs (RT.mk_simple_binder RT.pp_name_default (elab_ty t)) (elab_exp e))) RT.(open_with_var x n); } let elab_open_commute (e:stlc_exp) (x:var) : Lemma (RT.open_term (elab_exp e) x == elab_exp (open_exp e x)) [SMTPat (RT.open_term (elab_exp e) x)] = elab_open_commute' e x 0; RT.open_term_spec (elab_exp e) x let rec extend_env_l_lookup_fvar (g:R.env) (sg:stlc_env) (fv:R.fv) : Lemma (ensures RT.lookup_fvar (extend_env_l g sg) fv == RT.lookup_fvar g fv) [SMTPat (RT.lookup_fvar (extend_env_l g sg) fv)] = match sg with | [] -> () | hd::tl -> extend_env_l_lookup_fvar g tl fv let rec elab_ty_soundness (g:RT.fstar_top_env) (sg:stlc_env) (t:stlc_ty) : GTot (RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.u_zero)) (decreases t) = match t with | TUnit -> RT.T_FVar _ RT.unit_fv | TArrow t1 t2 -> let t1_ok = elab_ty_soundness g sg t1 in let x = fresh sg in fresh_is_fresh sg; elab_ty_freevars t2; let t2_ok = elab_ty_soundness g ((x, t1)::sg) t2 in let arr_max : RT.tot_typing (extend_env_l g sg) (elab_ty t) (RT.tm_type RT.(u_max u_zero u_zero)) = RT.T_Arrow _ x (elab_ty t1) (elab_ty t2) _ _ RT.pp_name_default R.Q_Explicit T.E_Total _ _ t1_ok t2_ok in RT.simplify_umax arr_max
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "FStar.Tactics.V2.fst.checked", "FStar.Tactics.Effect.fsti.checked", "FStar.Squash.fsti.checked", "FStar.Set.fsti.checked", "FStar.Reflection.V2.fst.checked", "FStar.Reflection.Typing.fsti.checked", "FStar.Printf.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.List.Tot.Properties.fst.checked", "FStar.List.Tot.fst.checked", "FStar.Classical.fsti.checked", "FStar.Calc.fsti.checked" ], "interface_file": false, "source_file": "STLC.Core.fst" }
[ { "abbrev": false, "full_module": "FStar.Calc", "short_module": null }, { "abbrev": true, "full_module": "FStar.Reflection.Typing", "short_module": "RT" }, { "abbrev": true, "full_module": "FStar.List.Tot", "short_module": "L" }, { "abbrev": true, "full_module": "FStar.Reflection.V2", "short_module": "R" }, { "abbrev": true, "full_module": "FStar.Tactics.V2", "short_module": "T" }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "STLC", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
e: STLC.Core.stlc_exp -> FStar.Pervasives.Lemma (ensures FStar.Set.equal (STLC.Core.freevars e) (FStar.Reflection.Typing.freevars (STLC.Core.elab_exp e)))
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "STLC.Core.stlc_exp", "STLC.Core.index", "STLC.Core.var", "STLC.Core.stlc_ty", "STLC.Core.elab_exp_freevars", "Prims.unit", "STLC.Core.elab_ty_freevars", "Prims.l_True", "Prims.squash", "FStar.Set.equal", "STLC.Core.freevars", "FStar.Reflection.Typing.freevars", "STLC.Core.elab_exp", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec elab_exp_freevars (e: stlc_exp) : Lemma ((freevars e) `Set.equal` (RT.freevars (elab_exp e))) =
match e with | EUnit | EBVar _ | EVar _ -> () | ELam t e -> elab_ty_freevars t; elab_exp_freevars e | EApp e1 e2 -> elab_exp_freevars e1; elab_exp_freevars e2
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_t
val matrix_t : n1: Lib.IntTypes.size_t -> n2: Lib.IntTypes.size_t{Lib.IntTypes.v n1 * Lib.IntTypes.v n2 <= Lib.IntTypes.max_size_t} -> Type0
let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 25, "end_line": 32, "start_col": 0, "start_line": 31 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n1: Lib.IntTypes.size_t -> n2: Lib.IntTypes.size_t{Lib.IntTypes.v n1 * Lib.IntTypes.v n2 <= Lib.IntTypes.max_size_t} -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Lib.Buffer.lbuffer", "Hacl.Impl.Matrix.elem", "Lib.IntTypes.op_Star_Bang" ]
[]
false
false
false
false
true
let matrix_t (n1: size_t) (n2: size_t{v n1 * v n2 <= max_size_t}) =
lbuffer elem (n1 *! n2)
false
LowParse.Spec.BCVLI.fst
LowParse.Spec.BCVLI.parse_bcvli_payload_and_then_cases_injective
val parse_bcvli_payload_and_then_cases_injective:squash (and_then_cases_injective parse_bcvli_payload )
val parse_bcvli_payload_and_then_cases_injective:squash (and_then_cases_injective parse_bcvli_payload )
let parse_bcvli_payload_and_then_cases_injective : squash (and_then_cases_injective parse_bcvli_payload) = and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq (parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2 )
{ "file_name": "src/lowparse/LowParse.Spec.BCVLI.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 29, "start_col": 0, "start_line": 23 }
module LowParse.Spec.BCVLI open LowParse.Spec.Combinators // for parse_ret module U32 = FStar.UInt32 module Seq = FStar.Seq inline_for_extraction let parse_bcvli_payload_kind = { parser_kind_low = 0; parser_kind_high = Some 4; parser_kind_subkind = Some ParserStrong; parser_kind_metadata = None; } let parse_bcvli_payload (x: bounded_integer 1) : Tot (parser parse_bcvli_payload_kind U32.t) = if U32.v x <= 252 then weaken parse_bcvli_payload_kind (parse_ret (x <: U32.t)) else if U32.v x = 253 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 2 `parse_filter` (fun x -> U32.v x >= 253)) `parse_synth` (fun x -> (x <: U32.t))) else if U32.v x = 254 then weaken parse_bcvli_payload_kind ((parse_bounded_integer_le 4 `parse_filter` (fun x -> U32.v x >= 65536)) `parse_synth` (fun x -> (x <: U32.t))) else fail_parser parse_bcvli_payload_kind U32.t #push-options "--z3rlimit 32"
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Combinators.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Classical.fsti.checked" ], "interface_file": true, "source_file": "LowParse.Spec.BCVLI.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Combinators // for parse_ret", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 32, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.squash (LowParse.Spec.Combinators.and_then_cases_injective LowParse.Spec.BCVLI.parse_bcvli_payload )
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.and_then_cases_injective_intro", "LowParse.Spec.BoundedInt.bounded_integer", "FStar.UInt32.t", "LowParse.Spec.BCVLI.parse_bcvli_payload", "LowParse.Bytes.bytes", "LowParse.Spec.Combinators.parse_synth_eq", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.BoundedInt.parse_bounded_integer_kind", "LowParse.Spec.Combinators.parse_filter_refine", "Prims.op_GreaterThanOrEqual", "FStar.UInt32.v", "Prims.bool", "LowParse.Spec.Combinators.parse_filter", "LowParse.Spec.BoundedInt.parse_bounded_integer_le", "Prims.unit" ]
[]
false
false
true
false
false
let parse_bcvli_payload_and_then_cases_injective:squash (and_then_cases_injective parse_bcvli_payload ) =
and_then_cases_injective_intro parse_bcvli_payload (fun x1 x2 b1 b2 -> parse_synth_eq ((parse_bounded_integer_le 2) `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b1; parse_synth_eq ((parse_bounded_integer_le 2) `parse_filter` (fun x -> U32.v x >= 253)) (fun x -> (x <: U32.t)) b2; parse_synth_eq ((parse_bounded_integer_le 4) `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b1; parse_synth_eq ((parse_bounded_integer_le 4) `parse_filter` (fun x -> U32.v x >= 65536)) (fun x -> (x <: U32.t)) b2)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_create
val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2))
val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2))
let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 52, "start_col": 0, "start_line": 49 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n1: Lib.IntTypes.size_t -> n2: Lib.IntTypes.size_t { 0 < Lib.IntTypes.v n1 * Lib.IntTypes.v n2 /\ Lib.IntTypes.v n1 * Lib.IntTypes.v n2 <= Lib.IntTypes.max_size_t } -> FStar.HyperStack.ST.StackInline (Hacl.Impl.Matrix.matrix_t n1 n2)
FStar.HyperStack.ST.StackInline
[]
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Prims.op_LessThanOrEqual", "Lib.IntTypes.max_size_t", "Lib.Buffer.create", "Hacl.Impl.Matrix.elem", "Lib.IntTypes.u16", "Lib.Buffer.lbuffer", "Lib.IntTypes.int_t", "Lib.IntTypes.size", "FStar.Pervasives.normalize_term", "Lib.IntTypes.size_nat", "Hacl.Impl.Matrix.matrix_t" ]
[]
false
true
false
false
false
let matrix_create n1 n2 =
[@@ inline_let ]let len = size (normalize_term (v n1 * v n2)) in create len (u16 0)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.op_String_Assignment
val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x)
val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x)
let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 103, "start_col": 0, "start_line": 103 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Hacl.Impl.Matrix.matrix_t n1 n2 -> ij: (Lib.IntTypes.size_t * Lib.IntTypes.size_t) { let _ = ij in (let FStar.Pervasives.Native.Mktuple2 #_ #_ i j = _ in Lib.IntTypes.v i < Lib.IntTypes.v n1 /\ Lib.IntTypes.v j < Lib.IntTypes.v n2) <: Type0 } -> x: Hacl.Impl.Matrix.elem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "Prims.op_LessThan", "Lib.IntTypes.int_t", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.mset", "Prims.unit" ]
[]
false
true
false
false
false
let ( .[]<- ) #n1 #n2 m (i, j) x =
mset m i j x
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.op_String_Access
val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j))
val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j))
let op_String_Access #n1 #n2 m (i,j) = mget m i j
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 95, "start_col": 0, "start_line": 95 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Hacl.Impl.Matrix.matrix_t n1 n2 -> ij: (Lib.IntTypes.size_t * Lib.IntTypes.size_t) { let _ = ij in (let FStar.Pervasives.Native.Mktuple2 #_ #_ i j = _ in Lib.IntTypes.v i < Lib.IntTypes.v n1 /\ Lib.IntTypes.v j < Lib.IntTypes.v n2) <: Type0 } -> FStar.HyperStack.ST.Stack Hacl.Impl.Matrix.elem
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "FStar.Pervasives.Native.tuple2", "Prims.l_and", "Prims.op_LessThan", "Lib.IntTypes.int_t", "Hacl.Impl.Matrix.mget", "Hacl.Impl.Matrix.elem" ]
[]
false
true
false
false
false
let ( .[] ) #n1 #n2 m (i, j) =
mget m i j
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mset
val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x)
val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x)
let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 87, "start_col": 0, "start_line": 85 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_t{Lib.IntTypes.v j < Lib.IntTypes.v n2} -> x: Hacl.Impl.Matrix.elem -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Hacl.Impl.Matrix.elem", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "Spec.Matrix.index_lt" ]
[]
false
true
false
false
false
let mset #n1 #n2 a i j x =
M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.get
val get : h: FStar.Monotonic.HyperStack.mem -> m: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_nat{i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat{j < Lib.IntTypes.v n2} -> Prims.GTot Spec.Matrix.elem
let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 69, "end_line": 107, "start_col": 0, "start_line": 107 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> m: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_nat{i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat{j < Lib.IntTypes.v n2} -> Prims.GTot Spec.Matrix.elem
Prims.GTot
[ "sometrivial" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.matrix_t", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Spec.Matrix.mget", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.elem" ]
[]
false
false
false
false
false
let get #n1 #n2 h (m: matrix_t n1 n2) i j =
M.mget (as_matrix h m) i j
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mget
val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j))
val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j))
let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 18, "end_line": 69, "start_col": 0, "start_line": 67 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_t{Lib.IntTypes.v j < Lib.IntTypes.v n2} -> FStar.HyperStack.ST.Stack Hacl.Impl.Matrix.elem
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "Spec.Matrix.index_lt" ]
[]
false
true
false
false
false
let mget #n1 #n2 a i j =
M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map_inner_inv
val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 130, "start_col": 0, "start_line": 123 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> f: (_: Hacl.Impl.Matrix.elem -> Hacl.Impl.Matrix.elem) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.IntTypes.size_nat", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.nat", "Prims.eq2", "Spec.Matrix.elem", "Hacl.Impl.Matrix.get", "Lib.IntTypes.sec_int_t", "Lib.IntTypes.U16" ]
[]
false
false
false
false
true
let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j =
live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0: nat{i0 < v i}) (j: nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0: nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0: nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0: nat{v i < i0 /\ i0 < v n1}) (j: nat{j < v n2}). get h2 c i0 j == get h0 c i0 j)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mod_pow2_felem
val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a)
val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a)
let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 193, "start_col": 0, "start_line": 192 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq < 16} -> a: Lib.IntTypes.uint16 -> Prims.Pure Lib.IntTypes.uint16
Prims.Pure
[]
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThan", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.uint16", "Lib.IntTypes.op_Amp_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.op_Subtraction_Dot", "Lib.IntTypes.op_Less_Less_Dot", "Lib.IntTypes.u16" ]
[]
false
false
false
false
false
let mod_pow2_felem logq a =
a &. ((u16 1 <<. logq) -. u16 1)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map2_inner_inv
val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 238, "start_col": 0, "start_line": 231 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> f: (_: Hacl.Impl.Matrix.elem -> _: Hacl.Impl.Matrix.elem -> Hacl.Impl.Matrix.elem) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> c: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.IntTypes.size_nat", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.nat", "Prims.eq2", "Spec.Matrix.elem", "Hacl.Impl.Matrix.get", "Lib.IntTypes.sec_int_t", "Lib.IntTypes.U16" ]
[]
false
false
false
false
true
let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j =
live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0: nat{i0 < v i}) (j: nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0: nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0: nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0: nat{v i < i0 /\ i0 < v n1}) (j: nat{j < v n2}). get h2 c i0 j == get h0 c i0 j)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_add
val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b))
val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b))
let matrix_add #n1 #n2 a b = map2 add_mod a b a
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 20, "end_line": 312, "start_col": 0, "start_line": 311 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Matrix.map2", "Lib.IntTypes.add_mod", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Prims.unit" ]
[]
false
true
false
false
false
let matrix_add #n1 #n2 a b =
map2 add_mod a b a
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mod_pow2
val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a))
val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a))
let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 213, "start_col": 0, "start_line": 207 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
logq: Lib.IntTypes.size_t{0 < Lib.IntTypes.v logq /\ Lib.IntTypes.v logq <= 16} -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "Prims.op_LessThan", "Hacl.Impl.Matrix.matrix_t", "Lib.IntTypes.op_Less_Dot", "FStar.UInt32.__uint_to_t", "Spec.Matrix.extensionality", "Spec.Matrix.map", "Hacl.Impl.Matrix.mod_pow2_felem", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.mod_pow2_felem", "Prims.unit", "Hacl.Impl.Matrix.map", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Prims.bool" ]
[]
false
true
false
false
false
let mod_pow2 #n1 #n2 logq a =
if logq <. 16ul then let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map_inner
val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1))
val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1))
let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j]
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 22, "end_line": 149, "start_col": 0, "start_line": 148 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> f: (_: Hacl.Impl.Matrix.elem -> Hacl.Impl.Matrix.elem) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> c: Hacl.Impl.Matrix.matrix_t n1 n2 {a == c} -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_t{Lib.IntTypes.v j < Lib.IntTypes.v n2} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.matrix_t", "Prims.eq2", "Prims.op_LessThan", "Hacl.Impl.Matrix.op_String_Assignment", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.op_String_Access" ]
[]
false
true
false
false
false
let map_inner #n1 #n2 h0 h1 f a c i j =
c.[ i, j ] <- f a.[ i, j ]
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.get_s
val get_s : h: FStar.Monotonic.HyperStack.mem -> m: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_nat{i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat{j < Lib.IntTypes.v n2} -> Prims.GTot Spec.Matrix.elem
let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 511, "start_col": 0, "start_line": 511 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i)
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: FStar.Monotonic.HyperStack.mem -> m: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_nat{i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_nat{j < Lib.IntTypes.v n2} -> Prims.GTot Spec.Matrix.elem
Prims.GTot
[ "sometrivial" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.matrix_t", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Spec.Matrix.mget_s", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.elem" ]
[]
false
false
false
false
false
let get_s #n1 #n2 h (m: matrix_t n1 n2) i j =
M.mget_s (as_matrix h m) i j
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map
val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a))
val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a))
let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 181, "start_col": 0, "start_line": 165 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Lib.IntTypes.uint16 -> Lib.IntTypes.uint16) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> c: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Lib.IntTypes.uint16", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.map", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Loops.for", "Lib.IntTypes.size", "Prims.nat", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "Hacl.Impl.Matrix.get", "Spec.Matrix.elem", "Hacl.Impl.Matrix.map_inner_inv", "Hacl.Impl.Matrix.map_inner" ]
[]
false
true
false
false
false
let map #n1 #n2 f a c =
let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0: nat{i0 < i}) (j: nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0: nat{i <= i0 /\ i0 < v n1}) (j: nat{j < v n2}). get h1 c i0 j == get h0 c i0 j)) (fun i -> let h1 = ST.get () in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j)); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_sub
val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b))
val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b))
let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 334, "start_col": 0, "start_line": 326 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.sub", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Hacl.Impl.Matrix.map2", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.sub_mod" ]
[]
false
true
false
false
false
let matrix_sub #n1 #n2 a b =
let h0 = ST.get () in [@@ inline_let ]let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get () in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mul_inner_inv
val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0
val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0
let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 403, "start_col": 0, "start_line": 394 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> h2: FStar.Monotonic.HyperStack.mem -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> c: Hacl.Impl.Matrix.matrix_t n1 n3 -> f: (k: Prims.nat{k < Lib.IntTypes.v n3} -> Prims.GTot Lib.IntTypes.uint16) -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> k: Lib.IntTypes.size_nat -> Type0
Prims.Tot
[ "total" ]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.matrix_t", "Prims.nat", "Prims.op_LessThan", "Lib.IntTypes.uint16", "Lib.IntTypes.size_nat", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.eq2", "Spec.Matrix.elem", "Hacl.Impl.Matrix.get", "Spec.Matrix.matrix", "Hacl.Impl.Matrix.as_matrix" ]
[]
false
false
false
false
true
let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k =
live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1: nat{i1 < v i}) (k: nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1: nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1: nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1: nat{v i < i1 /\ i1 < v n1}) (k: nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mget_s
val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j))
val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j))
let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i)
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 18, "end_line": 508, "start_col": 0, "start_line": 506 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_t{Lib.IntTypes.v j < Lib.IntTypes.v n2} -> FStar.HyperStack.ST.Stack Hacl.Impl.Matrix.elem
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.op_Plus_Bang", "Prims.unit", "Spec.Matrix.index_lt" ]
[]
false
true
false
false
false
let mget_s #n1 #n2 a i j =
M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i)
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map2_inner
val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1))
val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1))
let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j]
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 258, "start_col": 0, "start_line": 257 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> f: (_: Hacl.Impl.Matrix.elem -> _: Hacl.Impl.Matrix.elem -> Hacl.Impl.Matrix.elem) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> c: Hacl.Impl.Matrix.matrix_t n1 n2 {a == c /\ Lib.Buffer.disjoint b c} -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> j: Lib.IntTypes.size_t{Lib.IntTypes.v j < Lib.IntTypes.v n2} -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.matrix_t", "Prims.l_and", "Prims.eq2", "Lib.Buffer.disjoint", "Lib.Buffer.MUT", "Prims.op_LessThan", "Hacl.Impl.Matrix.op_String_Assignment", "FStar.Pervasives.Native.Mktuple2", "Prims.unit", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.op_String_Access" ]
[]
false
true
false
false
false
let map2_inner #n1 #n2 h0 h1 f a b c i j =
c.[ i, j ] <- f a.[ i, j ] b.[ i, j ]
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.map2
val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b))
val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b))
let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 297, "start_col": 0, "start_line": 281 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
f: (_: Lib.IntTypes.uint16 -> _: Lib.IntTypes.uint16 -> Lib.IntTypes.uint16) -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> c: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Lib.IntTypes.uint16", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.map2", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Loops.for", "Lib.IntTypes.size", "Prims.nat", "Prims.l_and", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "Hacl.Impl.Matrix.get", "Spec.Matrix.elem", "Hacl.Impl.Matrix.map2_inner_inv", "Hacl.Impl.Matrix.map2_inner" ]
[]
false
true
false
false
false
let map2 #n1 #n2 f a b c =
let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0: nat{i0 < i}) (j: nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0: nat{i <= i0 /\ i0 < v n1}) (j: nat{j < v n2}). get h1 c i0 j == get h0 c i0 j)) (fun i -> let h1 = ST.get () in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j)); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mul_inner1
val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 429, "start_col": 0, "start_line": 424 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> c: Hacl.Impl.Matrix.matrix_t n1 n3 {Lib.Buffer.disjoint a c /\ Lib.Buffer.disjoint b c} -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> k: Lib.IntTypes.size_t{Lib.IntTypes.v k < Lib.IntTypes.v n3} -> f: (k: Prims.nat{k < Lib.IntTypes.v n3} -> Prims.GTot (res: Lib.IntTypes.uint16 { res == Spec.Matrix.sum (fun l -> Hacl.Impl.Matrix.get h0 a (Lib.IntTypes.v i) l *. Hacl.Impl.Matrix.get h0 b l k) })) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.matrix_t", "Lib.Buffer.disjoint", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Prims.op_LessThan", "Prims.nat", "Lib.IntTypes.uint16", "Prims.eq2", "Spec.Matrix.sum", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.get", "Prims._assert", "Prims.unit", "FStar.HyperStack.ST.get", "Hacl.Impl.Matrix.op_String_Assignment", "FStar.Pervasives.Native.Mktuple2", "Lib.IntTypes.int_t", "Hacl.Impl.Matrix.mul_inner", "Spec.Matrix.mul_inner", "Hacl.Impl.Matrix.as_matrix" ]
[]
false
true
false
false
false
let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f =
assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[ i, k ] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mul_inner1_s
val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 577, "start_col": 0, "start_line": 572 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options inline_for_extraction noextract private val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h0: FStar.Monotonic.HyperStack.mem -> h1: FStar.Monotonic.HyperStack.mem -> a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> c: Hacl.Impl.Matrix.matrix_t n1 n3 {Lib.Buffer.disjoint a c /\ Lib.Buffer.disjoint b c} -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> k: Lib.IntTypes.size_t{Lib.IntTypes.v k < Lib.IntTypes.v n3} -> f: (k: Prims.nat{k < Lib.IntTypes.v n3} -> Prims.GTot (res: Lib.IntTypes.uint16 { res == Spec.Matrix.sum (fun l -> Hacl.Impl.Matrix.get h0 a (Lib.IntTypes.v i) l *. Hacl.Impl.Matrix.get_s h0 b l k) })) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "FStar.Monotonic.HyperStack.mem", "Hacl.Impl.Matrix.matrix_t", "Lib.Buffer.disjoint", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Prims.op_LessThan", "Prims.nat", "Lib.IntTypes.uint16", "Prims.eq2", "Spec.Matrix.sum", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.get", "Hacl.Impl.Matrix.get_s", "Prims._assert", "Prims.unit", "FStar.HyperStack.ST.get", "Hacl.Impl.Matrix.mset", "Lib.IntTypes.int_t", "Hacl.Impl.Matrix.mul_inner_s", "Spec.Matrix.mul_inner_s", "Hacl.Impl.Matrix.as_matrix" ]
[]
false
true
false
false
false
let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f =
assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_eq
val matrix_eq: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.matrix_eq #(v n1) #(v n2) (as_matrix h0 a) (as_matrix h0 b))
val matrix_eq: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.matrix_eq #(v n1) #(v n2) (as_matrix h0 a) (as_matrix h0 b))
let matrix_eq #n1 #n2 a b = push_frame(); let res = create 1ul (ones U16 SEC) in let r = buf_eq_mask a b (n1 *! n2) res in pop_frame (); r
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 3, "end_line": 638, "start_col": 0, "start_line": 633 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options inline_for_extraction noextract private val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul_s #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1_s h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall k. get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul_s (as_matrix h0 a) (as_matrix h0 b)) (* the end of the special matrix multiplication *) val matrix_eq: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.matrix_eq #(v n1) #(v n2) (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint16
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Lib.IntTypes.uint16", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.ByteBuffer.buf_eq_mask", "Lib.IntTypes.op_Star_Bang", "Lib.Buffer.lbuffer_t", "Lib.Buffer.MUT", "FStar.UInt32.uint_to_t", "FStar.UInt32.t", "Lib.Buffer.create", "FStar.UInt32.__uint_to_t", "Lib.IntTypes.ones", "Lib.Buffer.lbuffer", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let matrix_eq #n1 #n2 a b =
push_frame (); let res = create 1ul (ones U16 SEC) in let r = buf_eq_mask a b (n1 *! n2) res in pop_frame (); r
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_from_lbytes
val matrix_from_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> b:lbytes (size 2 *! n1 *! n2) -> res:matrix_t n1 n2 -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint b res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == M.matrix_from_lbytes (v n1) (v n2) (as_seq h0 b))
val matrix_from_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> b:lbytes (size 2 *! n1 *! n2) -> res:matrix_t n1 n2 -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint b res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == M.matrix_from_lbytes (v n1) (v n2) (as_seq h0 b))
let matrix_from_lbytes #n1 #n2 b res = let h0 = ST.get () in assert (v n1 * v n2 <= max_size_t); fill h0 (n1 *! n2) res (fun h -> M.matrix_from_lbytes_f (v n1) (v n2) (as_seq h0 b)) (fun i -> assert (2 * v i + 2 <= 2 * v n1 * v n2); uint_from_bytes_le #U16 (sub b (2ul *! i) 2ul)); let h1 = ST.get () in M.extensionality (as_matrix h1 res) (M.matrix_from_lbytes (v n1) (v n2) (as_seq h0 b))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 88, "end_line": 679, "start_col": 0, "start_line": 670 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options inline_for_extraction noextract private val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul_s #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1_s h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall k. get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul_s (as_matrix h0 a) (as_matrix h0 b)) (* the end of the special matrix multiplication *) val matrix_eq: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.matrix_eq #(v n1) #(v n2) (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_eq #n1 #n2 a b = push_frame(); let res = create 1ul (ones U16 SEC) in let r = buf_eq_mask a b (n1 *! n2) res in pop_frame (); r val matrix_to_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> m:matrix_t n1 n2 -> res:lbytes (2ul *! n1 *! n2) -> Stack unit (requires fun h -> live h m /\ live h res /\ disjoint m res) (ensures fun h0 r h1 -> modifies1 res h0 h1 /\ as_seq h1 res == M.matrix_to_lbytes #(v n1) #(v n2) (as_matrix h0 m)) [@"c_inline"] let matrix_to_lbytes #n1 #n2 m res = let h0 = ST.get () in fill_blocks_simple h0 2ul (n1 *! n2) res (fun h -> M.matrix_to_lbytes_f #(v n1) #(v n2) (as_matrix h0 m)) (fun i -> uint_to_bytes_le (sub res (2ul *! i) 2ul) m.(i)) val matrix_from_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> b:lbytes (size 2 *! n1 *! n2) -> res:matrix_t n1 n2 -> Stack unit (requires fun h -> live h b /\ live h res /\ disjoint b res) (ensures fun h0 _ h1 -> modifies1 res h0 h1 /\ as_matrix h1 res == M.matrix_from_lbytes (v n1) (v n2) (as_seq h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Hacl.Impl.Matrix.lbytes (Lib.IntTypes.size 2 *! n1 *! n2) -> res: Hacl.Impl.Matrix.matrix_t n1 n2 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Star_Bang", "Lib.IntTypes.size", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.matrix_from_lbytes", "Lib.Buffer.as_seq", "Lib.Buffer.MUT", "Lib.IntTypes.uint8", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Buffer.fill", "Hacl.Impl.Matrix.elem", "Spec.Matrix.matrix_from_lbytes_f", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Lib.ByteBuffer.uint_from_bytes_le", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Lib.IntTypes.uint_t", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.int_t", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "FStar.UInt32.__uint_to_t", "Prims._assert", "Prims.op_Addition" ]
[]
false
true
false
false
false
let matrix_from_lbytes #n1 #n2 b res =
let h0 = ST.get () in assert (v n1 * v n2 <= max_size_t); fill h0 (n1 *! n2) res (fun h -> M.matrix_from_lbytes_f (v n1) (v n2) (as_seq h0 b)) (fun i -> assert (2 * v i + 2 <= (2 * v n1) * v n2); uint_from_bytes_le #U16 (sub b (2ul *! i) 2ul)); let h1 = ST.get () in M.extensionality (as_matrix h1 res) (M.matrix_from_lbytes (v n1) (v n2) (as_seq h0 b))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mul_inner
val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 374, "start_col": 0, "start_line": 352 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> k: Lib.IntTypes.size_t{Lib.IntTypes.v k < Lib.IntTypes.v n3} -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint16
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.IntTypes.uint16", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Prims._assert", "Prims.eq2", "Spec.Matrix.mul_inner", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.sum_extensionality", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.get", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.IntTypes.size", "Lib.Loops.for", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Lib.Buffer.live", "Lib.Buffer.modifies1", "Lib.Buffer.bget", "Spec.Matrix.sum_", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.op_Plus_Dot", "Hacl.Impl.Matrix.op_String_Access", "FStar.Pervasives.Native.Mktuple2", "Hacl.Impl.Matrix.elem", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.mk_int", "Lib.Buffer.create", "Lib.IntTypes.u16", "Lib.Buffer.lbuffer", "Prims.op_Subtraction", "Prims.pow2", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let mul_inner #n1 #n2 #n3 a b i k =
push_frame (); let h0 = ST.get () in [@@ inline_let ]let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get () in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[ i, j ] in let bjk = b.[ j, k ] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame (); res
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_to_lbytes
val matrix_to_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> m:matrix_t n1 n2 -> res:lbytes (2ul *! n1 *! n2) -> Stack unit (requires fun h -> live h m /\ live h res /\ disjoint m res) (ensures fun h0 r h1 -> modifies1 res h0 h1 /\ as_seq h1 res == M.matrix_to_lbytes #(v n1) #(v n2) (as_matrix h0 m))
val matrix_to_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> m:matrix_t n1 n2 -> res:lbytes (2ul *! n1 *! n2) -> Stack unit (requires fun h -> live h m /\ live h res /\ disjoint m res) (ensures fun h0 r h1 -> modifies1 res h0 h1 /\ as_seq h1 res == M.matrix_to_lbytes #(v n1) #(v n2) (as_matrix h0 m))
let matrix_to_lbytes #n1 #n2 m res = let h0 = ST.get () in fill_blocks_simple h0 2ul (n1 *! n2) res (fun h -> M.matrix_to_lbytes_f #(v n1) #(v n2) (as_matrix h0 m)) (fun i -> uint_to_bytes_le (sub res (2ul *! i) 2ul) m.(i))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 656, "start_col": 0, "start_line": 652 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options inline_for_extraction noextract private val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul_s #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1_s h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall k. get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul_s (as_matrix h0 a) (as_matrix h0 b)) (* the end of the special matrix multiplication *) val matrix_eq: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.matrix_eq #(v n1) #(v n2) (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_eq #n1 #n2 a b = push_frame(); let res = create 1ul (ones U16 SEC) in let r = buf_eq_mask a b (n1 *! n2) res in pop_frame (); r val matrix_to_lbytes: #n1:size_t -> #n2:size_t{2 * v n1 <= max_size_t /\ 2 * v n1 * v n2 <= max_size_t} -> m:matrix_t n1 n2 -> res:lbytes (2ul *! n1 *! n2) -> Stack unit (requires fun h -> live h m /\ live h res /\ disjoint m res) (ensures fun h0 r h1 -> modifies1 res h0 h1 /\ as_seq h1 res == M.matrix_to_lbytes #(v n1) #(v n2) (as_matrix h0 m))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Hacl.Impl.Matrix.matrix_t n1 n2 -> res: Hacl.Impl.Matrix.lbytes (2ul *! n1 *! n2) -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.l_and", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Hacl.Impl.Matrix.matrix_t", "Hacl.Impl.Matrix.lbytes", "Lib.IntTypes.op_Star_Bang", "FStar.UInt32.__uint_to_t", "Lib.Buffer.fill_blocks_simple", "Lib.IntTypes.uint8", "FStar.Monotonic.HyperStack.mem", "Spec.Matrix.matrix_to_lbytes_f", "Hacl.Impl.Matrix.as_matrix", "Lib.IntTypes.size_nat", "Prims.op_LessThan", "Lib.Sequence.lseq", "Lib.ByteBuffer.uint_to_bytes_le", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Prims.unit", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.U8", "Lib.IntTypes.mk_int", "Lib.Buffer.sub", "FStar.HyperStack.ST.get" ]
[]
false
true
false
false
false
let matrix_to_lbytes #n1 #n2 m res =
let h0 = ST.get () in fill_blocks_simple h0 2ul (n1 *! n2) res (fun h -> M.matrix_to_lbytes_f #(v n1) #(v n2) (as_matrix h0 m)) (fun i -> uint_to_bytes_le (sub res (2ul *! i) 2ul) m.(i))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_mul_s
val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b))
val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b))
let matrix_mul_s #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1_s h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall k. get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul_s (as_matrix h0 a) (as_matrix h0 b))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 618, "start_col": 0, "start_line": 595 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options inline_for_extraction noextract private val mul_inner1_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1_s #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get_s h0 b l (v k))); mset c i k (mul_inner_s a b i k); let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) val matrix_mul_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul_s (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> c: Hacl.Impl.Matrix.matrix_t n1 n3 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.mul_s", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Loops.for", "Lib.IntTypes.size", "Prims.nat", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "Lib.IntTypes.uint16", "Hacl.Impl.Matrix.get", "Spec.Matrix.elem", "Prims._assert", "Hacl.Impl.Matrix.onemore", "Prims.op_Subtraction", "Prims.pow2", "Prims.logical", "Hacl.Impl.Matrix.mul_inner_inv", "Hacl.Impl.Matrix.mul_inner1_s", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Spec.Matrix.sum", "Lib.IntTypes.mul_mod", "Spec.Matrix.mget", "Lib.Buffer.as_seq", "Lib.IntTypes.mul", "Spec.Matrix.mget_s", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot", "Hacl.Impl.Matrix.get_s" ]
[]
false
true
false
false
false
let matrix_mul_s #n1 #n2 #n3 a b c =
let h0 = ST.get () in let f (i: nat{i < v n1}) (k: nat{k < v n3}) : GTot (res: uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get_s h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1: nat{i1 < i}) (k: nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1: nat{i <= i1 /\ i1 < v n1}) (k: nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get () in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1_s h0 h1 a b c i k (f (v i))); let h1 = ST.get () in let q i1 = forall k. get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1: nat{i1 < v n1 /\ i1 <= v i}) (k: nat{k < v n3}). get h1 c i1 k == f i1 k)); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.mul_s (as_matrix h0 a) (as_matrix h0 b))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.matrix_mul
val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b))
val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b))
let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b))
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 489, "start_col": 0, "start_line": 466 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 0, "initial_ifuel": 0, "max_fuel": 0, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> c: Hacl.Impl.Matrix.matrix_t n1 n3 -> FStar.HyperStack.ST.Stack Prims.unit
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "Hacl.Impl.Matrix.matrix_t", "Spec.Matrix.extensionality", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.mul", "Prims.unit", "FStar.Monotonic.HyperStack.mem", "FStar.HyperStack.ST.get", "Lib.Loops.for", "Lib.IntTypes.size", "Prims.nat", "Lib.Buffer.live", "Lib.Buffer.MUT", "Hacl.Impl.Matrix.elem", "Lib.Buffer.modifies1", "Prims.l_Forall", "Prims.op_LessThan", "Prims.eq2", "Lib.IntTypes.uint16", "Hacl.Impl.Matrix.get", "Spec.Matrix.elem", "Prims._assert", "Hacl.Impl.Matrix.onemore", "Prims.op_Subtraction", "Prims.pow2", "Prims.logical", "Hacl.Impl.Matrix.mul_inner_inv", "Hacl.Impl.Matrix.mul_inner1", "Lib.IntTypes.int_t", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Spec.Matrix.sum", "Lib.IntTypes.mul_mod", "Spec.Matrix.mget", "Lib.Buffer.as_seq", "Lib.IntTypes.mul", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot" ]
[]
false
true
false
false
false
let matrix_mul #n1 #n2 #n3 a b c =
let h0 = ST.get () in let f (i: nat{i < v n1}) (k: nat{k < v n3}) : GTot (res: uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1: nat{i1 < i}) (k: nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1: nat{i <= i1 /\ i1 < v n1}) (k: nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get () in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get () in let q i1 = forall (k: nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1: nat{i1 < v n1 /\ i1 <= v i}) (k: nat{k < v n3}). get h1 c i1 k == f i1 k)); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b))
false
Hacl.Impl.Matrix.fst
Hacl.Impl.Matrix.mul_inner_s
val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
let mul_inner_s #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res
{ "file_name": "code/frodo/Hacl.Impl.Matrix.fst", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 5, "end_line": 550, "start_col": 0, "start_line": 529 }
module Hacl.Impl.Matrix open FStar.HyperStack.ST open FStar.Mul open LowStar.BufferOps open LowStar.Buffer open Lib.IntTypes open Lib.Buffer open Lib.ByteBuffer module HS = FStar.HyperStack module ST = FStar.HyperStack.ST module LSeq = Lib.Sequence module BSeq = Lib.ByteSequence module Loops = Lib.LoopCombinators module M = Spec.Matrix module Lemmas = Spec.Frodo.Lemmas #set-options "--z3rlimit 50 --fuel 0 --ifuel 0" unfold let elem = uint16 unfold let lbytes len = lbuffer uint8 len unfold let matrix_t (n1:size_t) (n2:size_t{v n1 * v n2 <= max_size_t}) = lbuffer elem (n1 *! n2) unfold let as_matrix #n1 #n2 h (m:matrix_t n1 n2) : GTot (M.matrix (v n1) (v n2)) = as_seq h m inline_for_extraction noextract val matrix_create: n1:size_t -> n2:size_t{0 < v n1 * v n2 /\ v n1 * v n2 <= max_size_t} -> StackInline (matrix_t n1 n2) (requires fun h0 -> True) (ensures fun h0 a h1 -> stack_allocated a h0 h1 (as_matrix h1 a) /\ as_matrix h1 a == M.create (v n1) (v n2)) let matrix_create n1 n2 = [@inline_let] let len = size (normalize_term (v n1 * v n2)) in create len (u16 0) inline_for_extraction noextract val mget: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 a) (v i) (v j)) let mget #n1 #n2 a i j = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) inline_for_extraction noextract val mset: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> x:elem -> Stack unit (requires fun h0 -> live h0 a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mset (as_matrix h0 a) (v i) (v j) x) let mset #n1 #n2 a i j x = M.index_lt (v n1) (v n2) (v i) (v j); a.(i *! n2 +! j) <- x noextract unfold val op_String_Access (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) : Stack elem (requires fun h0 -> live h0 m) (ensures fun h0 x h1 -> let i, j = ij in modifies loc_none h0 h1 /\ x == M.mget (as_matrix h0 m) (v i) (v j)) let op_String_Access #n1 #n2 m (i,j) = mget m i j noextract unfold val op_String_Assignment (#n1:size_t) (#n2:size_t{v n1 * v n2 <= max_size_t}) (m:matrix_t n1 n2) (ij:(size_t & size_t){let i, j = ij in v i < v n1 /\ v j < v n2}) (x:elem) : Stack unit (requires fun h0 -> live h0 m) (ensures fun h0 _ h1 -> let i, j = ij in modifies1 m h0 h1 /\ live h1 m /\ as_matrix h1 m == M.mset (as_matrix h0 m) (v i) (v j) x) let op_String_Assignment #n1 #n2 m (i,j) x = mset m i j x unfold let get #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget (as_matrix h m) i j private unfold val map_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map_inner_inv #n1 #n2 h0 h1 h2 f a c i j = live h2 a /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map_inner_inv h0 h1 h2 f a c i (v j)) (ensures fun _ _ h2 -> map_inner_inv h0 h1 h2 f a c i (v j + 1)) let map_inner #n1 #n2 h0 h1 f a c i j = c.[i,j] <- f a.[i,j] inline_for_extraction val map: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16) -> a:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 c /\ a == c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map #(v n1) #(v n2) f (as_matrix h0 a)) let map #n1 #n2 f a c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map_inner_inv h0 h1 h2 f a c i j) (fun j -> map_inner h0 h1 f a c i j) ); let h2 = ST.get () in M.extensionality (as_matrix h2 c) (M.map f (as_matrix h0 a)) inline_for_extraction noextract val mod_pow2_felem: logq:size_t{0 < v logq /\ v logq < 16} -> a:uint16 -> Pure uint16 (requires True) (ensures fun r -> r == M.mod_pow2_felem (v logq) a) let mod_pow2_felem logq a = a &. ((u16 1 <<. logq) -. u16 1) val mod_pow2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> logq:size_t{0 < v logq /\ v logq <= 16} -> a:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a) (ensures fun h0 _ h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.mod_pow2 (v logq) (as_matrix h0 a)) [@"c_inline"] let mod_pow2 #n1 #n2 logq a = if logq <. 16ul then begin let h0 = ST.get () in map (mod_pow2_felem logq) a a; M.extensionality (M.map #(v n1) #(v n2) (mod_pow2_felem logq) (as_matrix h0 a)) (M.map #(v n1) #(v n2) (M.mod_pow2_felem (v logq)) (as_matrix h0 a)) end private unfold val map2_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_nat -> Type0 let map2_inner_inv #n1 #n2 h0 h1 h2 f a b c i j = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ j <= v n2 /\ (forall (i0:nat{i0 < v i}) (j:nat{j < v n2}). get h2 c i0 j == get h1 c i0 j) /\ (forall (j0:nat{j0 < j}). get h2 c (v i) j0 == f (get h0 a (v i) j0) (get h2 b (v i) j0)) /\ (forall (j0:nat{j <= j0 /\ j0 < v n2}). get h2 c (v i) j0 == get h0 c (v i) j0) /\ (forall (i0:nat{v i < i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h2 c i0 j == get h0 c i0 j) inline_for_extraction noextract private val map2_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> f:(elem -> elem -> elem) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2{a == c /\ disjoint b c} -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack unit (requires fun h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j)) (ensures fun _ _ h2 -> map2_inner_inv h0 h1 h2 f a b c i (v j + 1)) let map2_inner #n1 #n2 h0 h1 f a b c i j = c.[i,j] <- f a.[i,j] b.[i,j] /// In-place [map2], a == map2 f a b /// /// A non in-place variant can be obtained by weakening the pre-condition to disjoint a c, /// or the two variants can be merged by requiring (a == c \/ disjoint a c) instead of a == c /// See commit 91916b8372fa3522061eff5a42d0ebd1d19a8a49 inline_for_extraction val map2: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> f:(uint16 -> uint16 -> uint16) -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> c:matrix_t n1 n2 -> Stack unit (requires fun h0 -> live h0 a /\ live h0 b /\ live h0 c /\ a == c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.map2 #(v n1) #(v n2) f (as_matrix h0 a) (as_matrix h0 b)) let map2 #n1 #n2 f a b c = let h0 = ST.get () in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i0:nat{i0 < i}) (j:nat{j < v n2}). get h1 c i0 j == f (get h0 a i0 j) (get h0 b i0 j)) /\ (forall (i0:nat{i <= i0 /\ i0 < v n1}) (j:nat{j < v n2}). get h1 c i0 j == get h0 c i0 j) ) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> map2_inner_inv h0 h1 h2 f a b c i j) (fun j -> map2_inner h0 h1 f a b c i j) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.map2 f (as_matrix h0 a) (as_matrix h0 b)) val matrix_add: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 a h0 h1 /\ as_matrix h1 a == M.add (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_add #n1 #n2 a b = map2 add_mod a b a val matrix_sub: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n1 n2 -> Stack unit (requires fun h -> live h a /\ live h b /\ disjoint a b) (ensures fun h0 r h1 -> modifies1 b h0 h1 /\ as_matrix h1 b == M.sub (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_sub #n1 #n2 a b = (* Use the in-place variant above by flipping the arguments of [sub_mod] *) (* Requires appplying extensionality *) let h0 = ST.get() in [@ inline_let ] let sub_mod_flipped x y = sub_mod y x in map2 sub_mod_flipped b a b; let h1 = ST.get() in M.extensionality (as_matrix h1 b) (M.sub (as_matrix h0 a) (as_matrix h0 b)) #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies loc_none h0 h1 /\ r == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)) let mul_inner #n1 #n2 #n3 a b i k = push_frame(); let h0 = ST.get() in [@ inline_let ] let f l = get h0 a (v i) l *. get h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get() in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = a.[i,j] in let bjk = b.[j,k] in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk ); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get h0 b l (v k)) (v n2); assert (res == M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame(); res #pop-options private unfold val mul_inner_inv: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> h2:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> f:(k:nat{k < v n3} -> GTot uint16) -> i:size_t{v i < v n1} -> k:size_nat -> Type0 let mul_inner_inv #n1 #n2 #n3 h0 h1 h2 a b c f i k = live h2 a /\ live h2 b /\ live h2 c /\ modifies1 c h1 h2 /\ k <= v n3 /\ (forall (i1:nat{i1 < v i}) (k:nat{k < v n3}). get h2 c i1 k == get h1 c i1 k) /\ (forall (k1:nat{k1 < k}). get h2 c (v i) k1 == f k1) /\ (forall (k1:nat{k <= k1 /\ k1 < v n3}). get h2 c (v i) k1 == get h0 c (v i) k1) /\ (forall (i1:nat{v i < i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h2 c i1 k == get h0 c i1 k) /\ as_matrix h0 a == as_matrix h2 a /\ as_matrix h0 b == as_matrix h2 b inline_for_extraction noextract private val mul_inner1: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> h0:HS.mem -> h1:HS.mem -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3{disjoint a c /\ disjoint b c} -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> f:(k:nat{k < v n3} -> GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l k)})) -> Stack unit (requires fun h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k)) (ensures fun _ _ h2 -> mul_inner_inv h0 h1 h2 a b c f i (v k + 1)) let mul_inner1 #n1 #n2 #n3 h0 h1 a b c i k f = assert (M.mul_inner (as_matrix h0 a) (as_matrix h0 b) (v i) (v k) == M.sum #(v n2) (fun l -> get h0 a (v i) l *. get h0 b l (v k))); c.[i,k] <- mul_inner a b i k; let h2 = ST.get () in assert (get h2 c (v i) (v k) == f (v k)) private val onemore: p:(nat -> Type0) -> q:(i:nat{p i} -> Type0) -> b:nat{p b} -> Lemma (requires (forall (i:nat{p i /\ i < b}). q i) /\ q b) (ensures forall (i:nat{p i /\ i <= b}). q i) let onemore p q b = () val onemore1: #n1:size_nat -> #n3:size_nat{n1 * n3 <= max_size_t} -> c:M.matrix n1 n3 -> f:(i:nat{i < n1} -> k:nat{k < n3} -> GTot uint16) -> i:size_nat{i < n1} -> Lemma (requires ((forall (i1:nat{i1 < i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k) /\ (forall (k:nat{k < n3}). M.mget c i k == f i k))) (ensures (forall (i1:nat{i1 <= i}) (k:nat{k < n3}). M.mget c i1 k == f i1 k)) let onemore1 #n1 #n3 c f i = () val matrix_mul: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> c:matrix_t n1 n3 -> Stack unit (requires fun h -> live h a /\ live h b /\ live h c /\ disjoint a c /\ disjoint b c) (ensures fun h0 _ h1 -> modifies1 c h0 h1 /\ as_matrix h1 c == M.mul (as_matrix h0 a) (as_matrix h0 b)) [@"c_inline"] let matrix_mul #n1 #n2 #n3 a b c = let h0 = ST.get () in let f (i:nat{i < v n1}) (k:nat{k < v n3}) : GTot (res:uint16{res == M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k)}) = M.sum #(v n2) (fun l -> get h0 a i l *. get h0 b l k) in Lib.Loops.for (size 0) n1 (fun h1 i -> live h1 a /\ live h1 b /\ live h1 c /\ modifies1 c h0 h1 /\ i <= v n1 /\ (forall (i1:nat{i1 < i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) /\ (forall (i1:nat{i <= i1 /\ i1 < v n1}) (k:nat{k < v n3}). get h1 c i1 k == get h0 c i1 k)) (fun i -> let h1 = ST.get() in Lib.Loops.for (size 0) n3 (fun h2 k -> mul_inner_inv h0 h1 h2 a b c (f (v i)) i k) (fun k -> mul_inner1 h0 h1 a b c i k (f (v i))); let h1 = ST.get() in let q i1 = forall (k:nat{k < v n3}). get h1 c i1 k == f i1 k in onemore (fun i1 -> i1 < v n1) q (v i); assert (forall (i1:nat{i1 < v n1 /\ i1 <= v i}) (k:nat{k < v n3}). get h1 c i1 k == f i1 k) ); let h2 = ST.get() in M.extensionality (as_matrix h2 c) (M.mul (as_matrix h0 a) (as_matrix h0 b)) (* Special case of matrix multiplication *) (* when we have a different way of accessing to entries of the matrix S *) inline_for_extraction noextract val mget_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> a:matrix_t n1 n2 -> i:size_t{v i < v n1} -> j:size_t{v j < v n2} -> Stack elem (requires fun h0 -> live h0 a) (ensures fun h0 x h1 -> modifies0 h0 h1 /\ x == M.mget_s (as_matrix h0 a) (v i) (v j)) let mget_s #n1 #n2 a i j = M.index_lt (v n2) (v n1) (v j) (v i); a.(j *! n1 +! i) unfold let get_s #n1 #n2 h (m:matrix_t n1 n2) i j = M.mget_s (as_matrix h m) i j #push-options "--fuel 1" inline_for_extraction noextract private val mul_inner_s: #n1:size_t -> #n2:size_t{v n1 * v n2 <= max_size_t} -> #n3:size_t{v n2 * v n3 <= max_size_t /\ v n1 * v n3 <= max_size_t} -> a:matrix_t n1 n2 -> b:matrix_t n2 n3 -> i:size_t{v i < v n1} -> k:size_t{v k < v n3} -> Stack uint16 (requires fun h -> live h a /\ live h b) (ensures fun h0 r h1 -> modifies0 h0 h1 /\ r == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k))
{ "checked_file": "/", "dependencies": [ "Spec.Matrix.fst.checked", "Spec.Frodo.Lemmas.fst.checked", "prims.fst.checked", "LowStar.BufferOps.fst.checked", "LowStar.Buffer.fst.checked", "Lib.Sequence.fsti.checked", "Lib.Loops.fsti.checked", "Lib.LoopCombinators.fsti.checked", "Lib.IntTypes.fsti.checked", "Lib.ByteSequence.fsti.checked", "Lib.ByteBuffer.fsti.checked", "Lib.Buffer.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.HyperStack.ST.fsti.checked", "FStar.HyperStack.fst.checked" ], "interface_file": false, "source_file": "Hacl.Impl.Matrix.fst" }
[ { "abbrev": true, "full_module": "Spec.Frodo.Lemmas", "short_module": "Lemmas" }, { "abbrev": true, "full_module": "Spec.Matrix", "short_module": "M" }, { "abbrev": true, "full_module": "Lib.LoopCombinators", "short_module": "Loops" }, { "abbrev": true, "full_module": "Lib.ByteSequence", "short_module": "BSeq" }, { "abbrev": true, "full_module": "Lib.Sequence", "short_module": "LSeq" }, { "abbrev": true, "full_module": "FStar.HyperStack.ST", "short_module": "ST" }, { "abbrev": true, "full_module": "FStar.HyperStack", "short_module": "HS" }, { "abbrev": false, "full_module": "Lib.ByteBuffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.Buffer", "short_module": null }, { "abbrev": false, "full_module": "Lib.IntTypes", "short_module": null }, { "abbrev": false, "full_module": "LowStar.Buffer", "short_module": null }, { "abbrev": false, "full_module": "LowStar.BufferOps", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "FStar.HyperStack.ST", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "Hacl.Impl", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 1, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 0, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [], "z3refresh": false, "z3rlimit": 50, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
a: Hacl.Impl.Matrix.matrix_t n1 n2 -> b: Hacl.Impl.Matrix.matrix_t n2 n3 -> i: Lib.IntTypes.size_t{Lib.IntTypes.v i < Lib.IntTypes.v n1} -> k: Lib.IntTypes.size_t{Lib.IntTypes.v k < Lib.IntTypes.v n3} -> FStar.HyperStack.ST.Stack Lib.IntTypes.uint16
FStar.HyperStack.ST.Stack
[]
[]
[ "Lib.IntTypes.size_t", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.Mul.op_Star", "Lib.IntTypes.v", "Lib.IntTypes.U32", "Lib.IntTypes.PUB", "Lib.IntTypes.max_size_t", "Prims.l_and", "Hacl.Impl.Matrix.matrix_t", "Prims.op_LessThan", "Lib.IntTypes.uint16", "Prims.unit", "FStar.HyperStack.ST.pop_frame", "Prims._assert", "Prims.eq2", "Spec.Matrix.mul_inner_s", "Hacl.Impl.Matrix.as_matrix", "Spec.Matrix.sum_extensionality", "Lib.IntTypes.size_nat", "Lib.IntTypes.op_Star_Dot", "Lib.IntTypes.U16", "Lib.IntTypes.SEC", "Hacl.Impl.Matrix.get", "Hacl.Impl.Matrix.get_s", "Lib.IntTypes.int_t", "Lib.Buffer.op_Array_Access", "Lib.Buffer.MUT", "Lib.IntTypes.size", "Lib.Loops.for", "FStar.Monotonic.HyperStack.mem", "Prims.nat", "Lib.Buffer.live", "Lib.Buffer.modifies1", "Lib.Buffer.bget", "Spec.Matrix.sum_", "Lib.Buffer.op_Array_Assignment", "Lib.IntTypes.op_Plus_Dot", "Hacl.Impl.Matrix.mget_s", "Hacl.Impl.Matrix.elem", "Hacl.Impl.Matrix.mget", "FStar.HyperStack.ST.get", "Lib.Buffer.lbuffer_t", "Lib.IntTypes.mk_int", "Lib.Buffer.create", "Lib.IntTypes.u16", "Lib.Buffer.lbuffer", "Prims.op_Subtraction", "Prims.pow2", "FStar.HyperStack.ST.push_frame" ]
[]
false
true
false
false
false
let mul_inner_s #n1 #n2 #n3 a b i k =
push_frame (); let h0 = ST.get () in [@@ inline_let ]let f l = get h0 a (v i) l *. get_s h0 b l (v k) in let res = create #uint16 (size 1) (u16 0) in let h1 = ST.get () in Lib.Loops.for (size 0) n2 (fun h2 j -> live h1 res /\ live h2 res /\ modifies1 res h1 h2 /\ bget h2 res 0 == M.sum_ #(v n2) f j) (fun j -> let aij = mget a i j in let bjk = mget_s b j k in let res0 = res.(size 0) in res.(size 0) <- res0 +. aij *. bjk); let res = res.(size 0) in M.sum_extensionality (v n2) f (fun l -> get h0 a (v i) l *. get_s h0 b l (v k)) (v n2); assert (res == M.mul_inner_s (as_matrix h0 a) (as_matrix h0 b) (v i) (v k)); pop_frame (); res
false
Steel.Utils.fst
Steel.Utils.pure_as_ens
val pure_as_ens: #p: prop -> Prims.unit -> Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p)
val pure_as_ens: #p: prop -> Prims.unit -> Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p)
let pure_as_ens (#p:prop) () : Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_ens (pure p) (pure p) p (Steel.Memory.pure_interp p)
{ "file_name": "lib/steel/Steel.Utils.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 70, "end_line": 48, "start_col": 0, "start_line": 46 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Utils open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference let pts_to_not_null (#a:Type) (#opened:inames) (#p:perm) (#v:FStar.Ghost.erased a) (r:ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null) = extract_info_raw (pts_to r p v) (r =!= null) (fun m -> pts_to_not_null r p v m) let change_slprop_ens (p:vprop) (q:vprop) (r:prop) (f:(m:mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ r))) : Steel unit p (fun _ -> q) (requires fun _ -> True) (ensures fun _ _ _ -> r) = rewrite_slprop p (q `star` pure r) (fun m -> f m; Steel.Memory.emp_unit (hp_of q); Steel.Memory.pure_star_interp (hp_of q) r m); elim_pure r
{ "checked_file": "/", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Utils.fst" }
[ { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Steel.Effect.Steel Prims.unit
Steel.Effect.Steel
[]
[]
[ "Prims.prop", "Prims.unit", "Steel.Utils.change_slprop_ens", "Steel.Effect.Common.pure", "Steel.Memory.pure_interp", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
true
false
false
false
let pure_as_ens (#p: prop) () : Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p) =
change_slprop_ens (pure p) (pure p) p (Steel.Memory.pure_interp p)
false
Steel.Utils.fst
Steel.Utils.rewrite
val rewrite (#a: _) (#p: (a -> vprop)) (x y: a) : Steel unit (p x) (fun _ -> p y) (requires fun _ -> x == y) (ensures fun _ _ _ -> True)
val rewrite (#a: _) (#p: (a -> vprop)) (x y: a) : Steel unit (p x) (fun _ -> p y) (requires fun _ -> x == y) (ensures fun _ _ _ -> True)
let rewrite #a (#p:a -> vprop) (x y:a) : Steel unit (p x) (fun _ -> p y) (requires fun _ -> x == y) (ensures fun _ _ _ -> True) = rewrite_slprop (p x) (p y) (fun _ -> ())
{ "file_name": "lib/steel/Steel.Utils.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 44, "end_line": 54, "start_col": 0, "start_line": 50 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Utils open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference let pts_to_not_null (#a:Type) (#opened:inames) (#p:perm) (#v:FStar.Ghost.erased a) (r:ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null) = extract_info_raw (pts_to r p v) (r =!= null) (fun m -> pts_to_not_null r p v m) let change_slprop_ens (p:vprop) (q:vprop) (r:prop) (f:(m:mem -> Lemma (requires interp (hp_of p) m) (ensures interp (hp_of q) m /\ r))) : Steel unit p (fun _ -> q) (requires fun _ -> True) (ensures fun _ _ _ -> r) = rewrite_slprop p (q `star` pure r) (fun m -> f m; Steel.Memory.emp_unit (hp_of q); Steel.Memory.pure_star_interp (hp_of q) r m); elim_pure r let pure_as_ens (#p:prop) () : Steel unit (pure p) (fun _ -> pure p) (fun _ -> True) (fun _ _ _ -> p) = change_slprop_ens (pure p) (pure p) p (Steel.Memory.pure_interp p)
{ "checked_file": "/", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Utils.fst" }
[ { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a -> y: a -> Steel.Effect.Steel Prims.unit
Steel.Effect.Steel
[]
[]
[ "Steel.Effect.Common.vprop", "Steel.Effect.Atomic.rewrite_slprop", "FStar.Ghost.hide", "FStar.Set.set", "Steel.Memory.iname", "FStar.Set.empty", "Steel.Memory.mem", "Prims.unit", "Steel.Effect.Common.rmem", "Prims.eq2", "Prims.l_True" ]
[]
false
true
false
false
false
let rewrite #a (#p: (a -> vprop)) (x: a) (y: a) : Steel unit (p x) (fun _ -> p y) (requires fun _ -> x == y) (ensures fun _ _ _ -> True) =
rewrite_slprop (p x) (p y) (fun _ -> ())
false
Steel.Utils.fst
Steel.Utils.pts_to_not_null
val pts_to_not_null (#a: Type) (#opened: inames) (#p: perm) (#v: FStar.Ghost.erased a) (r: ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null)
val pts_to_not_null (#a: Type) (#opened: inames) (#p: perm) (#v: FStar.Ghost.erased a) (r: ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null)
let pts_to_not_null (#a:Type) (#opened:inames) (#p:perm) (#v:FStar.Ghost.erased a) (r:ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null) = extract_info_raw (pts_to r p v) (r =!= null) (fun m -> pts_to_not_null r p v m)
{ "file_name": "lib/steel/Steel.Utils.fst", "git_rev": "f984200f79bdc452374ae994a5ca837496476c41", "git_url": "https://github.com/FStarLang/steel.git", "project_name": "steel" }
{ "end_col": 40, "end_line": 35, "start_col": 0, "start_line": 24 }
(* Copyright 2020 Microsoft Research Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) module Steel.Utils open Steel.Memory open Steel.Effect.Atomic open Steel.Effect open Steel.FractionalPermission open Steel.Reference
{ "checked_file": "/", "dependencies": [ "Steel.Reference.fsti.checked", "Steel.Memory.fsti.checked", "Steel.FractionalPermission.fst.checked", "Steel.Effect.Atomic.fsti.checked", "Steel.Effect.fsti.checked", "prims.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Ghost.fsti.checked" ], "interface_file": false, "source_file": "Steel.Utils.fst" }
[ { "abbrev": false, "full_module": "Steel.Reference", "short_module": null }, { "abbrev": false, "full_module": "Steel.FractionalPermission", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect", "short_module": null }, { "abbrev": false, "full_module": "Steel.Effect.Atomic", "short_module": null }, { "abbrev": false, "full_module": "Steel.Memory", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "Steel", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Steel.Reference.ref a -> Steel.Effect.Atomic.SteelGhost Prims.unit
Steel.Effect.Atomic.SteelGhost
[]
[]
[ "Steel.Memory.inames", "Steel.FractionalPermission.perm", "FStar.Ghost.erased", "Steel.Reference.ref", "Steel.Effect.Atomic.extract_info_raw", "Steel.Reference.pts_to", "FStar.Ghost.reveal", "Prims.l_not", "Prims.eq2", "Steel.Reference.null", "Steel.Memory.mem", "Steel.Reference.pts_to_not_null", "Prims.unit", "Steel.Effect.Common.vprop", "Steel.Effect.Common.rmem", "Prims.l_True" ]
[]
false
true
false
false
false
let pts_to_not_null (#a: Type) (#opened: inames) (#p: perm) (#v: FStar.Ghost.erased a) (r: ref a) : SteelGhost unit opened (pts_to r p v) (fun _ -> pts_to r p v) (fun _ -> True) (fun _ _ _ -> r =!= null) =
extract_info_raw (pts_to r p v) (r =!= null) (fun m -> pts_to_not_null r p v m)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_bv8_recip
val synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t
val synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t
let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 12, "end_line": 75, "start_col": 0, "start_line": 74 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.BitVector.bv_t 8 -> FStar.UInt8.t
Prims.Tot
[ "total" ]
[]
[ "FStar.BitVector.bv_t", "LowParse.Spec.BitVector.to_uint8", "FStar.UInt8.t" ]
[]
false
false
false
false
false
let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t =
to_uint8 x
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_bv8_kind
val parse_bv8_kind : LowParse.Spec.Base.parser_kind
let parse_bv8_kind = parse_u8_kind
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 34, "end_line": 87, "start_col": 0, "start_line": 87 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Int.parse_u8_kind" ]
[]
false
false
false
true
false
let parse_bv8_kind =
parse_u8_kind
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_extra_bv8_kind
val parse_extra_bv8_kind (n: nat) : Tot parser_kind
val parse_extra_bv8_kind (n: nat) : Tot parser_kind
let parse_extra_bv8_kind (n: nat) : Tot parser_kind = parse_filter_kind parse_u8_kind
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 33, "end_line": 187, "start_col": 0, "start_line": 186 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x) let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x) let synth_byte_bv_injective (n: nat) : Lemma (synth_injective (synth_byte_bv n)) [SMTPat (synth_injective (synth_byte_bv n))] = synth_inverse_intro' (synth_byte_bv_recip n) (synth_byte_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_byte_bv_recip n (synth_byte_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') ) let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] = synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert (synth_byte_bv n (synth_byte_bv_recip n x) `Seq.equal` x) ) let rec parse_byte_bv_kind' (n: nat) : Tot parser_kind = if n = 0 then parse_ret_kind else parse_bv8_kind `and_then_kind` parse_byte_bv_kind' (n - 1) let parse_byte_bv_kind (n: nat) : Tot parser_kind = strong_parser_kind n n (Some ParserKindMetadataTotal) let rec parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n) = if n = 0 then () else parse_byte_bv_kind_eq (n - 1) let rec parse_byte_bv (n: nat) : Tot (parser (parse_byte_bv_kind n) (BV.bv_t (8 * n))) = parse_byte_bv_kind_eq n; if n = 0 then parse_ret Seq.empty else (parse_bv8 `nondep_then` parse_byte_bv (n - 1)) `parse_synth` synth_byte_bv (n - 1) let rec serialize_byte_bv (n: nat) : Tot (serializer (parse_byte_bv n)) = parse_byte_bv_kind_eq n; if n = 0 then serialize_ret Seq.empty (fun (x: BV.bv_t 0) -> assert (x `Seq.equal` Seq.empty)) else serialize_synth (parse_bv8 `nondep_then` parse_byte_bv (n - 1)) (synth_byte_bv (n - 1)) (serialize_bv8 `serialize_nondep_then` serialize_byte_bv (n - 1)) (synth_byte_bv_recip (n - 1)) () (* parse extra bits (big-endian with the first bits equal to 0) *) let extra_bytes_prop (n: nat) (x: U8.t) : Tot bool = U8.v x < pow2 (n % 8) let synth_extra_bv8 (n: nat) (x: parse_filter_refine (extra_bytes_prop n)) : Tot (BV.bv_t (n % 8)) = of_uint8 (n % 8) x let synth_extra_bv8_recip (n: nat) (x: BV.bv_t (n % 8)) : Tot (parse_filter_refine (extra_bytes_prop n)) = to_uint8 x let synth_extra_bv8_injective (n: nat) : Lemma (synth_injective (synth_extra_bv8 n)) [SMTPat (synth_injective (synth_extra_bv8 n))] = synth_inverse_intro' (synth_extra_bv8_recip n) (synth_extra_bv8 n) (fun x -> to_uint8_of_uint8 (n % 8) x ) let synth_extra_bv8_inverse (n: nat) : Lemma (synth_inverse (synth_extra_bv8 n) (synth_extra_bv8_recip n)) [SMTPat (synth_inverse (synth_extra_bv8 n) (synth_extra_bv8_recip n))] = synth_inverse_intro' (synth_extra_bv8 n) (synth_extra_bv8_recip n) (fun x -> of_uint8_to_uint8 x )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "LowParse.Spec.Combinators.parse_filter_kind", "LowParse.Spec.Int.parse_u8_kind", "LowParse.Spec.Base.parser_kind" ]
[]
false
false
false
true
false
let parse_extra_bv8_kind (n: nat) : Tot parser_kind =
parse_filter_kind parse_u8_kind
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.of_uint8
val of_uint8 (n: nat{n <= 8}) (x: U8.t{U8.v x < pow2 n}) : Tot (BV.bv_t n)
val of_uint8 (n: nat{n <= 8}) (x: U8.t{U8.v x < pow2 n}) : Tot (BV.bv_t n)
let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy)
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 38, "end_line": 30, "start_col": 0, "start_line": 22 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat{n <= 8} -> x: FStar.UInt8.t{FStar.UInt8.v x < Prims.pow2 n} -> FStar.BitVector.bv_t n
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "FStar.UInt8.t", "Prims.op_LessThan", "FStar.UInt8.v", "Prims.pow2", "Prims.op_Equality", "Prims.int", "FStar.Seq.Base.empty", "Prims.bool", "FStar.Seq.Properties.snoc", "FStar.UInt8.rem", "FStar.UInt8.__uint_to_t", "FStar.BitVector.bv_t", "Prims.op_Subtraction", "LowParse.Spec.BitVector.of_uint8", "FStar.UInt8.div" ]
[ "recursion" ]
false
false
false
false
false
let rec of_uint8 (n: nat{n <= 8}) (x: U8.t{U8.v x < pow2 n}) : Tot (BV.bv_t n) =
if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_bv8
val synth_bv8 (x: U8.t) : Tot (BV.bv_t 8)
val synth_bv8 (x: U8.t) : Tot (BV.bv_t 8)
let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 14, "end_line": 72, "start_col": 0, "start_line": 71 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: FStar.UInt8.t -> FStar.BitVector.bv_t 8
Prims.Tot
[ "total" ]
[]
[ "FStar.UInt8.t", "LowParse.Spec.BitVector.of_uint8", "FStar.BitVector.bv_t" ]
[]
false
false
false
false
false
let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) =
of_uint8 8 x
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_bv8_inverse
val synth_bv8_inverse:squash (synth_inverse synth_bv8 synth_bv8_recip)
val synth_bv8_inverse:squash (synth_inverse synth_bv8 synth_bv8_recip)
let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x )
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 85, "start_col": 0, "start_line": 82 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.squash (LowParse.Spec.Combinators.synth_inverse LowParse.Spec.BitVector.synth_bv8 LowParse.Spec.BitVector.synth_bv8_recip)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.synth_inverse_intro'", "FStar.UInt8.t", "FStar.BitVector.bv_t", "LowParse.Spec.BitVector.synth_bv8", "LowParse.Spec.BitVector.synth_bv8_recip", "LowParse.Spec.BitVector.of_uint8_to_uint8", "Prims.unit" ]
[]
false
false
true
false
false
let synth_bv8_inverse:squash (synth_inverse synth_bv8 synth_bv8_recip) =
synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_bv8
val parse_bv8:parser parse_bv8_kind (BV.bv_t 8)
val parse_bv8:parser parse_bv8_kind (BV.bv_t 8)
let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 34, "end_line": 90, "start_col": 0, "start_line": 89 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.parser LowParse.Spec.BitVector.parse_bv8_kind (FStar.BitVector.bv_t 8)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.parse_synth", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "FStar.BitVector.bv_t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.BitVector.synth_bv8" ]
[]
false
false
false
false
false
let parse_bv8:parser parse_bv8_kind (BV.bv_t 8) =
parse_u8 `parse_synth` synth_bv8
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.serialize_bv8
val serialize_bv8:serializer parse_bv8
val serialize_bv8:serializer parse_bv8
let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip ()
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 6, "end_line": 98, "start_col": 0, "start_line": 92 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
LowParse.Spec.Base.serializer LowParse.Spec.BitVector.parse_bv8
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.serialize_synth", "LowParse.Spec.Int.parse_u8_kind", "FStar.UInt8.t", "FStar.BitVector.bv_t", "LowParse.Spec.Int.parse_u8", "LowParse.Spec.BitVector.synth_bv8", "LowParse.Spec.Int.serialize_u8", "LowParse.Spec.BitVector.synth_bv8_recip" ]
[]
false
false
false
false
false
let serialize_bv8:serializer parse_bv8 =
serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip ()
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_bounded_bv_kind
val parse_bounded_bv_kind (min: nat) (max: nat{min <= max}) (hk: parser_kind) : Tot parser_kind
val parse_bounded_bv_kind (min: nat) (max: nat{min <= max}) (hk: parser_kind) : Tot parser_kind
let parse_bounded_bv_kind (min: nat) (max: nat { min <= max }) (hk: parser_kind) : Tot parser_kind = hk `and_then_kind` parse_bounded_bv_payload_kind min max
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 58, "end_line": 285, "start_col": 0, "start_line": 280 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x) let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x) let synth_byte_bv_injective (n: nat) : Lemma (synth_injective (synth_byte_bv n)) [SMTPat (synth_injective (synth_byte_bv n))] = synth_inverse_intro' (synth_byte_bv_recip n) (synth_byte_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_byte_bv_recip n (synth_byte_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') ) let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] = synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert (synth_byte_bv n (synth_byte_bv_recip n x) `Seq.equal` x) ) let rec parse_byte_bv_kind' (n: nat) : Tot parser_kind = if n = 0 then parse_ret_kind else parse_bv8_kind `and_then_kind` parse_byte_bv_kind' (n - 1) let parse_byte_bv_kind (n: nat) : Tot parser_kind = strong_parser_kind n n (Some ParserKindMetadataTotal) let rec parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n) = if n = 0 then () else parse_byte_bv_kind_eq (n - 1) let rec parse_byte_bv (n: nat) : Tot (parser (parse_byte_bv_kind n) (BV.bv_t (8 * n))) = parse_byte_bv_kind_eq n; if n = 0 then parse_ret Seq.empty else (parse_bv8 `nondep_then` parse_byte_bv (n - 1)) `parse_synth` synth_byte_bv (n - 1) let rec serialize_byte_bv (n: nat) : Tot (serializer (parse_byte_bv n)) = parse_byte_bv_kind_eq n; if n = 0 then serialize_ret Seq.empty (fun (x: BV.bv_t 0) -> assert (x `Seq.equal` Seq.empty)) else serialize_synth (parse_bv8 `nondep_then` parse_byte_bv (n - 1)) (synth_byte_bv (n - 1)) (serialize_bv8 `serialize_nondep_then` serialize_byte_bv (n - 1)) (synth_byte_bv_recip (n - 1)) () (* parse extra bits (big-endian with the first bits equal to 0) *) let extra_bytes_prop (n: nat) (x: U8.t) : Tot bool = U8.v x < pow2 (n % 8) let synth_extra_bv8 (n: nat) (x: parse_filter_refine (extra_bytes_prop n)) : Tot (BV.bv_t (n % 8)) = of_uint8 (n % 8) x let synth_extra_bv8_recip (n: nat) (x: BV.bv_t (n % 8)) : Tot (parse_filter_refine (extra_bytes_prop n)) = to_uint8 x let synth_extra_bv8_injective (n: nat) : Lemma (synth_injective (synth_extra_bv8 n)) [SMTPat (synth_injective (synth_extra_bv8 n))] = synth_inverse_intro' (synth_extra_bv8_recip n) (synth_extra_bv8 n) (fun x -> to_uint8_of_uint8 (n % 8) x ) let synth_extra_bv8_inverse (n: nat) : Lemma (synth_inverse (synth_extra_bv8 n) (synth_extra_bv8_recip n)) [SMTPat (synth_inverse (synth_extra_bv8 n) (synth_extra_bv8_recip n))] = synth_inverse_intro' (synth_extra_bv8 n) (synth_extra_bv8_recip n) (fun x -> of_uint8_to_uint8 x ) let parse_extra_bv8_kind (n: nat) : Tot parser_kind = parse_filter_kind parse_u8_kind let parse_extra_bv8 (n: nat) : Tot (parser (parse_extra_bv8_kind n) (BV.bv_t (n % 8))) = (parse_u8 `parse_filter` extra_bytes_prop n) `parse_synth` synth_extra_bv8 n let serialize_extra_bv8 (n: nat) : Tot (serializer (parse_extra_bv8 n)) = serialize_synth _ (synth_extra_bv8 n) (serialize_filter serialize_u8 (extra_bytes_prop n)) (synth_extra_bv8_recip n) () (* parse a bitvector, general *) let synth_bv (n: nat) (x: (BV.bv_t (n % 8) & BV.bv_t (8 * (n / 8)))) : Tot (BV.bv_t n) = Seq.append (fst x) (snd x) let synth_bv_recip (n: nat) (x: BV.bv_t n) : Tot (BV.bv_t (n % 8) & BV.bv_t (8 * (n / 8))) = Seq.slice x 0 (n % 8), Seq.slice x (n % 8) (Seq.length x) let synth_bv_injective (n: nat) : Lemma (synth_injective (synth_bv n)) [SMTPat (synth_injective (synth_bv n))] = synth_inverse_intro' (synth_bv_recip n) (synth_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_bv_recip n (synth_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') ) let synth_bv_inverse (n: nat) : Lemma (synth_inverse (synth_bv n) (synth_bv_recip n)) [SMTPat (synth_inverse (synth_bv n) (synth_bv_recip n))] = synth_inverse_intro' (synth_bv n) (synth_bv_recip n) (fun x -> assert (synth_bv n (synth_bv_recip n x) `Seq.equal` x) ) let parse_bv_kind (n: nat) : Tot parser_kind = if n % 8 = 0 then strong_parser_kind (n / 8) (n / 8) (Some ParserKindMetadataTotal) else strong_parser_kind (1 + n / 8) (1 + n / 8) None let parse_bv (n: nat) : Tot (parser (parse_bv_kind n) (BV.bv_t n)) = if n % 8 = 0 then parse_byte_bv (n / 8) else ((parse_extra_bv8 n `nondep_then` parse_byte_bv (n / 8)) `parse_synth` synth_bv n) let serialize_bv (n: nat) : Tot (serializer (parse_bv n)) = if n % 8 = 0 then serialize_byte_bv (n / 8) else serialize_synth _ (synth_bv n) (serialize_extra_bv8 n `serialize_nondep_then` serialize_byte_bv (n / 8)) (synth_bv_recip n) () (* parse a bounded bit vector *) module U32 = FStar.UInt32 open LowParse.Spec.BoundedInt inline_for_extraction let bounded_bv_t (min: nat) (max: nat { min <= max }) : Tot Type = (bitsize: bounded_int32 min max & BV.bv_t (U32.v bitsize)) let parse_bounded_bv_payload_kind (min: nat) (max: nat { min <= max }) : Tot parser_kind = strong_parser_kind (if min % 8 = 0 then min / 8 else 1 + min / 8) (if max % 8 = 0 then max / 8 else 1 + max / 8) None let parse_bounded_bv_payload_kind_is_weaker_than_parse_bv_kind (min: nat) (max: nat) (n: nat) : Lemma (requires (min <= n /\ n <= max)) (ensures ( min <= n /\ n <= max /\ parse_bounded_bv_payload_kind min max `is_weaker_than` parse_bv_kind n )) [SMTPat (parse_bounded_bv_payload_kind min max `is_weaker_than` parse_bv_kind n)] = ()
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.BoundedInt", "short_module": null }, { "abbrev": true, "full_module": "FStar.UInt32", "short_module": "U32" }, { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
min: Prims.nat -> max: Prims.nat{min <= max} -> hk: LowParse.Spec.Base.parser_kind -> LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.b2t", "Prims.op_LessThanOrEqual", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.Combinators.and_then_kind", "LowParse.Spec.BitVector.parse_bounded_bv_payload_kind" ]
[]
false
false
false
false
false
let parse_bounded_bv_kind (min: nat) (max: nat{min <= max}) (hk: parser_kind) : Tot parser_kind =
hk `and_then_kind` (parse_bounded_bv_payload_kind min max)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_byte_bv_kind'
val parse_byte_bv_kind' (n: nat) : Tot parser_kind
val parse_byte_bv_kind' (n: nat) : Tot parser_kind
let rec parse_byte_bv_kind' (n: nat) : Tot parser_kind = if n = 0 then parse_ret_kind else parse_bv8_kind `and_then_kind` parse_byte_bv_kind' (n - 1)
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 65, "end_line": 129, "start_col": 0, "start_line": 126 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x) let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x) let synth_byte_bv_injective (n: nat) : Lemma (synth_injective (synth_byte_bv n)) [SMTPat (synth_injective (synth_byte_bv n))] = synth_inverse_intro' (synth_byte_bv_recip n) (synth_byte_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_byte_bv_recip n (synth_byte_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') ) let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] = synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert (synth_byte_bv n (synth_byte_bv_recip n x) `Seq.equal` x) )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> LowParse.Spec.Base.parser_kind
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "LowParse.Spec.Combinators.parse_ret_kind", "Prims.bool", "LowParse.Spec.Combinators.and_then_kind", "LowParse.Spec.BitVector.parse_bv8_kind", "LowParse.Spec.BitVector.parse_byte_bv_kind'", "Prims.op_Subtraction", "LowParse.Spec.Base.parser_kind" ]
[ "recursion" ]
false
false
false
true
false
let rec parse_byte_bv_kind' (n: nat) : Tot parser_kind =
if n = 0 then parse_ret_kind else parse_bv8_kind `and_then_kind` (parse_byte_bv_kind' (n - 1))
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_byte_bv_inverse
val synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))]
val synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))]
let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] = synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert (synth_byte_bv n (synth_byte_bv_recip n x) `Seq.equal` x) )
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 124, "start_col": 0, "start_line": 119 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x) let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x) let synth_byte_bv_injective (n: nat) : Lemma (synth_injective (synth_byte_bv n)) [SMTPat (synth_injective (synth_byte_bv n))] = synth_inverse_intro' (synth_byte_bv_recip n) (synth_byte_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_byte_bv_recip n (synth_byte_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') )
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Pervasives.Lemma (ensures LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitVector.synth_byte_bv n) (LowParse.Spec.BitVector.synth_byte_bv_recip n)) [ SMTPat (LowParse.Spec.Combinators.synth_inverse (LowParse.Spec.BitVector.synth_byte_bv n) (LowParse.Spec.BitVector.synth_byte_bv_recip n)) ]
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "LowParse.Spec.Combinators.synth_inverse_intro'", "FStar.Pervasives.Native.tuple2", "FStar.BitVector.bv_t", "FStar.Mul.op_Star", "FStar.Seq.Base.seq", "Prims.bool", "Prims.b2t", "Prims.op_Equality", "FStar.Seq.Base.length", "Prims.op_Addition", "LowParse.Spec.BitVector.synth_byte_bv", "LowParse.Spec.BitVector.synth_byte_bv_recip", "Prims._assert", "FStar.Seq.Base.equal", "Prims.unit", "Prims.l_True", "Prims.squash", "LowParse.Spec.Combinators.synth_inverse", "Prims.Cons", "FStar.Pervasives.pattern", "FStar.Pervasives.smt_pat", "Prims.Nil" ]
[]
false
false
true
false
false
let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] =
synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert ((synth_byte_bv n (synth_byte_bv_recip n x)) `Seq.equal` x))
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.parse_byte_bv_kind_eq
val parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n)
val parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n)
let rec parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n) = if n = 0 then () else parse_byte_bv_kind_eq (n - 1)
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 36, "end_line": 138, "start_col": 0, "start_line": 134 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x) let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x) let synth_byte_bv_injective (n: nat) : Lemma (synth_injective (synth_byte_bv n)) [SMTPat (synth_injective (synth_byte_bv n))] = synth_inverse_intro' (synth_byte_bv_recip n) (synth_byte_bv n) (fun x -> let (hd, tl) = x in let (hd', tl') = synth_byte_bv_recip n (synth_byte_bv n x) in assert (hd `Seq.equal` hd'); assert (tl `Seq.equal` tl') ) let synth_byte_bv_inverse (n: nat) : Lemma (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n)) [SMTPat (synth_inverse (synth_byte_bv n) (synth_byte_bv_recip n))] = synth_inverse_intro' (synth_byte_bv n) (synth_byte_bv_recip n) (fun x -> assert (synth_byte_bv n (synth_byte_bv_recip n x) `Seq.equal` x) ) let rec parse_byte_bv_kind' (n: nat) : Tot parser_kind = if n = 0 then parse_ret_kind else parse_bv8_kind `and_then_kind` parse_byte_bv_kind' (n - 1) let parse_byte_bv_kind (n: nat) : Tot parser_kind = strong_parser_kind n n (Some ParserKindMetadataTotal)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> FStar.Pervasives.Lemma (ensures LowParse.Spec.BitVector.parse_byte_bv_kind n == LowParse.Spec.BitVector.parse_byte_bv_kind' n)
FStar.Pervasives.Lemma
[ "lemma" ]
[]
[ "Prims.nat", "Prims.op_Equality", "Prims.int", "Prims.bool", "LowParse.Spec.BitVector.parse_byte_bv_kind_eq", "Prims.op_Subtraction", "Prims.unit", "Prims.l_True", "Prims.squash", "Prims.eq2", "LowParse.Spec.Base.parser_kind", "LowParse.Spec.BitVector.parse_byte_bv_kind", "LowParse.Spec.BitVector.parse_byte_bv_kind'", "Prims.Nil", "FStar.Pervasives.pattern" ]
[ "recursion" ]
false
false
true
false
false
let rec parse_byte_bv_kind_eq (n: nat) : Lemma (parse_byte_bv_kind n == parse_byte_bv_kind' n) =
if n = 0 then () else parse_byte_bv_kind_eq (n - 1)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_bv8_injective
val synth_bv8_injective:squash (synth_injective synth_bv8)
val synth_bv8_injective:squash (synth_injective synth_bv8)
let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x )
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 3, "end_line": 80, "start_col": 0, "start_line": 77 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.squash (LowParse.Spec.Combinators.synth_injective LowParse.Spec.BitVector.synth_bv8)
Prims.Tot
[ "total" ]
[]
[ "LowParse.Spec.Combinators.synth_inverse_intro'", "FStar.BitVector.bv_t", "FStar.UInt8.t", "Prims.b2t", "Prims.op_LessThan", "FStar.UInt8.v", "Prims.pow2", "LowParse.Spec.BitVector.synth_bv8_recip", "LowParse.Spec.BitVector.synth_bv8", "LowParse.Spec.BitVector.to_uint8_of_uint8", "Prims.unit" ]
[]
false
false
true
false
false
let synth_bv8_injective:squash (synth_injective synth_bv8) =
synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x)
false
LowParse.Spec.BitVector.fst
LowParse.Spec.BitVector.synth_byte_bv_recip
val synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n))
val synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n))
let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) = Seq.slice x 0 8, Seq.slice x 8 (Seq.length x)
{ "file_name": "src/lowparse/LowParse.Spec.BitVector.fst", "git_rev": "00217c4a89f5ba56002ba9aa5b4a9d5903bfe9fa", "git_url": "https://github.com/project-everest/everparse.git", "project_name": "everparse" }
{ "end_col": 47, "end_line": 107, "start_col": 0, "start_line": 106 }
module LowParse.Spec.BitVector open FStar.Mul module BV = FStar.BitVector module U8 = FStar.UInt8 module Seq = FStar.Seq (* Big-endian conversion of a bit vector to a UInt8 *) let rec to_uint8 (#n: nat { n <= 8 }) (x: BV.bv_t n) : Tot (y: U8.t { U8.v y < pow2 n }) = if n = 0 then 0uy else let hi = to_uint8 #(n - 1) (Seq.slice x 0 (n - 1)) in let hi' = hi `U8.mul` 2uy in let (r: U8.t { U8.v r < 2 }) = if Seq.index x (n - 1) then 1uy else 0uy in hi' `U8.add` r let rec of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Tot (BV.bv_t n) = if n = 0 then Seq.empty else let hi = of_uint8 (n - 1) (x `U8.div` 2uy) in Seq.snoc hi (x `U8.rem` 2uy = 1uy) #push-options "--z3rlimit 32" let rec to_uint8_of_uint8 (n: nat { n <= 8 }) (x: U8.t { U8.v x < pow2 n }) : Lemma (to_uint8 (of_uint8 n x) == x) = if n = 0 then () else begin assert (Seq.slice (of_uint8 n x) 0 (n - 1) `Seq.equal` of_uint8 (n - 1) (x `U8.div` 2uy)); to_uint8_of_uint8 (n - 1) (x `U8.div` 2uy) end let rec of_uint8_to_uint8 (#n: nat {n <= 8}) (x: BV.bv_t n) : Lemma (of_uint8 n (to_uint8 x) `Seq.equal` x) = if n = 0 then () else begin let x' = Seq.slice x 0 (n - 1) in of_uint8_to_uint8 #(n - 1) x' ; assert ( U8.v (to_uint8 #(n - 1) x') * 2 == U8.v (to_uint8 x) \/ U8.v (to_uint8 #(n - 1) x') * 2 + 1 == U8.v (to_uint8 x) ); assert (to_uint8 #(n - 1) x' == to_uint8 x `U8.div` 2uy); () end #pop-options (* parse a 8-bit vector *) open LowParse.Spec.Combinators open LowParse.Spec.Int let synth_bv8 (x: U8.t) : Tot (BV.bv_t 8) = of_uint8 8 x let synth_bv8_recip (x: BV.bv_t 8) : Tot U8.t = to_uint8 x let synth_bv8_injective : squash (synth_injective synth_bv8) = synth_inverse_intro' synth_bv8_recip synth_bv8 (fun x -> to_uint8_of_uint8 8 x ) let synth_bv8_inverse : squash (synth_inverse synth_bv8 synth_bv8_recip) = synth_inverse_intro' synth_bv8 synth_bv8_recip (fun x -> of_uint8_to_uint8 x ) let parse_bv8_kind = parse_u8_kind let parse_bv8 : parser parse_bv8_kind (BV.bv_t 8) = parse_u8 `parse_synth` synth_bv8 let serialize_bv8 : serializer parse_bv8 = serialize_synth parse_u8 synth_bv8 serialize_u8 synth_bv8_recip () (* parse a 8*n bit vector *) let synth_byte_bv (n: nat) (x: (BV.bv_t 8 & BV.bv_t (8 * n))) : Tot (BV.bv_t (8 * (1 + n))) = Seq.append (fst x) (snd x)
{ "checked_file": "/", "dependencies": [ "prims.fst.checked", "LowParse.Spec.Int.fsti.checked", "LowParse.Spec.Combinators.fsti.checked", "LowParse.Spec.BoundedInt.fsti.checked", "FStar.UInt8.fsti.checked", "FStar.UInt32.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.BitVector.fst.checked" ], "interface_file": false, "source_file": "LowParse.Spec.BitVector.fst" }
[ { "abbrev": false, "full_module": "LowParse.Spec.Int", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec.Combinators", "short_module": null }, { "abbrev": true, "full_module": "FStar.Seq", "short_module": "Seq" }, { "abbrev": true, "full_module": "FStar.UInt8", "short_module": "U8" }, { "abbrev": true, "full_module": "FStar.BitVector", "short_module": "BV" }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "LowParse.Spec", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 1, "max_fuel": 8, "max_ifuel": 2, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": false, "smtencoding_l_arith_repr": "boxwrap", "smtencoding_nl_arith_repr": "boxwrap", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": true, "z3cliopt": [], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Prims.nat -> x: FStar.BitVector.bv_t (8 * (1 + n)) -> FStar.BitVector.bv_t 8 * FStar.BitVector.bv_t (8 * n)
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.BitVector.bv_t", "FStar.Mul.op_Star", "Prims.op_Addition", "FStar.Pervasives.Native.Mktuple2", "FStar.Seq.Base.slice", "Prims.bool", "FStar.Seq.Base.length", "FStar.Pervasives.Native.tuple2" ]
[]
false
false
false
false
false
let synth_byte_bv_recip (n: nat) (x: BV.bv_t (8 * (1 + n))) : Tot (BV.bv_t 8 & BV.bv_t (8 * n)) =
Seq.slice x 0 8, Seq.slice x 8 (Seq.length x)
false