file_name
stringlengths
5
52
name
stringlengths
4
95
original_source_type
stringlengths
0
23k
source_type
stringlengths
9
23k
source_definition
stringlengths
9
57.9k
source
dict
source_range
dict
file_context
stringlengths
0
721k
dependencies
dict
opens_and_abbrevs
listlengths
2
94
vconfig
dict
interleaved
bool
1 class
verbose_type
stringlengths
1
7.42k
effect
stringclasses
118 values
effect_flags
sequencelengths
0
2
mutual_with
sequencelengths
0
11
ideal_premises
sequencelengths
0
236
proof_features
sequencelengths
0
1
is_simple_lemma
bool
2 classes
is_div
bool
2 classes
is_proof
bool
2 classes
is_simply_typed
bool
2 classes
is_type
bool
2 classes
partial_definition
stringlengths
5
3.99k
completed_definiton
stringlengths
1
1.63M
isa_cross_project_example
bool
1 class
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_state
val va_state : Type
let va_state = state
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 27, "end_line": 59, "start_col": 7, "start_line": 59 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.State.state" ]
[]
false
false
false
true
true
let va_state =
state
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.vec_opr
val vec_opr : Type0
let vec_opr = vec
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 64, "start_col": 7, "start_line": 64 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec" ]
[]
false
false
false
true
true
let vec_opr =
vec
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_operand_reg_opr
val va_operand_reg_opr : Type0
let va_operand_reg_opr = reg
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 62, "start_col": 7, "start_line": 62 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg" ]
[]
false
false
false
true
true
let va_operand_reg_opr =
reg
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_code
val va_code : Type0
let va_code = precode ins ocmp
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 37, "end_line": 56, "start_col": 7, "start_line": 56 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.precode", "Vale.PPC64LE.Decls.ins", "Vale.PPC64LE.Decls.ocmp" ]
[]
false
false
false
true
true
let va_code =
precode ins ocmp
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.reg_opr
val reg_opr : Type0
let reg_opr = reg
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 24, "end_line": 61, "start_col": 7, "start_line": 61 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg" ]
[]
false
false
false
true
true
let reg_opr =
reg
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_operand_vec_opr
val va_operand_vec_opr : Type0
let va_operand_vec_opr = vec
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 65, "start_col": 7, "start_line": 65 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec" ]
[]
false
false
false
true
true
let va_operand_vec_opr =
vec
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_operand_heaplet
val va_operand_heaplet : Type0
let va_operand_heaplet = heaplet_id
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 66, "start_col": 7, "start_line": 66 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id" ]
[]
false
false
false
true
true
let va_operand_heaplet =
heaplet_id
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_readable
val buffer_readable (#t: M.base_typ) (h: vale_heap) (b: M.buffer t) : GTot prop0
val buffer_readable (#t: M.base_typ) (h: vale_heap) (b: M.buffer t) : GTot prop0
let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 111, "end_line": 80, "start_col": 7, "start_line": 80 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer", "Vale.PPC64LE.Memory.buffer_readable", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let buffer_readable (#t: M.base_typ) (h: vale_heap) (b: M.buffer t) : GTot prop0 =
M.buffer_readable #t h b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.from_heap_impl
val from_heap_impl (heap: heap_impl) : vale_full_heap
val from_heap_impl (heap: heap_impl) : vale_full_heap
let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 73, "end_line": 24, "start_col": 7, "start_line": 24 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
heap: Vale.Arch.Heap.heap_impl -> Vale.Arch.HeapImpl.vale_full_heap
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap" ]
[]
false
false
false
true
false
let from_heap_impl (heap: heap_impl) : vale_full_heap =
coerce heap
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_expand_state
val va_expand_state (s: state) : state
val va_expand_state (s: state) : state
let va_expand_state (s:state) : state = s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 78, "start_col": 19, "start_line": 78 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.State.state" ]
[]
false
false
false
true
false
let va_expand_state (s: state) : state =
s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_mul_nat
val va_mul_nat (x y: nat) : nat
val va_mul_nat (x y: nat) : nat
let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 7, "end_line": 76, "start_col": 19, "start_line": 74 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Prims.nat -> y: Prims.nat -> Prims.nat
Prims.Tot
[ "total" ]
[]
[ "Prims.nat", "FStar.Mul.op_Star", "Prims.unit", "Vale.PPC64LE.Decls.mul_nat_helper" ]
[]
false
false
false
true
false
let va_mul_nat (x y: nat) : nat =
mul_nat_helper x y; x * y
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_writeable
val buffer_writeable (#t: M.base_typ) (b: M.buffer t) : GTot prop0
val buffer_writeable (#t: M.base_typ) (b: M.buffer t) : GTot prop0
let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 97, "end_line": 81, "start_col": 7, "start_line": 81 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Memory.buffer", "Vale.PPC64LE.Memory.buffer_writeable", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let buffer_writeable (#t: M.base_typ) (b: M.buffer t) : GTot prop0 =
M.buffer_writeable #t b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.coerce
val coerce (#b #a: Type) (x: a{a == b}) : b
val coerce (#b #a: Type) (x: a{a == b}) : b
let coerce (#b #a:Type) (x:a{a == b}) : b = x
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 52, "end_line": 22, "start_col": 7, "start_line": 22 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: a{a == b} -> b
Prims.Tot
[ "total" ]
[]
[ "Prims.eq2" ]
[]
false
false
false
false
false
let coerce (#b #a: Type) (x: a{a == b}) : b =
x
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer8_as_seq
val buffer8_as_seq (m: vale_heap) (b: M.buffer8) : GTot (Seq.seq nat8)
val buffer8_as_seq (m: vale_heap) (b: M.buffer8) : GTot (Seq.seq nat8)
let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 97, "end_line": 83, "start_col": 7, "start_line": 83 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer8 -> Prims.GTot (FStar.Seq.Base.seq Vale.PPC64LE.Machine_s.nat8)
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer8", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.PPC64LE.Memory.vuint8", "FStar.Seq.Base.seq", "Vale.PPC64LE.Machine_s.nat8" ]
[]
false
false
false
false
false
let buffer8_as_seq (m: vale_heap) (b: M.buffer8) : GTot (Seq.seq nat8) =
M.buffer_as_seq m b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.s64
val s64 (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64)
val s64 (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64)
let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 88, "end_line": 85, "start_col": 7, "start_line": 85 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer64 -> Prims.GTot (FStar.Seq.Base.seq Vale.PPC64LE.Machine_s.nat64)
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.buffer64_as_seq", "FStar.Seq.Base.seq", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let s64 (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64) =
buffer64_as_seq m b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer128_as_seq
val buffer128_as_seq (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32)
val buffer128_as_seq (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32)
let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 103, "end_line": 86, "start_col": 7, "start_line": 86 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer128 -> Prims.GTot (FStar.Seq.Base.seq Vale.PPC64LE.Machine_s.quad32)
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.PPC64LE.Memory.vuint128", "FStar.Seq.Base.seq", "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
false
false
let buffer128_as_seq (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32) =
M.buffer_as_seq m b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer64_as_seq
val buffer64_as_seq (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64)
val buffer64_as_seq (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64)
let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 100, "end_line": 84, "start_col": 7, "start_line": 84 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer64 -> Prims.GTot (FStar.Seq.Base.seq Vale.PPC64LE.Machine_s.nat64)
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Memory.buffer_as_seq", "Vale.PPC64LE.Memory.vuint64", "FStar.Seq.Base.seq", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let buffer64_as_seq (m: vale_heap) (b: M.buffer64) : GTot (Seq.seq nat64) =
M.buffer_as_seq m b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer64_read
val buffer64_read (b: M.buffer64) (i: int) (h: vale_heap) : GTot nat64
val buffer64_read (b: M.buffer64) (i: int) (h: vale_heap) : GTot nat64
let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 96, "end_line": 90, "start_col": 7, "start_line": 90 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer64 -> i: Prims.int -> h: Vale.PPC64LE.Decls.vale_heap -> Prims.GTot Vale.PPC64LE.Machine_s.nat64
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.buffer64", "Prims.int", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer_read", "Vale.PPC64LE.Memory.vuint64", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let buffer64_read (b: M.buffer64) (i: int) (h: vale_heap) : GTot nat64 =
M.buffer_read b i h
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_src_addr
val valid_src_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0
val valid_src_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0
let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 114, "end_line": 88, "start_col": 7, "start_line": 88 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer t -> i: Prims.int -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer", "Prims.int", "Vale.PPC64LE.Memory.valid_buffer_read", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let valid_src_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0 =
M.valid_buffer_read m b i
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.modifies_mem
val modifies_mem (s: M.loc) (h1 h2: vale_heap) : GTot prop0
val modifies_mem (s: M.loc) (h1 h2: vale_heap) : GTot prop0
let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 85, "end_line": 92, "start_col": 7, "start_line": 92 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Memory.loc -> h1: Vale.PPC64LE.Decls.vale_heap -> h2: Vale.PPC64LE.Decls.vale_heap -> Prims.GTot Vale.Def.Prop_s.prop0
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.loc", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.modifies", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let modifies_mem (s: M.loc) (h1 h2: vale_heap) : GTot prop0 =
M.modifies s h1 h2
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_addr_mem
val valid_addr_mem (r: reg) (n: int) (s: state) : prop0
val valid_addr_mem (r: reg) (n: int) (s: state) : prop0
let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 99, "end_line": 96, "start_col": 7, "start_line": 96 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> n: Prims.int -> s: Vale.PPC64LE.State.state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Prims.int", "Vale.PPC64LE.State.state", "Vale.PPC64LE.State.valid_mem", "Vale.PPC64LE.Machine_s.Mkmaddr", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_addr_mem (r: reg) (n: int) (s: state) : prop0 =
valid_mem ({ address = r; offset = n }) s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer_length
val buffer_length : b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Prims.nat
let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 82, "start_col": 7, "start_line": 82 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Prims.nat
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Memory.buffer", "Vale.PPC64LE.Memory.buffer_length", "Prims.nat" ]
[]
false
false
false
false
false
let buffer_length (#t: M.base_typ) (b: M.buffer t) =
M.buffer_length #t b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.s128
val s128 (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32)
val s128 (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32)
let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 92, "end_line": 87, "start_col": 7, "start_line": 87 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer128 -> Prims.GTot (FStar.Seq.Base.seq Vale.PPC64LE.Machine_s.quad32)
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.buffer128_as_seq", "FStar.Seq.Base.seq", "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
false
false
let s128 (m: vale_heap) (b: M.buffer128) : GTot (Seq.seq quad32) =
buffer128_as_seq m b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.loc_union
val loc_union : s1: Vale.PPC64LE.Memory.loc -> s2: Vale.PPC64LE.Memory.loc -> Prims.GTot Vale.PPC64LE.Memory.loc
let loc_union = M.loc_union
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 34, "end_line": 95, "start_col": 7, "start_line": 95 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s1: Vale.PPC64LE.Memory.loc -> s2: Vale.PPC64LE.Memory.loc -> Prims.GTot Vale.PPC64LE.Memory.loc
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.loc_union" ]
[]
false
false
false
false
false
let loc_union =
M.loc_union
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.buffer128_read
val buffer128_read (b: M.buffer128) (i: int) (h: vale_heap) : GTot quad32
val buffer128_read (b: M.buffer128) (i: int) (h: vale_heap) : GTot quad32
let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 99, "end_line": 91, "start_col": 7, "start_line": 91 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer128 -> i: Prims.int -> h: Vale.PPC64LE.Decls.vale_heap -> Prims.GTot Vale.PPC64LE.Machine_s.quad32
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Memory.buffer128", "Prims.int", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer_read", "Vale.PPC64LE.Memory.vuint128", "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
false
false
let buffer128_read (b: M.buffer128) (i: int) (h: vale_heap) : GTot quad32 =
M.buffer_read b i h
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.loc_buffer
val loc_buffer : b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Vale.PPC64LE.Memory.loc
let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 71, "end_line": 93, "start_col": 7, "start_line": 93 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Vale.PPC64LE.Memory.buffer t -> Prims.GTot Vale.PPC64LE.Memory.loc
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Memory.buffer", "Vale.PPC64LE.Memory.loc_buffer", "Vale.PPC64LE.Memory.loc" ]
[]
false
false
false
false
false
let loc_buffer (#t: M.base_typ) (b: M.buffer t) =
M.loc_buffer #t b
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_buf_maddr64
val valid_buf_maddr64 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer64) (index: int) (t: taint) : prop0
val valid_buf_maddr64 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer64) (index: int) (t: taint) : prop0
let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 43, "end_line": 101, "start_col": 0, "start_line": 98 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
addr: Prims.int -> s_mem: Vale.PPC64LE.Decls.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> b: Vale.PPC64LE.Memory.buffer64 -> index: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Vale.PPC64LE.Decls.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.PPC64LE.Memory.buffer64", "Vale.Arch.HeapTypes_s.taint", "Prims.l_and", "Vale.PPC64LE.Decls.valid_src_addr", "Vale.PPC64LE.Memory.vuint64", "Vale.PPC64LE.Memory.valid_taint_buf64", "Vale.Arch.HeapImpl.__proj__Mkvale_heap_layout__item__vl_taint", "Prims.eq2", "Prims.op_Addition", "Vale.PPC64LE.Memory.buffer_addr", "FStar.Mul.op_Star", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_buf_maddr64 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer64) (index: int) (t: taint) : prop0 =
valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_buf_maddr128
val valid_buf_maddr128 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer128) (index: int) (t: taint) : prop0
val valid_buf_maddr128 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer128) (index: int) (t: taint) : prop0
let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 44, "end_line": 106, "start_col": 0, "start_line": 103 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
addr: Prims.int -> s_mem: Vale.PPC64LE.Decls.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> b: Vale.PPC64LE.Memory.buffer128 -> index: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Vale.PPC64LE.Decls.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Vale.PPC64LE.Memory.buffer128", "Vale.Arch.HeapTypes_s.taint", "Prims.l_and", "Vale.PPC64LE.Decls.valid_src_addr", "Vale.PPC64LE.Memory.vuint128", "Vale.PPC64LE.Memory.valid_taint_buf128", "Vale.Arch.HeapImpl.__proj__Mkvale_heap_layout__item__vl_taint", "Prims.eq2", "Prims.op_Addition", "Vale.PPC64LE.Memory.buffer_addr", "FStar.Mul.op_Star", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_buf_maddr128 (addr: int) (s_mem: vale_heap) (layout: vale_heap_layout) (b: M.buffer128) (index: int) (t: taint) : prop0 =
valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_mem_operand128
val valid_mem_operand128 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0
val valid_mem_operand128 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0
let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 50, "end_line": 114, "start_col": 0, "start_line": 112 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
addr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> s_mem: Vale.PPC64LE.Decls.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Prims.l_Exists", "Vale.PPC64LE.Memory.buffer128", "Vale.PPC64LE.Decls.valid_buf_maddr128", "Vale.PPC64LE.Memory.valid_buffer_read", "Vale.PPC64LE.Memory.vuint128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_mem_operand128 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0 =
exists (b: M.buffer128) (index: int). {:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_tl
val va_tl (cs: va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs)
val va_tl (cs: va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs)
let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 112, "end_line": 58, "start_col": 0, "start_line": 58 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cs: Vale.PPC64LE.Decls.va_codes -> Prims.Ghost Vale.PPC64LE.Decls.va_codes
Prims.Ghost
[]
[]
[ "Vale.PPC64LE.Decls.va_codes", "Prims.__proj__Cons__item__tl", "Vale.PPC64LE.Decls.va_code", "Prims.b2t", "Prims.uu___is_Cons", "Prims.eq2", "Prims.list" ]
[]
false
false
false
false
false
let va_tl (cs: va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) =
Cons?.tl cs
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_mem_operand64
val valid_mem_operand64 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0
val valid_mem_operand64 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0
let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 49, "end_line": 110, "start_col": 0, "start_line": 108 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
addr: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> s_mem: Vale.PPC64LE.Decls.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Prims.int", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.Decls.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Prims.l_Exists", "Vale.PPC64LE.Memory.buffer64", "Vale.PPC64LE.Decls.valid_buf_maddr64", "Vale.PPC64LE.Memory.valid_buffer_read", "Vale.PPC64LE.Memory.vuint64", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_mem_operand64 (addr: int) (t: taint) (s_mem: vale_heap) (layout: vale_heap_layout) : prop0 =
exists (b: M.buffer64) (index: int). {:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Gctr_register
val va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 58, "end_line": 91, "start_col": 0, "start_line": 78 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_b: Vale.X64.Memory.buffer128 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.quad32", "Vale.X64.Memory.buffer128", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.eq2", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Words_s.Mkfour", "Vale.AES.X64.GCMencryptOpt.aes_reqs", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR8", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.va_get_mem_layout", "Prims.l_Forall", "Vale.X64.Flags.t", "Vale.X64.Memory.nat64", "Prims.l_imp", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.create", "Vale.AES.GCTR_s.gctr_encrypt_LE", "Vale.Def.Types_s.le_quad32_to_bytes", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.Def.Types_s.quad32", "Vale.AES.GCTR_s.gctr_encrypt_block", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR12", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm" ]
[]
false
false
false
true
true
let va_wp_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm8: quad32) (va_x_efl: Vale.X64.Flags.t) (va_x_r12: nat64). let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM) ) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (())))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.locs_disjoint
val locs_disjoint : ls: Prims.list Vale.PPC64LE.Memory.loc -> Vale.Def.Prop_s.prop0
let locs_disjoint = M.locs_disjoint
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 42, "end_line": 94, "start_col": 7, "start_line": 94 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ls: Prims.list Vale.PPC64LE.Memory.loc -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.locs_disjoint" ]
[]
false
false
false
true
false
let locs_disjoint =
M.locs_disjoint
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_stack128
val valid_stack128 (m: maddr) (t: taint) (s: state) : prop0
val valid_stack128 (m: maddr) (t: taint) (s: state) : prop0
let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 60, "end_line": 128, "start_col": 0, "start_line": 127 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Machine_s.maddr -> t: Vale.Arch.HeapTypes_s.taint -> s: Vale.PPC64LE.State.state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.maddr", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Stack_i.valid_taint_stack128", "Vale.PPC64LE.State.eval_maddr", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_stack128 (m: maddr) (t: taint) (s: state) : prop0 =
SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_stack
val valid_stack (m: maddr) (t: taint) (s: state) : prop0
val valid_stack (m: maddr) (t: taint) (s: state) : prop0
let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 124, "start_col": 0, "start_line": 123 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Machine_s.maddr -> t: Vale.Arch.HeapTypes_s.taint -> s: Vale.PPC64LE.State.state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.maddr", "Vale.Arch.HeapTypes_s.taint", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Stack_i.valid_taint_stack64", "Vale.PPC64LE.State.eval_maddr", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_stack (m: maddr) (t: taint) (s: state) : prop0 =
SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Gcm_make_length_quad
val va_quick_Gcm_make_length_quad: Prims.unit -> (va_quickCode unit (va_code_Gcm_make_length_quad ()))
val va_quick_Gcm_make_length_quad: Prims.unit -> (va_quickCode unit (va_code_Gcm_make_length_quad ()))
let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad)
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 230, "start_col": 0, "start_line": 228 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
_: Prims.unit -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Gcm_make_length_quad ())
Prims.Tot
[ "total" ]
[]
[ "Prims.unit", "Vale.X64.QuickCode.va_QProc", "Vale.AES.X64.GCMencryptOpt.va_code_Gcm_make_length_quad", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.QuickCode.va_Mod_xmm", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Gcm_make_length_quad", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Gcm_make_length_quad", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) =
(va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad)
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.aes_reqs
val aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0
val aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0
let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 55, "start_col": 0, "start_line": 45 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_b: Vale.X64.Memory.buffer128 -> key_ptr: Prims.int -> heap0: Vale.X64.InsBasic.vale_heap -> layout: Vale.Arch.HeapImpl.vale_heap_layout -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.quad32", "Vale.X64.Memory.buffer128", "Prims.int", "Vale.X64.InsBasic.vale_heap", "Vale.Arch.HeapImpl.vale_heap_layout", "Prims.l_and", "Prims.b2t", "Vale.X64.CPU_Features_s.aesni_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Prims.l_or", "Prims.op_Equality", "Vale.AES.AES_common_s.AES_128", "Vale.AES.AES_common_s.AES_256", "Vale.AES.AES_s.is_aes_key_LE", "Prims.eq2", "FStar.Seq.Base.length", "Prims.op_Addition", "Vale.AES.AES_common_s.nr", "Vale.Def.Types_s.quad32", "Vale.AES.AES_s.key_to_round_keys_LE", "Vale.X64.Decls.validSrcAddrs128", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.s128", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let aes_reqs (alg: algorithm) (key: seq nat32) (round_keys: seq quad32) (keys_b: buffer128) (key_ptr: int) (heap0: vale_heap) (layout: vale_heap_layout) : prop0 =
aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length (round_keys) == nr (alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_dst_addr
val valid_dst_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0
val valid_dst_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0
let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 115, "end_line": 89, "start_col": 7, "start_line": 89 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Decls.vale_heap -> b: Vale.PPC64LE.Memory.buffer t -> i: Prims.int -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.Arch.HeapTypes_s.base_typ", "Vale.PPC64LE.Decls.vale_heap", "Vale.PPC64LE.Memory.buffer", "Prims.int", "Vale.PPC64LE.Memory.valid_buffer_write", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
false
false
let valid_dst_addr (#t: M.base_typ) (m: vale_heap) (b: M.buffer t) (i: int) : prop0 =
M.valid_buffer_write m b i
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_if
val va_if (#a: Type) (b: bool) (x: (_: unit{b} -> a)) (y: (_: unit{~b} -> a)) : a
val va_if (#a: Type) (b: bool) (x: (_: unit{b} -> a)) (y: (_: unit{~b} -> a)) : a
let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y ()
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 26, "end_line": 48, "start_col": 0, "start_line": 47 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]]
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
b: Prims.bool -> x: (_: Prims.unit{b} -> a) -> y: (_: Prims.unit{~b} -> a) -> a
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.unit", "Prims.b2t", "Prims.l_not" ]
[]
false
false
false
false
false
let va_if (#a: Type) (b: bool) (x: (_: unit{b} -> a)) (y: (_: unit{~b} -> a)) : a =
if b then x () else y ()
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_op_reg_opr_reg
val va_op_reg_opr_reg (r: reg) : reg_opr
val va_op_reg_opr_reg (r: reg) : reg_opr
let va_op_reg_opr_reg (r:reg) : reg_opr = r
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 132, "start_col": 19, "start_line": 132 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.Decls.reg_opr
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Decls.reg_opr" ]
[]
false
false
false
true
false
let va_op_reg_opr_reg (r: reg) : reg_opr =
r
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_op_heaplet_mem_heaplet
val va_op_heaplet_mem_heaplet (h: heaplet_id) : heaplet_id
val va_op_heaplet_mem_heaplet (h: heaplet_id) : heaplet_id
let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 80, "end_line": 136, "start_col": 19, "start_line": 136 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.heaplet_id -> Vale.PPC64LE.Decls.heaplet_id
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id" ]
[]
false
false
false
true
false
let va_op_heaplet_mem_heaplet (h: heaplet_id) : heaplet_id =
h
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Gctr_blocks128
val va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg))
val va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg))
let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 192, "start_col": 0, "start_line": 186 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> in_b: Vale.X64.Memory.buffer128 -> out_b: Vale.X64.Memory.buffer128 -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_b: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Gctr_blocks128 alg)
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "Vale.X64.Memory.buffer128", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Gctr_blocks128", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_mem_heaplet", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rRbx", "Vale.X64.QuickCode.va_Mod_mem", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Gctr_blocks128", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Gctr_blocks128", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gctr_blocks128 (alg: algorithm) (in_b out_b: buffer128) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) =
(va_QProc (va_code_Gctr_blocks128 alg) ([ va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem ]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_const_cmp
val va_const_cmp (n: imm16) : cmp_opr
val va_const_cmp (n: imm16) : cmp_opr
let va_const_cmp (n:imm16) : cmp_opr = CImm n
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 64, "end_line": 135, "start_col": 19, "start_line": 135 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
n: Vale.PPC64LE.Machine_s.imm16 -> Vale.PPC64LE.Machine_s.cmp_opr
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.imm16", "Vale.PPC64LE.Machine_s.CImm", "Vale.PPC64LE.Machine_s.cmp_opr" ]
[]
false
false
false
true
false
let va_const_cmp (n: imm16) : cmp_opr =
CImm n
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_op_cmp_reg
val va_op_cmp_reg (r: reg) : cmp_opr
val va_op_cmp_reg (r: reg) : cmp_opr
let va_op_cmp_reg (r:reg) : cmp_opr = CReg r
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 63, "end_line": 134, "start_col": 19, "start_line": 134 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> Vale.PPC64LE.Machine_s.cmp_opr
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Machine_s.CReg", "Vale.PPC64LE.Machine_s.cmp_opr" ]
[]
false
false
false
true
false
let va_op_cmp_reg (r: reg) : cmp_opr =
CReg r
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Gctr_register
val va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg))
val va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg))
let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 57, "end_line": 105, "start_col": 0, "start_line": 101 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
alg: Vale.AES.AES_common_s.algorithm -> key: FStar.Seq.Base.seq Vale.X64.Memory.nat32 -> round_keys: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> keys_b: Vale.X64.Memory.buffer128 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Gctr_register alg)
Prims.Tot
[ "total" ]
[]
[ "Vale.AES.AES_common_s.algorithm", "FStar.Seq.Base.seq", "Vale.X64.Memory.nat32", "Vale.X64.Decls.quad32", "Vale.X64.Memory.buffer128", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Gctr_register", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR12", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Gctr_register", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Gctr_register", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gctr_register (alg: algorithm) (key: (seq nat32)) (round_keys: (seq quad32)) (keys_b: buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) =
(va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_op_vec_opr_vec
val va_op_vec_opr_vec (v: vec) : vec_opr
val va_op_vec_opr_vec (v: vec) : vec_opr
let va_op_vec_opr_vec (v:vec) : vec_opr = v
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 133, "start_col": 19, "start_line": 133 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Vale.PPC64LE.Machine_s.vec -> Vale.PPC64LE.Decls.vec_opr
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Decls.vec_opr" ]
[]
false
false
false
true
false
let va_op_vec_opr_vec (v: vec) : vec_opr =
v
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_cr0
val va_get_cr0 (s: va_state) : cr0_t
val va_get_cr0 (s: va_state) : cr0_t
let va_get_cr0 (s:va_state) : cr0_t = s.cr0
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 144, "start_col": 19, "start_line": 144 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Machine_s.cr0_t
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.cr0_t" ]
[]
false
false
false
true
false
let va_get_cr0 (s: va_state) : cr0_t =
s.cr0
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_ok
val va_get_ok (s: va_state) : bool
val va_get_ok (s: va_state) : bool
let va_get_ok (s:va_state) : bool = s.ok
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 59, "end_line": 143, "start_col": 19, "start_line": 143 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t)
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Prims.bool
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Prims.bool" ]
[]
false
false
false
true
false
let va_get_ok (s: va_state) : bool =
s.ok
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Gcm_make_length_quad
val va_wp_Gcm_make_length_quad (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Gcm_make_length_quad (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 220, "start_col": 0, "start_line": 212 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.op_LessThan", "Prims.op_Multiply", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.pow2_64", "Vale.X64.Machine_s.rR11", "Prims.l_Forall", "Vale.X64.Decls.quad32", "Vale.X64.Memory.nat64", "Vale.X64.Flags.t", "Prims.l_imp", "Prims.eq2", "Vale.Def.Types_s.quad32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Types_s.insert_nat64", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.nat32", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rRax", "Vale.X64.Decls.va_upd_xmm" ]
[]
false
false
false
true
true
let va_wp_Gcm_make_length_quad (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` (va_get_reg64 rR13 va_s0) < pow2_64 /\ 8 `op_Multiply` (va_get_reg64 rR11 va_s0) < pow2_64) /\ (forall (va_x_xmm0: quad32) (va_x_rax: nat64) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` (va_get_reg64 rR13 va_s0) < pow2_64 /\ 8 `op_Multiply` (va_get_reg64 rR11 va_s0) < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` (va_get_reg64 rR11 va_s0)) 1) (8 `op_Multiply` (va_get_reg64 rR13 va_s0)) 0) ==> va_k va_sM (())))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_reg
val va_get_reg (r: reg) (s: va_state) : nat64
val va_get_reg (r: reg) (s: va_state) : nat64
let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 146, "start_col": 19, "start_line": 146 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Machine_s.nat64
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.State.eval_reg", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
true
false
let va_get_reg (r: reg) (s: va_state) : nat64 =
eval_reg r s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_opr_code_Mem64
val va_opr_code_Mem64 (h: heaplet_id) (r: reg) (n: int) (t: taint) : tmaddr
val va_opr_code_Mem64 (h: heaplet_id) (r: reg) (n: int) (t: taint) : tmaddr
let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 30, "end_line": 140, "start_col": 7, "start_line": 139 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.heaplet_id -> r: Vale.PPC64LE.Machine_s.reg -> n: Prims.int -> t: Vale.Arch.HeapTypes_s.taint -> Vale.PPC64LE.Machine_s.tmaddr
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Machine_s.reg", "Prims.int", "Vale.Arch.HeapTypes_s.taint", "FStar.Pervasives.Native.Mktuple2", "Vale.PPC64LE.Machine_s.maddr", "Vale.PPC64LE.Machine_s.Mkmaddr", "Vale.PPC64LE.Machine_s.tmaddr" ]
[]
false
false
false
true
false
let va_opr_code_Mem64 (h: heaplet_id) (r: reg) (n: int) (t: taint) : tmaddr =
({ address = r; offset = n }, t)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_vec
val va_get_vec (x: vec) (s: va_state) : quad32
val va_get_vec (x: vec) (s: va_state) : quad32
let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 78, "end_line": 147, "start_col": 19, "start_line": 147 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Machine_s.vec -> s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Machine_s.quad32
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.State.eval_vec", "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
true
false
let va_get_vec (x: vec) (s: va_state) : quad32 =
eval_vec x s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_stack
val va_get_stack (s: va_state) : SI.vale_stack
val va_get_stack (s: va_state) : SI.vale_stack
let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 94, "end_line": 151, "start_col": 19, "start_line": 151 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Stack_i.vale_stack
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Stack_Sems.stack_from_s", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Stack_i.vale_stack" ]
[]
false
false
false
true
false
let va_get_stack (s: va_state) : SI.vale_stack =
VSS.stack_from_s s.ms_stack
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_xer
val va_get_xer (s: va_state) : xer_t
val va_get_xer (s: va_state) : xer_t
let va_get_xer (s:va_state) : xer_t = s.xer
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 145, "start_col": 19, "start_line": 145 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Machine_s.xer_t
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Machine_s.xer_t" ]
[]
false
false
false
true
false
let va_get_xer (s: va_state) : xer_t =
s.xer
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_stackTaint
val va_get_stackTaint (s: va_state) : M.memtaint
val va_get_stackTaint (s: va_state) : M.memtaint
let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 84, "end_line": 152, "start_col": 19, "start_line": 152 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Memory.memtaint
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint", "Vale.PPC64LE.Memory.memtaint" ]
[]
false
false
false
true
false
let va_get_stackTaint (s: va_state) : M.memtaint =
s.ms_stackTaint
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_reg
val va_eval_reg (s: va_state) (r: reg) : GTot nat64
val va_eval_reg (s: va_state) (r: reg) : GTot nat64
let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 93, "end_line": 155, "start_col": 19, "start_line": 155 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> r: Vale.PPC64LE.Machine_s.reg -> Prims.GTot Vale.PPC64LE.Machine_s.nat64
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.State.eval_reg", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let va_eval_reg (s: va_state) (r: reg) : GTot nat64 =
eval_reg r s
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Ghash_extra_bytes
val va_wp_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 53, "end_line": 294, "start_col": 0, "start_line": 267 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0)))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hkeys_b: Vale.X64.Memory.buffer128 -> total_bytes: Prims.nat -> old_hash: Vale.X64.Decls.quad32 -> h_LE: Vale.X64.Decls.quad32 -> completed_quads: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer128", "Prims.nat", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.pclmulqdq_enabled", "Vale.X64.CPU_Features_s.avx_enabled", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.eq2", "Vale.Def.Words_s.four", "Vale.Def.Types_s.nat32", "Vale.X64.Decls.va_get_xmm", "Vale.Def.Words_s.Mkfour", "Vale.Def.Types_s.quad32", "Vale.Def.Types_s.reverse_bytes_quad32", "Vale.AES.GHash.ghash_incremental0", "Vale.AES.GHash.hkeys_reqs_priv", "Vale.X64.Decls.s128", "Vale.X64.Decls.va_get_mem_heaplet", "Vale.X64.Decls.validSrcAddrs128", "Prims.op_Subtraction", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rR9", "Vale.X64.Decls.va_get_mem_layout", "Vale.Arch.HeapTypes_s.Secret", "Prims.int", "FStar.Seq.Base.length", "Prims.op_Division", "Prims.op_LessThan", "Prims.op_Addition", "Prims.op_Multiply", "Vale.X64.Machine_s.rR10", "Prims.op_Modulus", "Prims.l_not", "Vale.AES.GCM_helpers.bytes_to_quad_size", "Prims.l_Forall", "Vale.X64.Memory.nat64", "Vale.X64.Flags.t", "Prims.l_imp", "Prims.op_GreaterThan", "Vale.AES.GHash.ghash_incremental", "Vale.Def.Types_s.le_bytes_to_seq_quad32", "Vale.Def.Words_s.nat8", "Vale.AES.GCTR_s.pad_to_128_bits", "FStar.Seq.Base.slice", "Vale.Def.Types_s.nat8", "Vale.Def.Types_s.le_seq_quad32_to_bytes", "FStar.Seq.Base.append", "FStar.Seq.Base.create", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rRcx" ]
[]
false
false
false
true
true
let va_wp_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` (FStar.Seq.Base.length #quad32 completed_quads) + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes)) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx: nat64) (va_x_r11: nat64) (va_x_xmm0: quad32) (va_x_xmm1: quad32) (va_x_xmm2: quad32) (va_x_xmm3: quad32) (va_x_xmm4: quad32) (va_x_xmm5: quad32) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32) (va_x_efl: Vale.X64.Flags.t). let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (())))
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Ghash_extra_bytes
val va_quick_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ()))
val va_quick_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ()))
let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 313, "start_col": 0, "start_line": 306 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
hkeys_b: Vale.X64.Memory.buffer128 -> total_bytes: Prims.nat -> old_hash: Vale.X64.Decls.quad32 -> h_LE: Vale.X64.Decls.quad32 -> completed_quads: FStar.Seq.Base.seq Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Ghash_extra_bytes ())
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer128", "Prims.nat", "Vale.X64.Decls.quad32", "FStar.Seq.Base.seq", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Ghash_extra_bytes", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rRcx", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Ghash_extra_bytes", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Ghash_extra_bytes", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Ghash_extra_bytes (hkeys_b: buffer128) (total_bytes: nat) (old_hash h_LE: quad32) (completed_quads: (seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) =
(va_QProc (va_code_Ghash_extra_bytes ()) ([ va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx ]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_reg_opr
val va_eval_reg_opr (s: va_state) (r: reg_opr) : GTot nat64
val va_eval_reg_opr (s: va_state) (r: reg_opr) : GTot nat64
let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 157, "start_col": 19, "start_line": 157 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> r: Vale.PPC64LE.Decls.reg_opr -> Prims.GTot Vale.PPC64LE.Machine_s.nat64
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.reg_opr", "Vale.PPC64LE.State.eval_reg", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let va_eval_reg_opr (s: va_state) (r: reg_opr) : GTot nat64 =
eval_reg r s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_heaplet
val va_eval_heaplet (s: va_state) (h: heaplet_id) : vale_heap
val va_eval_heaplet (s: va_state) (h: heaplet_id) : vale_heap
let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 103, "end_line": 160, "start_col": 19, "start_line": 160 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> h: Vale.PPC64LE.Decls.heaplet_id -> Vale.PPC64LE.Decls.vale_heap
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_get_mem_heaplet", "Vale.PPC64LE.Decls.vale_heap" ]
[]
false
false
false
true
false
let va_eval_heaplet (s: va_state) (h: heaplet_id) : vale_heap =
va_get_mem_heaplet h s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_dst_reg_opr
val va_is_dst_reg_opr : r: Vale.PPC64LE.Decls.reg_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 164, "start_col": 19, "start_line": 164 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Decls.reg_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.reg_opr", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_dst_reg_opr (r: reg_opr) (s: va_state) =
True
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_src_heaplet
val va_is_src_heaplet : h: Vale.PPC64LE.Decls.heaplet_id -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 75, "end_line": 169, "start_col": 19, "start_line": 169 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.heaplet_id -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_src_heaplet (h: heaplet_id) (s: va_state) =
True
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_dst_Mem64
val va_is_dst_Mem64 : m: Vale.PPC64LE.Machine_s.maddr -> s: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 166, "start_col": 19, "start_line": 166 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Machine_s.maddr -> s: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.maddr", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.State.valid_mem", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_is_dst_Mem64 (m: maddr) (s: va_state) =
valid_mem m s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_vec_opr
val va_eval_vec_opr (s: va_state) (v: vec_opr) : GTot quad32
val va_eval_vec_opr (s: va_state) (v: vec_opr) : GTot quad32
let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 102, "end_line": 159, "start_col": 19, "start_line": 159 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> v: Vale.PPC64LE.Decls.vec_opr -> Prims.GTot Vale.PPC64LE.Machine_s.quad32
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.vec_opr", "Vale.PPC64LE.State.eval_vec", "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
false
false
let va_eval_vec_opr (s: va_state) (v: vec_opr) : GTot quad32 =
eval_vec v s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_dst_heaplet
val va_is_dst_heaplet : h: Vale.PPC64LE.Decls.heaplet_id -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 75, "end_line": 170, "start_col": 19, "start_line": 170 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.heaplet_id -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_dst_heaplet (h: heaplet_id) (s: va_state) =
True
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_src_vec_opr
val va_is_src_vec_opr : v: Vale.PPC64LE.Decls.vec_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 167, "start_col": 19, "start_line": 167 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Vale.PPC64LE.Decls.vec_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vec_opr", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_src_vec_opr (v: vec_opr) (s: va_state) =
True
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_src_reg_opr
val va_is_src_reg_opr : r: Vale.PPC64LE.Decls.reg_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 163, "start_col": 19, "start_line": 163 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Decls.reg_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.reg_opr", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_src_reg_opr (r: reg_opr) (s: va_state) =
True
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_Mem64
val va_eval_Mem64 (s: va_state) (m: maddr) : GTot nat64
val va_eval_Mem64 (s: va_state) (m: maddr) : GTot nat64
let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 107, "end_line": 156, "start_col": 19, "start_line": 156 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> m: Vale.PPC64LE.Machine_s.maddr -> Prims.GTot Vale.PPC64LE.Machine_s.nat64
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.maddr", "Vale.PPC64LE.State.eval_mem", "Vale.PPC64LE.State.eval_maddr", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let va_eval_Mem64 (s: va_state) (m: maddr) : GTot nat64 =
eval_mem (eval_maddr m s) s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_src_Mem64
val va_is_src_Mem64 : m: Vale.PPC64LE.Machine_s.maddr -> s: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 77, "end_line": 165, "start_col": 19, "start_line": 165 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Machine_s.maddr -> s: Vale.PPC64LE.Decls.va_state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.maddr", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.State.valid_mem", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let va_is_src_Mem64 (m: maddr) (s: va_state) =
valid_mem m s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_ok
val va_upd_ok (ok: bool) (s: state) : state
val va_upd_ok (ok: bool) (s: state) : state
let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 74, "end_line": 172, "start_col": 12, "start_line": 172 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
ok: Prims.bool -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_ok (ok: bool) (s: state) : state =
{ s with ok = ok }
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Gcm_blocks_auth
val va_quick_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ()))
val va_quick_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ()))
let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 62, "end_line": 407, "start_col": 0, "start_line": 401 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
auth_b: Vale.X64.Memory.buffer128 -> abytes_b: Vale.X64.Memory.buffer128 -> hkeys_b: Vale.X64.Memory.buffer128 -> h_LE: Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode (FStar.Seq.Base.seq Vale.X64.Decls.quad32) (Vale.AES.X64.GCMencryptOpt.va_code_Gcm_blocks_auth ())
Prims.Tot
[ "total" ]
[]
[ "Vale.X64.Memory.buffer128", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "FStar.Seq.Base.seq", "Vale.AES.X64.GCMencryptOpt.va_code_Gcm_blocks_auth", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rR15", "Vale.X64.Machine_s.rRcx", "Vale.X64.Machine_s.rR10", "Vale.X64.Machine_s.rR11", "Vale.X64.Machine_s.rRdx", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Gcm_blocks_auth", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Gcm_blocks_auth", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Gcm_blocks_auth (auth_b abytes_b hkeys_b: buffer128) (h_LE: quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) =
(va_QProc (va_code_Gcm_blocks_auth ()) ([ va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx ]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_eval_cmp_opr
val va_eval_cmp_opr (s: va_state) (o: cmp_opr) : GTot nat64
val va_eval_cmp_opr (s: va_state) (o: cmp_opr) : GTot nat64
let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 105, "end_line": 158, "start_col": 19, "start_line": 158 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> o: Vale.PPC64LE.Machine_s.cmp_opr -> Prims.GTot Vale.PPC64LE.Machine_s.nat64
Prims.GTot
[ "sometrivial" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Machine_s.cmp_opr", "Vale.PPC64LE.State.eval_cmp_opr", "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
false
false
let va_eval_cmp_opr (s: va_state) (o: cmp_opr) : GTot nat64 =
eval_cmp_opr o s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_stack
val va_upd_stack (stack: SI.vale_stack) (s: state) : state
val va_upd_stack (stack: SI.vale_stack) (s: state) : state
let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 115, "end_line": 181, "start_col": 12, "start_line": 181 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
stack: Vale.PPC64LE.Stack_i.vale_stack -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Stack_i.vale_stack", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Stack_Sems.stack_to_s", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_stack (stack: SI.vale_stack) (s: state) : state =
{ s with ms_stack = (VSS.stack_to_s stack) }
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_reg
val va_upd_reg (r: reg) (v: nat64) (s: state) : state
val va_upd_reg (r: reg) (v: nat64) (s: state) : state
let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 81, "end_line": 175, "start_col": 12, "start_line": 175 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> v: Vale.PPC64LE.Machine_s.nat64 -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Machine_s.nat64", "Vale.PPC64LE.State.state", "Vale.PPC64LE.State.update_reg" ]
[]
false
false
false
true
false
let va_upd_reg (r: reg) (v: nat64) (s: state) : state =
update_reg r v s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_is_dst_vec_opr
val va_is_dst_vec_opr : v: Vale.PPC64LE.Decls.vec_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 72, "end_line": 168, "start_col": 19, "start_line": 168 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
v: Vale.PPC64LE.Decls.vec_opr -> s: Vale.PPC64LE.Decls.va_state -> Prims.logical
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vec_opr", "Vale.PPC64LE.Decls.va_state", "Prims.l_True", "Prims.logical" ]
[]
false
false
false
true
true
let va_is_dst_vec_opr (v: vec_opr) (s: va_state) =
True
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Save_registers
val va_quick_Save_registers (win: bool) : (va_quickCode unit (va_code_Save_registers win))
val va_quick_Save_registers (win: bool) : (va_quickCode unit (va_code_Save_registers win))
let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 9, "end_line": 542, "start_col": 0, "start_line": 539 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Save_registers win)
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Save_registers", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_stackTaint", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_stack", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Machine_s.rRax", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Save_registers", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Save_registers", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Save_registers (win: bool) : (va_quickCode unit (va_code_Save_registers win)) =
(va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_vec
val va_upd_vec (x: vec) (v: quad32) (s: state) : state
val va_upd_vec (x: vec) (v: quad32) (s: state) : state
let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 176, "start_col": 12, "start_line": 176 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Machine_s.vec -> v: Vale.PPC64LE.Machine_s.quad32 -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Machine_s.quad32", "Vale.PPC64LE.State.state", "Vale.PPC64LE.State.update_vec" ]
[]
false
false
false
true
false
let va_upd_vec (x: vec) (v: quad32) (s: state) : state =
update_vec x v s
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_xer
val va_upd_xer (xer: xer_t) (s: state) : state
val va_upd_xer (xer: xer_t) (s: state) : state
let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 174, "start_col": 12, "start_line": 174 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
xer: Vale.PPC64LE.Machine_s.xer_t -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.xer_t", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_xer (xer: xer_t) (s: state) : state =
{ s with xer = xer }
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Save_registers
val va_wp_Save_registers (win: bool) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Save_registers (win: bool) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 10, "end_line": 530, "start_col": 0, "start_line": 473 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.eq2", "Vale.Def.Words_s.nat64", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Prims.l_Forall", "Vale.X64.Memory.nat64", "Vale.X64.InsBasic.vale_stack", "Vale.X64.Flags.t", "Vale.X64.Memory.memtaint", "Prims.l_imp", "Prims.int", "Prims.op_Subtraction", "Prims.op_Multiply", "Prims.op_Addition", "Vale.X64.Decls.va_if", "Prims.l_not", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Vale.X64.Stack_i.valid_stack_slot64s", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_get_stackTaint", "Vale.X64.Stack_i.modifies_stack", "Vale.X64.Stack_i.modifies_stacktaint", "Vale.X64.Stack_i.load_stack64", "Vale.Arch.Types.hi64", "Vale.X64.Decls.va_get_xmm", "Vale.Arch.Types.lo64", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_stackTaint", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_stack", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Machine_s.rRax" ]
[]
false
false
false
true
true
let va_wp_Save_registers (win: bool) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax: nat64) (va_x_rsp: nat64) (va_x_stack: vale_stack) (va_x_efl: Vale.X64.Flags.t) (va_x_stackTaint: memtaint). let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (())))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_stackTaint
val va_upd_stackTaint (stackTaint: M.memtaint) (s: state) : state
val va_upd_stackTaint (stackTaint: M.memtaint) (s: state) : state
let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 115, "end_line": 182, "start_col": 12, "start_line": 182 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
stackTaint: Vale.PPC64LE.Memory.memtaint -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Memory.memtaint", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack" ]
[]
false
false
false
true
false
let va_upd_stackTaint (stackTaint: M.memtaint) (s: state) : state =
{ s with ms_stackTaint = stackTaint }
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_ok
val va_update_ok (sM sK: va_state) : va_state
val va_update_ok (sM sK: va_state) : va_state
let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 95, "end_line": 185, "start_col": 19, "start_line": 185 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint }
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok" ]
[]
false
false
false
true
false
let va_update_ok (sM sK: va_state) : va_state =
va_upd_ok sM.ok sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.valid_mem_addr
val valid_mem_addr (tm: tmaddr) (s: state) : prop0
val valid_mem_addr (tm: tmaddr) (s: state) : prop0
let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 106, "end_line": 120, "start_col": 0, "start_line": 117 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
tm: Vale.PPC64LE.Machine_s.tmaddr -> s: Vale.PPC64LE.State.state -> Vale.Def.Prop_s.prop0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.tmaddr", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.maddr", "Vale.Arch.HeapTypes_s.taint", "Prims.l_and", "Vale.PPC64LE.State.valid_maddr", "Vale.PPC64LE.Decls.valid_mem_operand64", "Vale.PPC64LE.State.eval_maddr", "Vale.PPC64LE.Memory.get_vale_heap", "Vale.PPC64LE.Decls.coerce", "Vale.PPC64LE.Memory.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Def.Prop_s.prop0" ]
[]
false
false
false
true
false
let valid_mem_addr (tm: tmaddr) (s: state) : prop0 =
let m, t = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_xer
val va_update_xer (sM sK: va_state) : va_state
val va_update_xer (sM sK: va_state) : va_state
let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 187, "start_col": 19, "start_line": 187 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_xer", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer" ]
[]
false
false
false
true
false
let va_update_xer (sM sK: va_state) : va_state =
va_upd_xer sM.xer sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_upd_cr0
val va_upd_cr0 (cr0: cr0_t) (s: state) : state
val va_upd_cr0 (cr0: cr0_t) (s: state) : state
let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 }
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 79, "end_line": 173, "start_col": 12, "start_line": 173 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
cr0: Vale.PPC64LE.Machine_s.cr0_t -> s: Vale.PPC64LE.State.state -> Vale.PPC64LE.State.state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.cr0_t", "Vale.PPC64LE.State.state", "Vale.PPC64LE.Machine_s.Mkstate", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ok", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__regs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__vecs", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__xer", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_upd_cr0 (cr0: cr0_t) (s: state) : state =
{ s with cr0 = cr0 }
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_reg
val va_update_reg (r: reg) (sM sK: va_state) : va_state
val va_update_reg (r: reg) (sM sK: va_state) : va_state
let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 189, "start_col": 19, "start_line": 188 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_reg", "Vale.PPC64LE.State.eval_reg" ]
[]
false
false
false
true
false
let va_update_reg (r: reg) (sM sK: va_state) : va_state =
va_upd_reg r (eval_reg r sM) sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_cr0
val va_update_cr0 (sM sK: va_state) : va_state
val va_update_cr0 (sM sK: va_state) : va_state
let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 98, "end_line": 186, "start_col": 19, "start_line": 186 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_cr0", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__cr0" ]
[]
false
false
false
true
false
let va_update_cr0 (sM sK: va_state) : va_state =
va_upd_cr0 sM.cr0 sK
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_quick_Restore_registers
val va_quick_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) : (va_quickCode unit (va_code_Restore_registers win))
val va_quick_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) : (va_quickCode unit (va_code_Restore_registers win))
let va_quick_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) : (va_quickCode unit (va_code_Restore_registers win)) = (va_QProc (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 65, "end_line": 718, "start_col": 0, "start_line": 707 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))))))))))))))))))))) [@ va_qattr] let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (()))) val va_wpProof_Restore_registers : win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15 va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Restore_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> old_rsp: Prims.nat -> old_xmm6: Vale.X64.Decls.quad32 -> old_xmm7: Vale.X64.Decls.quad32 -> old_xmm8: Vale.X64.Decls.quad32 -> old_xmm9: Vale.X64.Decls.quad32 -> old_xmm10: Vale.X64.Decls.quad32 -> old_xmm11: Vale.X64.Decls.quad32 -> old_xmm12: Vale.X64.Decls.quad32 -> old_xmm13: Vale.X64.Decls.quad32 -> old_xmm14: Vale.X64.Decls.quad32 -> old_xmm15: Vale.X64.Decls.quad32 -> Vale.X64.QuickCode.va_quickCode Prims.unit (Vale.AES.X64.GCMencryptOpt.va_code_Restore_registers win)
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.nat", "Vale.X64.Decls.quad32", "Vale.X64.QuickCode.va_QProc", "Prims.unit", "Vale.AES.X64.GCMencryptOpt.va_code_Restore_registers", "Prims.Cons", "Vale.X64.QuickCode.mod_t", "Vale.X64.QuickCode.va_Mod_stackTaint", "Vale.X64.QuickCode.va_Mod_flags", "Vale.X64.QuickCode.va_Mod_reg64", "Vale.X64.Machine_s.rRsp", "Vale.X64.QuickCode.va_Mod_stack", "Vale.X64.QuickCode.va_Mod_xmm", "Vale.X64.Machine_s.rR15", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRax", "Prims.Nil", "Vale.AES.X64.GCMencryptOpt.va_wp_Restore_registers", "Vale.AES.X64.GCMencryptOpt.va_wpProof_Restore_registers", "Vale.X64.QuickCode.va_quickCode" ]
[]
false
false
false
false
false
let va_quick_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) : (va_quickCode unit (va_code_Restore_registers win)) =
(va_QProc (va_code_Restore_registers win) ([ va_Mod_stackTaint; va_Mod_flags; va_Mod_reg64 rRsp; va_Mod_stack; va_Mod_xmm 15; va_Mod_xmm 14; va_Mod_xmm 13; va_Mod_xmm 12; va_Mod_xmm 11; va_Mod_xmm 10; va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_reg64 rR15; va_Mod_reg64 rR14; va_Mod_reg64 rR13; va_Mod_reg64 rR12; va_Mod_reg64 rRsi; va_Mod_reg64 rRdi; va_Mod_reg64 rRbp; va_Mod_reg64 rRbx; va_Mod_reg64 rRax ]) (va_wp_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15) (va_wpProof_Restore_registers win old_rsp old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_operand_reg_opr
val va_update_operand_reg_opr (r: reg) (sM sK: va_state) : va_state
val va_update_operand_reg_opr (r: reg) (sM sK: va_state) : va_state
let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 201, "start_col": 0, "start_line": 200 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
r: Vale.PPC64LE.Machine_s.reg -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.reg", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_update_reg" ]
[]
false
false
false
true
false
let va_update_operand_reg_opr (r: reg) (sM sK: va_state) : va_state =
va_update_reg r sM sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_stackTaint
val va_update_stackTaint (sM sK: va_state) : va_state
val va_update_stackTaint (sM sK: va_state) : va_state
let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 122, "end_line": 197, "start_col": 19, "start_line": 197 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_stackTaint", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stackTaint" ]
[]
false
false
false
true
false
let va_update_stackTaint (sM sK: va_state) : va_state =
va_upd_stackTaint sM.ms_stackTaint sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_vec
val va_update_vec (x: vec) (sM sK: va_state) : va_state
val va_update_vec (x: vec) (sM sK: va_state) : va_state
let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 33, "end_line": 195, "start_col": 19, "start_line": 194 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Machine_s.vec -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_vec", "Vale.PPC64LE.State.eval_vec" ]
[]
false
false
false
true
false
let va_update_vec (x: vec) (sM sK: va_state) : va_state =
va_upd_vec x (eval_vec x sM) sK
false
Vale.AES.X64.GCMencryptOpt.fsti
Vale.AES.X64.GCMencryptOpt.va_wp_Restore_registers
val va_wp_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
val va_wp_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0
let va_wp_Restore_registers (win:bool) (old_rsp:nat) (old_xmm6:quad32) (old_xmm7:quad32) (old_xmm8:quad32) (old_xmm9:quad32) (old_xmm10:quad32) (old_xmm11:quad32) (old_xmm12:quad32) (old_xmm13:quad32) (old_xmm14:quad32) (old_xmm15:quad32) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax:nat64) (va_x_rbx:nat64) (va_x_rbp:nat64) (va_x_rdi:nat64) (va_x_rsi:nat64) (va_x_r12:nat64) (va_x_r13:nat64) (va_x_r14:nat64) (va_x_r15:nat64) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (va_x_xmm10:quad32) (va_x_xmm11:quad32) (va_x_xmm12:quad32) (va_x_xmm13:quad32) (va_x_xmm14:quad32) (va_x_xmm15:quad32) (va_x_stack:vale_stack) (va_x_rsp:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0)))))))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (())))
{ "file_name": "obj/Vale.AES.X64.GCMencryptOpt.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 82, "end_line": 691, "start_col": 0, "start_line": 619 }
module Vale.AES.X64.GCMencryptOpt open Vale.Def.Prop_s open Vale.Def.Opaque_s open FStar.Seq open Vale.Def.Words_s open Vale.Def.Words.Seq_s open Vale.Def.Types_s open Vale.Arch.Types open Vale.Arch.HeapImpl open Vale.AES.AES_s open Vale.AES.GCTR_s open Vale.AES.GCTR open Vale.AES.GCM open Vale.AES.GHash_s open Vale.AES.GHash open Vale.AES.GCM_s open Vale.AES.X64.AES open Vale.AES.GF128_s open Vale.AES.GF128 open Vale.Poly1305.Math open Vale.AES.GCM_helpers open Vale.AES.X64.GHash open Vale.AES.X64.GCTR open Vale.X64.Machine_s open Vale.X64.Memory open Vale.X64.Stack_i open Vale.X64.State open Vale.X64.Decls open Vale.X64.InsBasic open Vale.X64.InsMem open Vale.X64.InsVector open Vale.X64.InsStack open Vale.X64.InsAes open Vale.X64.QuickCode open Vale.X64.QuickCodes open Vale.AES.X64.GF128_Mul open Vale.X64.Stack open Vale.X64.CPU_Features_s open Vale.Math.Poly2.Bits_s open Vale.AES.X64.AESopt open Vale.AES.X64.AESGCM open Vale.AES.X64.AESopt2 open Vale.Lib.Meta open Vale.AES.OptPublic let aes_reqs (alg:algorithm) (key:seq nat32) (round_keys:seq quad32) (keys_b:buffer128) (key_ptr:int) (heap0:vale_heap) (layout:vale_heap_layout) : prop0 = aesni_enabled /\ avx_enabled /\ (alg = AES_128 \/ alg = AES_256) /\ is_aes_key_LE alg key /\ length(round_keys) == nr(alg) + 1 /\ round_keys == key_to_round_keys_LE alg key /\ validSrcAddrs128 heap0 key_ptr keys_b (nr alg + 1) layout Secret /\ s128 heap0 keys_b == round_keys //-- Gctr_register val va_code_Gctr_register : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_register : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_register : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_register alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) /\ va_state_eq va_sM (va_update_reg64 rR12 va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0))))))))) [@ va_qattr] let va_wp_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0)) /\ (forall (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) (va_x_r12:nat64) . let va_sM = va_upd_reg64 rR12 va_x_r12 (va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 va_s0))))) in va_get_ok va_sM /\ (Vale.Def.Types_s.le_seq_quad32_to_bytes (FStar.Seq.Base.create #quad32 1 (va_get_xmm 8 va_sM)) == Vale.AES.GCTR_s.gctr_encrypt_LE (va_get_xmm 0 va_s0) (Vale.Def.Types_s.le_quad32_to_bytes (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0))) alg key /\ va_get_xmm 8 va_sM == Vale.AES.GCTR_s.gctr_encrypt_block (va_get_xmm 0 va_s0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_s0)) alg key 0) ==> va_k va_sM (()))) val va_wpProof_Gctr_register : alg:algorithm -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_register alg key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_register (alg:algorithm) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_register alg)) = (va_QProc (va_code_Gctr_register alg) ([va_Mod_reg64 rR12; va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0]) (va_wp_Gctr_register alg key round_keys keys_b) (va_wpProof_Gctr_register alg key round_keys keys_b)) //-- //-- Gctr_blocks128 val va_code_Gctr_blocks128 : alg:algorithm -> Tot va_code val va_codegen_success_Gctr_blocks128 : alg:algorithm -> Tot va_pbool val va_lemma_Gctr_blocks128 : va_b0:va_code -> va_s0:va_state -> alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gctr_blocks128 alg) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_mem_heaplet 1 va_sM (va_update_xmm 10 va_sM (va_update_xmm 11 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRbx va_sM (va_update_ok va_sM (va_update_mem va_sM va_s0)))))))))))))))))) [@ va_qattr] let va_wp_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ (Vale.X64.Decls.buffers_disjoint128 in_b out_b \/ in_b == out_b) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRax va_s0) in_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validDstAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) out_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRax va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ l_and (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 out_b) (Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b < pow2_32) /\ va_get_reg64 rRdx va_s0 == Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 in_b /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_reg64 rRdx va_s0 < pow2_32 /\ aes_reqs alg key round_keys keys_b (va_get_reg64 rR8 va_s0) (va_get_mem_heaplet 0 va_s0) (va_get_mem_layout va_s0) /\ pclmulqdq_enabled) /\ (forall (va_x_mem:vale_heap) (va_x_rbx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm11:quad32) (va_x_xmm10:quad32) (va_x_heap1:vale_heap) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_mem_heaplet 1 va_x_heap1 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRbx va_x_rbx (va_upd_mem va_x_mem va_s0)))))))))))))) in va_get_ok va_sM /\ (Vale.X64.Decls.modifies_buffer128 out_b (va_get_mem_heaplet 1 va_s0) (va_get_mem_heaplet 1 va_sM) /\ Vale.AES.GCTR.gctr_partial alg (va_get_reg64 rRdx va_sM) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) in_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b) key (va_get_xmm 11 va_s0) /\ va_get_xmm 11 va_sM == Vale.AES.GCTR.inc32lite (va_get_xmm 11 va_s0) (va_get_reg64 rRdx va_s0) /\ (va_get_reg64 rRdx va_sM == 0 ==> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) out_b == Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_s0) out_b)) ==> va_k va_sM (()))) val va_wpProof_Gctr_blocks128 : alg:algorithm -> in_b:buffer128 -> out_b:buffer128 -> key:(seq nat32) -> round_keys:(seq quad32) -> keys_b:buffer128 -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gctr_blocks128 (alg:algorithm) (in_b:buffer128) (out_b:buffer128) (key:(seq nat32)) (round_keys:(seq quad32)) (keys_b:buffer128) : (va_quickCode unit (va_code_Gctr_blocks128 alg)) = (va_QProc (va_code_Gctr_blocks128 alg) ([va_Mod_flags; va_Mod_mem_heaplet 1; va_Mod_xmm 10; va_Mod_xmm 11; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRbx; va_Mod_mem]) (va_wp_Gctr_blocks128 alg in_b out_b key round_keys keys_b) (va_wpProof_Gctr_blocks128 alg in_b out_b key round_keys keys_b)) //-- //-- Gcm_make_length_quad val va_code_Gcm_make_length_quad : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_make_length_quad : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_make_length_quad : va_b0:va_code -> va_s0:va_state -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Gcm_make_length_quad ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_reg64 rRax va_sM (va_update_xmm 0 va_sM (va_update_ok va_sM va_s0)))))) [@ va_qattr] let va_wp_Gcm_make_length_quad (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ 8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64) /\ (forall (va_x_xmm0:quad32) (va_x_rax:nat64) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_reg64 rRax va_x_rax (va_upd_xmm 0 va_x_xmm0 va_s0)) in va_get_ok va_sM /\ (8 `op_Multiply` va_get_reg64 rR13 va_s0 < pow2_64 /\ 8 `op_Multiply` va_get_reg64 rR11 va_s0 < pow2_64 /\ va_get_xmm 0 va_sM == Vale.Def.Types_s.insert_nat64 (Vale.Def.Types_s.insert_nat64 (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) (8 `op_Multiply` va_get_reg64 rR11 va_s0) 1) (8 `op_Multiply` va_get_reg64 rR13 va_s0) 0) ==> va_k va_sM (()))) val va_wpProof_Gcm_make_length_quad : va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Gcm_make_length_quad va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_make_length_quad () : (va_quickCode unit (va_code_Gcm_make_length_quad ())) = (va_QProc (va_code_Gcm_make_length_quad ()) ([va_Mod_flags; va_Mod_reg64 rRax; va_Mod_xmm 0]) va_wp_Gcm_make_length_quad va_wpProof_Gcm_make_length_quad) //-- //-- Ghash_extra_bytes val va_code_Ghash_extra_bytes : va_dummy:unit -> Tot va_code val va_codegen_success_Ghash_extra_bytes : va_dummy:unit -> Tot va_pbool val va_lemma_Ghash_extra_bytes : va_b0:va_code -> va_s0:va_state -> hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Ghash_extra_bytes ()) va_s0 /\ va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) /\ va_state_eq va_sM (va_update_flags va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRcx va_sM (va_update_ok va_sM va_s0))))))))))))))) [@ va_qattr] let va_wp_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ (pclmulqdq_enabled /\ avx_enabled /\ sse_enabled /\ va_get_xmm 9 va_s0 == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ va_get_xmm 8 va_s0 == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE old_hash completed_quads) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE) /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ FStar.Seq.Base.length #quad32 completed_quads == total_bytes `op_Division` 16 /\ total_bytes < 16 `op_Multiply` FStar.Seq.Base.length #quad32 completed_quads + 16 /\ va_get_reg64 rR10 va_s0 == total_bytes `op_Modulus` 16 /\ total_bytes `op_Modulus` 16 =!= 0 /\ (0 < total_bytes /\ total_bytes < 16 `op_Multiply` Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes) /\ 16 `op_Multiply` (Vale.AES.GCM_helpers.bytes_to_quad_size total_bytes - 1) < total_bytes) /\ (forall (va_x_rcx:nat64) (va_x_r11:nat64) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_efl:Vale.X64.Flags.t) . let va_sM = va_upd_flags va_x_efl (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRcx va_x_rcx va_s0))))))))))) in va_get_ok va_sM /\ (let raw_quads = FStar.Seq.Base.append #quad32 completed_quads (FStar.Seq.Base.create #quad32 1 (va_get_xmm 0 va_s0)) in let input_bytes = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_quads) 0 total_bytes in let padded_bytes = Vale.AES.GCTR_s.pad_to_128_bits input_bytes in let input_quads = Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_bytes in total_bytes > 0 ==> l_and (FStar.Seq.Base.length #Vale.Def.Types_s.quad32 input_quads > 0) (Vale.Def.Types_s.reverse_bytes_quad32 (va_get_xmm 8 va_sM) == Vale.AES.GHash.ghash_incremental h_LE old_hash input_quads)) ==> va_k va_sM (()))) val va_wpProof_Ghash_extra_bytes : hkeys_b:buffer128 -> total_bytes:nat -> old_hash:quad32 -> h_LE:quad32 -> completed_quads:(seq quad32) -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Ghash_extra_bytes (hkeys_b:buffer128) (total_bytes:nat) (old_hash:quad32) (h_LE:quad32) (completed_quads:(seq quad32)) : (va_quickCode unit (va_code_Ghash_extra_bytes ())) = (va_QProc (va_code_Ghash_extra_bytes ()) ([va_Mod_flags; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_reg64 rR11; va_Mod_reg64 rRcx]) (va_wp_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads) (va_wpProof_Ghash_extra_bytes hkeys_b total_bytes old_hash h_LE completed_quads)) //-- //-- Gcm_blocks_auth val va_code_Gcm_blocks_auth : va_dummy:unit -> Tot va_code val va_codegen_success_Gcm_blocks_auth : va_dummy:unit -> Tot va_pbool val va_lemma_Gcm_blocks_auth : va_b0:va_code -> va_s0:va_state -> auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_require_total va_b0 (va_code_Gcm_blocks_auth ()) va_s0 /\ va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)))) (ensures (fun (va_sM, va_fM, auth_quad_seq) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = (if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) then FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b) else Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) /\ va_state_eq va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_xmm 5 va_sM (va_update_xmm 4 va_sM (va_update_xmm 3 va_sM (va_update_xmm 2 va_sM (va_update_xmm 1 va_sM (va_update_xmm 0 va_sM (va_update_flags va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rRcx va_sM (va_update_reg64 rR10 va_sM (va_update_reg64 rR11 va_sM (va_update_reg64 rRdx va_sM (va_update_ok va_sM va_s0))))))))))))))))))) [@ va_qattr] let va_wp_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) (va_s0:va_state) (va_k:(va_state -> (seq quad32) -> Type0)) : Type0 = (va_get_ok va_s0 /\ (sse_enabled /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 1 va_s0) (va_get_reg64 rRdi va_s0) auth_b (va_get_reg64 rRdx va_s0) (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 7 va_s0) (va_get_reg64 rRbx va_s0) abytes_b 1 (va_get_mem_layout va_s0) Secret /\ Vale.X64.Decls.validSrcAddrs128 (va_get_mem_heaplet 0 va_s0) (va_get_reg64 rR9 va_s0 - 32) hkeys_b 8 (va_get_mem_layout va_s0) Secret /\ va_get_reg64 rRdi va_s0 + 16 `op_Multiply` va_get_reg64 rRdx va_s0 < pow2_64 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 auth_b == va_get_reg64 rRdx va_s0 /\ Vale.X64.Decls.buffer_length #Vale.X64.Memory.vuint128 abytes_b == 1 /\ (va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) <= va_get_reg64 rRsi va_s0 /\ va_get_reg64 rRsi va_s0 < va_mul_nat (va_get_reg64 rRdx va_s0) (128 `op_Division` 8) + 128 `op_Division` 8) /\ (pclmulqdq_enabled /\ avx_enabled) /\ Vale.AES.GHash.hkeys_reqs_priv (Vale.X64.Decls.s128 (va_get_mem_heaplet 0 va_s0) hkeys_b) (Vale.Def.Types_s.reverse_bytes_quad32 h_LE)) /\ (forall (va_x_rdx:nat64) (va_x_r11:nat64) (va_x_r10:nat64) (va_x_rcx:nat64) (va_x_r15:nat64) (va_x_efl:Vale.X64.Flags.t) (va_x_xmm0:quad32) (va_x_xmm1:quad32) (va_x_xmm2:quad32) (va_x_xmm3:quad32) (va_x_xmm4:quad32) (va_x_xmm5:quad32) (va_x_xmm6:quad32) (va_x_xmm7:quad32) (va_x_xmm8:quad32) (va_x_xmm9:quad32) (auth_quad_seq:(seq quad32)) . let va_sM = va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_xmm 5 va_x_xmm5 (va_upd_xmm 4 va_x_xmm4 (va_upd_xmm 3 va_x_xmm3 (va_upd_xmm 2 va_x_xmm2 (va_upd_xmm 1 va_x_xmm1 (va_upd_xmm 0 va_x_xmm0 (va_upd_flags va_x_efl (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rRcx va_x_rcx (va_upd_reg64 rR10 va_x_r10 (va_upd_reg64 rR11 va_x_r11 (va_upd_reg64 rRdx va_x_rdx va_s0))))))))))))))) in va_get_ok va_sM /\ (va_get_reg64 rR15 va_sM == va_get_reg64 rRsi va_sM /\ va_get_xmm 9 va_sM == Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 202182159 134810123 67438087 66051 /\ (let (raw_auth_quads:(seq quad32)) = va_if (va_get_reg64 rRsi va_s0 > va_get_reg64 rRdx va_s0 `op_Multiply` 128 `op_Division` 8) (fun _ -> FStar.Seq.Base.append #Vale.X64.Decls.quad32 (Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) (Vale.X64.Decls.s128 (va_get_mem_heaplet 7 va_s0) abytes_b)) (fun _ -> Vale.X64.Decls.s128 (va_get_mem_heaplet 1 va_sM) auth_b) in let (auth_input_bytes:(seq nat8)) = FStar.Seq.Base.slice #Vale.Def.Types_s.nat8 (Vale.Def.Types_s.le_seq_quad32_to_bytes raw_auth_quads) 0 (va_get_reg64 rRsi va_s0) in let (padded_auth_bytes:(seq nat8)) = Vale.AES.GCTR_s.pad_to_128_bits auth_input_bytes in auth_quad_seq == Vale.Def.Types_s.le_bytes_to_seq_quad32 padded_auth_bytes /\ va_get_xmm 8 va_sM == Vale.Def.Types_s.reverse_bytes_quad32 (Vale.AES.GHash.ghash_incremental0 h_LE (Vale.Def.Words_s.Mkfour #Vale.Def.Types_s.nat32 0 0 0 0) auth_quad_seq))) ==> va_k va_sM ((auth_quad_seq)))) val va_wpProof_Gcm_blocks_auth : auth_b:buffer128 -> abytes_b:buffer128 -> hkeys_b:buffer128 -> h_LE:quad32 -> va_s0:va_state -> va_k:(va_state -> (seq quad32) -> Type0) -> Ghost (va_state & va_fuel & (seq quad32)) (requires (va_t_require va_s0 /\ va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Gcm_blocks_auth (auth_b:buffer128) (abytes_b:buffer128) (hkeys_b:buffer128) (h_LE:quad32) : (va_quickCode (seq quad32) (va_code_Gcm_blocks_auth ())) = (va_QProc (va_code_Gcm_blocks_auth ()) ([va_Mod_xmm 9; va_Mod_xmm 8; va_Mod_xmm 7; va_Mod_xmm 6; va_Mod_xmm 5; va_Mod_xmm 4; va_Mod_xmm 3; va_Mod_xmm 2; va_Mod_xmm 1; va_Mod_xmm 0; va_Mod_flags; va_Mod_reg64 rR15; va_Mod_reg64 rRcx; va_Mod_reg64 rR10; va_Mod_reg64 rR11; va_Mod_reg64 rRdx]) (va_wp_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE) (va_wpProof_Gcm_blocks_auth auth_b abytes_b hkeys_b h_LE)) //-- //-- Save_registers val va_code_Save_registers : win:bool -> Tot va_code val va_codegen_success_Save_registers : win:bool -> Tot va_pbool val va_lemma_Save_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Save_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + (if win then 160 else 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_stack va_sM (va_update_reg64 rRsp va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0)))))))) [@ va_qattr] let va_wp_Save_registers (win:bool) (va_s0:va_state) (va_k:(va_state -> unit -> Type0)) : Type0 = (va_get_ok va_s0 /\ sse_enabled /\ va_get_reg64 rRsp va_s0 == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ (forall (va_x_rax:nat64) (va_x_rsp:nat64) (va_x_stack:vale_stack) (va_x_efl:Vale.X64.Flags.t) (va_x_stackTaint:memtaint) . let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_stack va_x_stack (va_upd_reg64 rRsp va_x_rsp (va_upd_reg64 rRax va_x_rax va_s0)))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == va_get_reg64 rRsp va_s0 - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_sM) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_sM) Secret (va_get_stackTaint va_sM) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.modifies_stacktaint (va_get_reg64 rRsp va_sM) (va_get_reg64 rRsp va_s0) (va_get_stackTaint va_s0) (va_get_stackTaint va_sM) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 6 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 7 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 8 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 9 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 64) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 72) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 10 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 80) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 88) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 11 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 96) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 104) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 12 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 112) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 120) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 13 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 128) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 136) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 14 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 144) (va_get_stack va_sM) == Vale.Arch.Types.hi64 (va_get_xmm 15 va_sM)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 152) (va_get_stack va_sM) == Vale.Arch.Types.lo64 (va_get_xmm 15 va_sM)) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_sM + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_sM) == va_get_reg64 rR15 va_sM ==> va_k va_sM (()))) val va_wpProof_Save_registers : win:bool -> va_s0:va_state -> va_k:(va_state -> unit -> Type0) -> Ghost (va_state & va_fuel & unit) (requires (va_t_require va_s0 /\ va_wp_Save_registers win va_s0 va_k)) (ensures (fun (va_sM, va_f0, va_g) -> va_t_ensure (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) va_s0 va_k ((va_sM, va_f0, va_g)))) [@ "opaque_to_smt" va_qattr] let va_quick_Save_registers (win:bool) : (va_quickCode unit (va_code_Save_registers win)) = (va_QProc (va_code_Save_registers win) ([va_Mod_stackTaint; va_Mod_flags; va_Mod_stack; va_Mod_reg64 rRsp; va_Mod_reg64 rRax]) (va_wp_Save_registers win) (va_wpProof_Save_registers win)) //-- //-- Restore_registers val va_code_Restore_registers : win:bool -> Tot va_code val va_codegen_success_Restore_registers : win:bool -> Tot va_pbool val va_lemma_Restore_registers : va_b0:va_code -> va_s0:va_state -> win:bool -> old_rsp:nat -> old_xmm6:quad32 -> old_xmm7:quad32 -> old_xmm8:quad32 -> old_xmm9:quad32 -> old_xmm10:quad32 -> old_xmm11:quad32 -> old_xmm12:quad32 -> old_xmm13:quad32 -> old_xmm14:quad32 -> old_xmm15:quad32 -> Ghost (va_state & va_fuel) (requires (va_require_total va_b0 (va_code_Restore_registers win) va_s0 /\ va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + (if win then (10 `op_Multiply` 2) else 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + (if win then (10 `op_Multiply` 2) else 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15))) (ensures (fun (va_sM, va_fM) -> va_ensure_total va_b0 va_s0 va_sM va_fM /\ va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + (if win then 160 else 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) /\ va_state_eq va_sM (va_update_stackTaint va_sM (va_update_flags va_sM (va_update_reg64 rRsp va_sM (va_update_stack va_sM (va_update_xmm 15 va_sM (va_update_xmm 14 va_sM (va_update_xmm 13 va_sM (va_update_xmm 12 va_sM (va_update_xmm 11 va_sM (va_update_xmm 10 va_sM (va_update_xmm 9 va_sM (va_update_xmm 8 va_sM (va_update_xmm 7 va_sM (va_update_xmm 6 va_sM (va_update_reg64 rR15 va_sM (va_update_reg64 rR14 va_sM (va_update_reg64 rR13 va_sM (va_update_reg64 rR12 va_sM (va_update_reg64 rRsi va_sM (va_update_reg64 rRdi va_sM (va_update_reg64 rRbp va_sM (va_update_reg64 rRbx va_sM (va_update_reg64 rRax va_sM (va_update_ok va_sM va_s0))))))))))))))))))))))))))
{ "checked_file": "/", "dependencies": [ "Vale.X64.State.fsti.checked", "Vale.X64.Stack_i.fsti.checked", "Vale.X64.Stack.fsti.checked", "Vale.X64.QuickCodes.fsti.checked", "Vale.X64.QuickCode.fst.checked", "Vale.X64.Memory.fsti.checked", "Vale.X64.Machine_s.fst.checked", "Vale.X64.InsVector.fsti.checked", "Vale.X64.InsStack.fsti.checked", "Vale.X64.InsMem.fsti.checked", "Vale.X64.InsBasic.fsti.checked", "Vale.X64.InsAes.fsti.checked", "Vale.X64.Flags.fsti.checked", "Vale.X64.Decls.fsti.checked", "Vale.X64.CPU_Features_s.fst.checked", "Vale.Poly1305.Math.fsti.checked", "Vale.Math.Poly2.Bits_s.fsti.checked", "Vale.Lib.Meta.fsti.checked", "Vale.Def.Words_s.fsti.checked", "Vale.Def.Words.Seq_s.fsti.checked", "Vale.Def.Types_s.fst.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Def.Opaque_s.fsti.checked", "Vale.Arch.Types.fsti.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.AES.X64.GHash.fsti.checked", "Vale.AES.X64.GF128_Mul.fsti.checked", "Vale.AES.X64.GCTR.fsti.checked", "Vale.AES.X64.AESopt2.fsti.checked", "Vale.AES.X64.AESopt.fsti.checked", "Vale.AES.X64.AESGCM.fsti.checked", "Vale.AES.X64.AES.fsti.checked", "Vale.AES.OptPublic.fsti.checked", "Vale.AES.GHash_s.fst.checked", "Vale.AES.GHash.fsti.checked", "Vale.AES.GF128_s.fsti.checked", "Vale.AES.GF128.fsti.checked", "Vale.AES.GCTR_s.fst.checked", "Vale.AES.GCTR.fsti.checked", "Vale.AES.GCM_s.fst.checked", "Vale.AES.GCM_helpers.fsti.checked", "Vale.AES.GCM.fsti.checked", "Vale.AES.AES_s.fst.checked", "Vale.AES.AES_common_s.fst.checked", "prims.fst.checked", "FStar.Seq.Base.fsti.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked" ], "interface_file": false, "source_file": "Vale.AES.X64.GCMencryptOpt.fsti" }
[ { "abbrev": false, "full_module": "Vale.AES.OptPublic", "short_module": null }, { "abbrev": false, "full_module": "Vale.Lib.Meta", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt2", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESGCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AESopt", "short_module": null }, { "abbrev": false, "full_module": "Vale.Math.Poly2.Bits_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.CPU_Features_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GF128_Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCodes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.QuickCode", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsAes", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsStack", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsVector", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsMem", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.InsBasic", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Decls", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Stack_i", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Memory", "short_module": null }, { "abbrev": false, "full_module": "Vale.X64.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_helpers", "short_module": null }, { "abbrev": false, "full_module": "Vale.Poly1305.Math", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GF128_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64.AES", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GHash_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCM", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.GCTR_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.AES_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.Types", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Types_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words.Seq_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Words_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Seq", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Opaque_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "Vale.AES.X64", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
win: Prims.bool -> old_rsp: Prims.nat -> old_xmm6: Vale.X64.Decls.quad32 -> old_xmm7: Vale.X64.Decls.quad32 -> old_xmm8: Vale.X64.Decls.quad32 -> old_xmm9: Vale.X64.Decls.quad32 -> old_xmm10: Vale.X64.Decls.quad32 -> old_xmm11: Vale.X64.Decls.quad32 -> old_xmm12: Vale.X64.Decls.quad32 -> old_xmm13: Vale.X64.Decls.quad32 -> old_xmm14: Vale.X64.Decls.quad32 -> old_xmm15: Vale.X64.Decls.quad32 -> va_s0: Vale.X64.Decls.va_state -> va_k: (_: Vale.X64.Decls.va_state -> _: Prims.unit -> Type0) -> Type0
Prims.Tot
[ "total" ]
[]
[ "Prims.bool", "Prims.nat", "Vale.X64.Decls.quad32", "Vale.X64.Decls.va_state", "Prims.unit", "Prims.l_and", "Prims.b2t", "Vale.X64.Decls.va_get_ok", "Vale.X64.CPU_Features_s.sse_enabled", "Prims.eq2", "Vale.X64.Stack_i.init_rsp", "Vale.X64.Decls.va_get_stack", "Vale.X64.Stack_i.valid_stack_slot64s", "Vale.X64.Decls.va_get_reg64", "Vale.X64.Machine_s.rRsp", "Prims.op_Addition", "Vale.X64.Decls.va_if", "Prims.int", "Prims.op_Multiply", "Prims.l_not", "Vale.Arch.HeapTypes_s.Secret", "Vale.X64.Decls.va_get_stackTaint", "Prims.op_Subtraction", "Prims.l_imp", "Vale.Def.Words_s.nat64", "Vale.X64.Stack_i.load_stack64", "Vale.Arch.Types.hi64", "Vale.Arch.Types.lo64", "Prims.l_Forall", "Vale.X64.Memory.nat64", "Vale.X64.InsBasic.vale_stack", "Vale.X64.Flags.t", "Vale.X64.Memory.memtaint", "Prims.l_or", "Prims.op_GreaterThanOrEqual", "Vale.X64.Stack_i.modifies_stack", "Vale.X64.Machine_s.rRbx", "Vale.X64.Machine_s.rRbp", "Vale.X64.Machine_s.rRdi", "Vale.X64.Machine_s.rRsi", "Vale.X64.Machine_s.rR12", "Vale.X64.Machine_s.rR13", "Vale.X64.Machine_s.rR14", "Vale.X64.Machine_s.rR15", "Vale.X64.Decls.va_get_xmm", "Vale.X64.State.vale_state", "Vale.X64.Decls.va_upd_stackTaint", "Vale.X64.Decls.va_upd_flags", "Vale.X64.Decls.va_upd_reg64", "Vale.X64.Decls.va_upd_stack", "Vale.X64.Decls.va_upd_xmm", "Vale.X64.Machine_s.rRax" ]
[]
false
false
false
true
true
let va_wp_Restore_registers (win: bool) (old_rsp: nat) (old_xmm6 old_xmm7 old_xmm8 old_xmm9 old_xmm10 old_xmm11 old_xmm12 old_xmm13 old_xmm14 old_xmm15: quad32) (va_s0: va_state) (va_k: (va_state -> unit -> Type0)) : Type0 =
(va_get_ok va_s0 /\ sse_enabled /\ old_rsp == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.valid_stack_slot64s (va_get_reg64 rRsp va_s0) (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) (va_get_stack va_s0) Secret (va_get_stackTaint va_s0) /\ va_get_reg64 rRsp va_s0 == old_rsp - 8 `op_Multiply` (8 + va_if win (fun _ -> 10 `op_Multiply` 2) (fun _ -> 0)) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm6) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm7) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm8) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm9) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 64) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 72) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm10) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 80) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 88) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm11) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 96) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 104) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm12) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 112) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 120) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm13) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 128) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 136) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm14) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 144) (va_get_stack va_s0) == Vale.Arch.Types.hi64 old_xmm15) /\ (win ==> Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 152) (va_get_stack va_s0) == Vale.Arch.Types.lo64 old_xmm15) /\ (forall (va_x_rax: nat64) (va_x_rbx: nat64) (va_x_rbp: nat64) (va_x_rdi: nat64) (va_x_rsi: nat64) (va_x_r12: nat64) (va_x_r13: nat64) (va_x_r14: nat64) (va_x_r15: nat64) (va_x_xmm6: quad32) (va_x_xmm7: quad32) (va_x_xmm8: quad32) (va_x_xmm9: quad32) (va_x_xmm10: quad32) (va_x_xmm11: quad32) (va_x_xmm12: quad32) (va_x_xmm13: quad32) (va_x_xmm14: quad32) (va_x_xmm15: quad32) (va_x_stack: vale_stack) (va_x_rsp: nat64) (va_x_efl: Vale.X64.Flags.t) (va_x_stackTaint: memtaint). let va_sM = va_upd_stackTaint va_x_stackTaint (va_upd_flags va_x_efl (va_upd_reg64 rRsp va_x_rsp (va_upd_stack va_x_stack (va_upd_xmm 15 va_x_xmm15 (va_upd_xmm 14 va_x_xmm14 (va_upd_xmm 13 va_x_xmm13 (va_upd_xmm 12 va_x_xmm12 (va_upd_xmm 11 va_x_xmm11 (va_upd_xmm 10 va_x_xmm10 (va_upd_xmm 9 va_x_xmm9 (va_upd_xmm 8 va_x_xmm8 (va_upd_xmm 7 va_x_xmm7 (va_upd_xmm 6 va_x_xmm6 (va_upd_reg64 rR15 va_x_r15 (va_upd_reg64 rR14 va_x_r14 (va_upd_reg64 rR13 va_x_r13 (va_upd_reg64 rR12 va_x_r12 (va_upd_reg64 rRsi va_x_rsi (va_upd_reg64 rRdi va_x_rdi (va_upd_reg64 rRbp va_x_rbp (va_upd_reg64 rRbx va_x_rbx (va_upd_reg64 rRax va_x_rax va_s0 )))) )))))))))))))))))) in va_get_ok va_sM /\ va_get_reg64 rRsp va_sM == old_rsp /\ Vale.X64.Stack_i.init_rsp (va_get_stack va_sM) == Vale.X64.Stack_i.init_rsp (va_get_stack va_s0) /\ Vale.X64.Stack_i.modifies_stack (va_get_reg64 rRsp va_s0) (va_get_reg64 rRsp va_sM) (va_get_stack va_s0) (va_get_stack va_sM) /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 0 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbx va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 8 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRbp va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 16 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRdi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 24 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rRsi va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 32 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR12 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 40 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR13 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 48 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR14 va_sM /\ Vale.X64.Stack_i.load_stack64 (va_get_reg64 rRsp va_s0 + 56 + va_if win (fun _ -> 160) (fun _ -> 0)) (va_get_stack va_s0) == va_get_reg64 rR15 va_sM /\ (win ==> va_get_xmm 6 va_sM == old_xmm6) /\ (win ==> va_get_xmm 7 va_sM == old_xmm7) /\ (win ==> va_get_xmm 8 va_sM == old_xmm8) /\ (win ==> va_get_xmm 9 va_sM == old_xmm9) /\ (win ==> va_get_xmm 10 va_sM == old_xmm10) /\ (win ==> va_get_xmm 11 va_sM == old_xmm11) /\ (win ==> va_get_xmm 12 va_sM == old_xmm12) /\ (win ==> va_get_xmm 13 va_sM == old_xmm13) /\ (win ==> va_get_xmm 14 va_sM == old_xmm14) /\ (win ==> va_get_xmm 15 va_sM == old_xmm15) ==> va_k va_sM (())))
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_stack
val va_update_stack (sM sK: va_state) : va_state
val va_update_stack (sM sK: va_state) : va_state
let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 126, "end_line": 196, "start_col": 19, "start_line": 196 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state =
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_upd_stack", "Vale.PPC64LE.Stack_Sems.stack_from_s", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_stack" ]
[]
false
false
false
true
false
let va_update_stack (sM sK: va_state) : va_state =
va_upd_stack (VSS.stack_from_s sM.ms_stack) sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_operand_heaplet
val va_update_operand_heaplet (h: heaplet_id) (sM sK: va_state) : va_state
val va_update_operand_heaplet (h: heaplet_id) (sM sK: va_state) : va_state
let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 31, "end_line": 213, "start_col": 0, "start_line": 212 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
h: Vale.PPC64LE.Decls.heaplet_id -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.heaplet_id", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_update_mem_heaplet" ]
[]
false
false
false
true
false
let va_update_operand_heaplet (h: heaplet_id) (sM sK: va_state) : va_state =
va_update_mem_heaplet h sM sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_value_vec_opr
val va_value_vec_opr : Prims.eqtype
let va_value_vec_opr = quad32
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 36, "end_line": 216, "start_col": 7, "start_line": 216 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Prims.eqtype
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.quad32" ]
[]
false
false
false
true
false
let va_value_vec_opr =
quad32
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_mem_layout
val va_get_mem_layout (s: va_state) : vale_heap_layout
val va_get_mem_layout (s: va_state) : vale_heap_layout
let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 103, "end_line": 149, "start_col": 19, "start_line": 149 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.Arch.HeapImpl.vale_heap_layout
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.Arch.HeapImpl.__proj__Mkvale_full_heap__item__vf_layout", "Vale.PPC64LE.Decls.coerce", "Vale.Arch.HeapImpl.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.Arch.HeapImpl.vale_heap_layout" ]
[]
false
false
false
true
false
let va_get_mem_layout (s: va_state) : vale_heap_layout =
(coerce s.ms_heap).vf_layout
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_value_heaplet
val va_value_heaplet : Type
let va_value_heaplet = vale_heap
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 39, "end_line": 217, "start_col": 7, "start_line": 217 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK unfold let va_value_reg_opr = nat64
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.vale_heap" ]
[]
false
false
false
true
true
let va_value_heaplet =
vale_heap
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_operand_Mem64
val va_update_operand_Mem64 (m: maddr) (sM sK: va_state) : va_state
val va_update_operand_Mem64 (m: maddr) (sM sK: va_state) : va_state
let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 21, "end_line": 205, "start_col": 0, "start_line": 204 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
m: Vale.PPC64LE.Machine_s.maddr -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.maddr", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_update_mem" ]
[]
false
false
false
true
false
let va_update_operand_Mem64 (m: maddr) (sM sK: va_state) : va_state =
va_update_mem sM sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_get_mem
val va_get_mem (s: va_state) : vale_heap
val va_get_mem (s: va_state) : vale_heap
let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap)
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 95, "end_line": 148, "start_col": 19, "start_line": 148 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
s: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.vale_heap
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Memory.get_vale_heap", "Vale.PPC64LE.Decls.coerce", "Vale.PPC64LE.Memory.vale_full_heap", "Vale.Arch.Heap.heap_impl", "Vale.PPC64LE.Machine_s.__proj__Mkstate__item__ms_heap", "Vale.PPC64LE.Decls.vale_heap" ]
[]
false
false
false
true
false
let va_get_mem (s: va_state) : vale_heap =
M.get_vale_heap (coerce s.ms_heap)
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_update_operand_vec_opr
val va_update_operand_vec_opr (x: vec) (sM sK: va_state) : va_state
val va_update_operand_vec_opr (x: vec) (sM sK: va_state) : va_state
let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 23, "end_line": 209, "start_col": 0, "start_line": 208 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
x: Vale.PPC64LE.Machine_s.vec -> sM: Vale.PPC64LE.Decls.va_state -> sK: Vale.PPC64LE.Decls.va_state -> Vale.PPC64LE.Decls.va_state
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.vec", "Vale.PPC64LE.Decls.va_state", "Vale.PPC64LE.Decls.va_update_vec" ]
[]
false
false
false
true
false
let va_update_operand_vec_opr (x: vec) (sM sK: va_state) : va_state =
va_update_vec x sM sK
false
Vale.PPC64LE.Decls.fsti
Vale.PPC64LE.Decls.va_value_reg_opr
val va_value_reg_opr : Type0
let va_value_reg_opr = nat64
{ "file_name": "vale/code/arch/ppc64le/Vale.PPC64LE.Decls.fsti", "git_rev": "eb1badfa34c70b0bbe0fe24fe0f49fb1295c7872", "git_url": "https://github.com/project-everest/hacl-star.git", "project_name": "hacl-star" }
{ "end_col": 35, "end_line": 215, "start_col": 7, "start_line": 215 }
module Vale.PPC64LE.Decls // This interface should hide all of Semantics_s. // (It should not refer to Semantics_s, directly or indirectly.) // It should not refer to StateLemmas_i or Print_s, // because they refer to Semantics_s. // Regs_i and State_i are ok, because they do not refer to Semantics_s. open FStar.Mul open Vale.Def.Prop_s open Vale.PPC64LE.Machine_s open Vale.PPC64LE.State open Vale.Arch.HeapTypes_s open Vale.Arch.HeapImpl open Vale.Arch.Heap module M = Vale.PPC64LE.Memory module SI = Vale.PPC64LE.Stack_i module Map16 = Vale.Lib.Map16 module VSS = Vale.PPC64LE.Stack_Sems val same_heap_types : squash (vale_full_heap == heap_impl) unfold let coerce (#b #a:Type) (x:a{a == b}) : b = x unfold let from_heap_impl (heap:heap_impl) : vale_full_heap = coerce heap unfold let vale_heap = M.vale_heap unfold let vale_full_heap = M.vale_full_heap unfold let heaplet_id = M.heaplet_id val xer_ov (xer:xer_t) : bool val xer_ca (xer:xer_t) : bool val update_xer_ov (xer:xer_t) (new_xer_ov:bool) : xer_t val update_xer_ca (xer:xer_t) (new_xer_ca:bool) : xer_t //unfold let va_subscript = Map.sel unfold let va_subscript (#a:eqtype) (#b:Type) (x:Map.t a b) (y:a) : Tot b = Map.sel x y unfold let va_update = Map.upd unfold let va_hd = Cons?.hd //unfold let va_tl = Cons?.tl // F* inlines "let ... = va_tl ..." more than we'd like; revised definition below suppresses this // REVIEW: FStar.Pervasives.reveal_opaque doesn't include zeta, so it fails for recursive functions // REVIEW: why is x' necessary to keep x from being normalized? [@va_qattr] unfold let va_reveal_eq (#ax:Type) (s:string) (x x':ax) = norm [zeta; delta_only [s]] #ax x == x' let va_reveal_opaque (s:string) = norm_spec [zeta; delta_only [s]] // hide 'if' so that x and y get fully normalized let va_if (#a:Type) (b:bool) (x:(_:unit{b}) -> a) (y:(_:unit{~b}) -> a) : a = if b then x () else y () // Type aliases let va_int_at_least (k:int) = i:int{i >= k} let va_int_at_most (k:int) = i:int{i <= k} let va_int_range (k1 k2:int) = i:int{k1 <= i /\ i <= k2} val ins : Type0 val ocmp : Type0 unfold let va_code = precode ins ocmp unfold let va_codes = list va_code let va_tl (cs:va_codes) : Ghost va_codes (requires Cons? cs) (ensures fun tl -> tl == Cons?.tl cs) = Cons?.tl cs unfold let va_state = state val va_fuel : Type0 unfold let reg_opr = reg unfold let va_operand_reg_opr = reg unfold let va_operand_Mem64 = maddr unfold let vec_opr = vec unfold let va_operand_vec_opr = vec unfold let va_operand_heaplet = heaplet_id val va_pbool : Type0 val va_ttrue (_:unit) : va_pbool val va_ffalse (reason:string) : va_pbool val va_pbool_and (x y:va_pbool) : va_pbool val mul_nat_helper (x y:nat) : Lemma (x * y >= 0) [@va_qattr] unfold let va_mul_nat (x y:nat) : nat = mul_nat_helper x y; x * y [@va_qattr] unfold let va_expand_state (s:state) : state = s unfold let buffer_readable (#t:M.base_typ) (h:vale_heap) (b:M.buffer t) : GTot prop0 = M.buffer_readable #t h b unfold let buffer_writeable (#t:M.base_typ) (b:M.buffer t) : GTot prop0 = M.buffer_writeable #t b unfold let buffer_length (#t:M.base_typ) (b:M.buffer t) = M.buffer_length #t b unfold let buffer8_as_seq (m:vale_heap) (b:M.buffer8) : GTot (Seq.seq nat8) = M.buffer_as_seq m b unfold let buffer64_as_seq (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = M.buffer_as_seq m b unfold let s64 (m:vale_heap) (b:M.buffer64) : GTot (Seq.seq nat64) = buffer64_as_seq m b unfold let buffer128_as_seq (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = M.buffer_as_seq m b unfold let s128 (m:vale_heap) (b:M.buffer128) : GTot (Seq.seq quad32) = buffer128_as_seq m b unfold let valid_src_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_read m b i unfold let valid_dst_addr (#t:M.base_typ) (m:vale_heap) (b:M.buffer t) (i:int) : prop0 = M.valid_buffer_write m b i unfold let buffer64_read (b:M.buffer64) (i:int) (h:vale_heap) : GTot nat64 = M.buffer_read b i h unfold let buffer128_read (b:M.buffer128) (i:int) (h:vale_heap) : GTot quad32 = M.buffer_read b i h unfold let modifies_mem (s:M.loc) (h1 h2:vale_heap) : GTot prop0 = M.modifies s h1 h2 unfold let loc_buffer(#t:M.base_typ) (b:M.buffer t) = M.loc_buffer #t b unfold let locs_disjoint = M.locs_disjoint unfold let loc_union = M.loc_union unfold let valid_addr_mem (r:reg) (n:int) (s:state) : prop0 = valid_mem ({ address=r; offset=n }) s let valid_buf_maddr64 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer64) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf64 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 8 * index let valid_buf_maddr128 (addr:int) (s_mem:vale_heap) (layout:vale_heap_layout) (b:M.buffer128) (index:int) (t:taint) : prop0 = valid_src_addr s_mem b index /\ M.valid_taint_buf128 b s_mem layout.vl_taint t /\ addr == M.buffer_addr b s_mem + 16 * index let valid_mem_operand64 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer64) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr64 addr s_mem layout b index t let valid_mem_operand128 (addr:int) (t:taint) (s_mem:vale_heap) (layout:vale_heap_layout) : prop0 = exists (b:M.buffer128) (index:int).{:pattern (M.valid_buffer_read s_mem b index)} valid_buf_maddr128 addr s_mem layout b index t [@va_qattr] let valid_mem_addr (tm:tmaddr) (s:state) : prop0 = let (m, t) = tm in valid_maddr m s /\ valid_mem_operand64 (eval_maddr m s) t (M.get_vale_heap (coerce s.ms_heap)) (coerce s.ms_heap).vf_layout [@va_qattr] let valid_stack (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack64 (eval_maddr m s) t s.ms_stackTaint [@va_qattr] let valid_stack128 (m:maddr) (t:taint) (s:state) : prop0 = SI.valid_taint_stack128 (eval_maddr m s) t s.ms_stackTaint // Constructors val va_fuel_default : unit -> va_fuel [@va_qattr] unfold let va_op_reg_opr_reg (r:reg) : reg_opr = r [@va_qattr] unfold let va_op_vec_opr_vec (v:vec) : vec_opr = v [@va_qattr] unfold let va_op_cmp_reg (r:reg) : cmp_opr = CReg r [@va_qattr] unfold let va_const_cmp (n:imm16) : cmp_opr = CImm n [@va_qattr] unfold let va_op_heaplet_mem_heaplet (h:heaplet_id) : heaplet_id = h [@va_qattr] unfold let va_opr_code_Mem64 (h:heaplet_id) (r:reg) (n:int) (t:taint) : tmaddr = ({ address=r; offset=n }, t) // Getters [@va_qattr] unfold let va_get_ok (s:va_state) : bool = s.ok [@va_qattr] unfold let va_get_cr0 (s:va_state) : cr0_t = s.cr0 [@va_qattr] unfold let va_get_xer (s:va_state) : xer_t = s.xer [@va_qattr] unfold let va_get_reg (r:reg) (s:va_state) : nat64 = eval_reg r s [@va_qattr] unfold let va_get_vec (x:vec) (s:va_state) : quad32 = eval_vec x s [@va_qattr] unfold let va_get_mem (s:va_state) : vale_heap = M.get_vale_heap (coerce s.ms_heap) [@va_qattr] unfold let va_get_mem_layout (s:va_state) : vale_heap_layout = (coerce s.ms_heap).vf_layout [@va_qattr] unfold let va_get_mem_heaplet (n:heaplet_id) (s:va_state) : vale_heap = Map16.sel (coerce s.ms_heap).vf_heaplets n [@va_qattr] unfold let va_get_stack (s:va_state) : SI.vale_stack = VSS.stack_from_s s.ms_stack [@va_qattr] unfold let va_get_stackTaint (s:va_state) : M.memtaint = s.ms_stackTaint // Evaluation [@va_qattr] unfold let va_eval_reg (s:va_state) (r:reg) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_Mem64 (s:va_state) (m:maddr) : GTot nat64 = eval_mem (eval_maddr m s) s [@va_qattr] unfold let va_eval_reg_opr (s:va_state) (r:reg_opr) : GTot nat64 = eval_reg r s [@va_qattr] unfold let va_eval_cmp_opr (s:va_state) (o:cmp_opr) : GTot nat64 = eval_cmp_opr o s [@va_qattr] unfold let va_eval_vec_opr (s:va_state) (v:vec_opr) : GTot quad32 = eval_vec v s [@va_qattr] unfold let va_eval_heaplet (s:va_state) (h:heaplet_id) : vale_heap = va_get_mem_heaplet h s // Predicates [@va_qattr] unfold let va_is_src_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_reg_opr (r:reg_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_dst_Mem64 (m:maddr) (s:va_state) = valid_mem m s [@va_qattr] unfold let va_is_src_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_dst_vec_opr (v:vec_opr) (s:va_state) = True [@va_qattr] unfold let va_is_src_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] unfold let va_is_dst_heaplet (h:heaplet_id) (s:va_state) = True [@va_qattr] let va_upd_ok (ok:bool) (s:state) : state = { s with ok = ok } [@va_qattr] let va_upd_cr0 (cr0:cr0_t) (s:state) : state = { s with cr0 = cr0 } [@va_qattr] let va_upd_xer (xer:xer_t) (s:state) : state = { s with xer = xer } [@va_qattr] let va_upd_reg (r:reg) (v:nat64) (s:state) : state = update_reg r v s [@va_qattr] let va_upd_vec (x:vec) (v:quad32) (s:state) : state = update_vec x v s [@va_qattr] let va_upd_mem (mem:vale_heap) (s:state) : state = { s with ms_heap = coerce (M.set_vale_heap (coerce s.ms_heap) mem) } [@va_qattr] let va_upd_mem_layout (layout:vale_heap_layout) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_layout = layout }) } [@va_qattr] let va_upd_mem_heaplet (n:heaplet_id) (h:vale_heap) (s:state) : state = { s with ms_heap = coerce ({ (coerce s.ms_heap) with vf_heaplets = Map16.upd (coerce s.ms_heap).vf_heaplets n h }) } [@va_qattr] let va_upd_stack (stack:SI.vale_stack) (s:state) : state = { s with ms_stack = (VSS.stack_to_s stack) } [@va_qattr] let va_upd_stackTaint (stackTaint:M.memtaint) (s:state) : state = { s with ms_stackTaint = stackTaint } // Framing: va_update_foo means the two states are the same except for foo [@va_qattr] unfold let va_update_ok (sM:va_state) (sK:va_state) : va_state = va_upd_ok sM.ok sK [@va_qattr] unfold let va_update_cr0 (sM:va_state) (sK:va_state) : va_state = va_upd_cr0 sM.cr0 sK [@va_qattr] unfold let va_update_xer (sM:va_state) (sK:va_state) : va_state = va_upd_xer sM.xer sK [@va_qattr] unfold let va_update_reg (r:reg) (sM:va_state) (sK:va_state) : va_state = va_upd_reg r (eval_reg r sM) sK [@va_qattr] unfold let va_update_mem (sM:va_state) (sK:va_state) : va_state = va_upd_mem (coerce sM.ms_heap).vf_heap sK [@va_qattr] unfold let va_update_mem_layout (sM:va_state) (sK:va_state) : va_state = va_upd_mem_layout (coerce sM.ms_heap).vf_layout sK [@va_qattr] unfold let va_update_mem_heaplet (n:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_upd_mem_heaplet n (Map16.sel (coerce sM.ms_heap).vf_heaplets n) sK [@va_qattr] unfold let va_update_vec (x:vec) (sM:va_state) (sK:va_state) : va_state = va_upd_vec x (eval_vec x sM) sK [@va_qattr] unfold let va_update_stack (sM:va_state) (sK:va_state) : va_state = va_upd_stack (VSS.stack_from_s sM.ms_stack) sK [@va_qattr] unfold let va_update_stackTaint (sM:va_state) (sK:va_state) : va_state = va_upd_stackTaint sM.ms_stackTaint sK [@va_qattr] unfold let va_update_operand_reg_opr (r:reg) (sM:va_state) (sK:va_state) : va_state = va_update_reg r sM sK [@va_qattr] unfold let va_update_operand_Mem64 (m:maddr) (sM:va_state) (sK:va_state) : va_state = va_update_mem sM sK [@va_qattr] unfold let va_update_operand_vec_opr (x:vec) (sM:va_state) (sK:va_state) : va_state = va_update_vec x sM sK [@va_qattr] unfold let va_update_operand_heaplet (h:heaplet_id) (sM:va_state) (sK:va_state) : va_state = va_update_mem_heaplet h sM sK
{ "checked_file": "/", "dependencies": [ "Vale.PPC64LE.State.fsti.checked", "Vale.PPC64LE.Stack_Sems.fsti.checked", "Vale.PPC64LE.Stack_i.fsti.checked", "Vale.PPC64LE.Memory.fsti.checked", "Vale.PPC64LE.Machine_s.fst.checked", "Vale.Lib.Map16.fsti.checked", "Vale.Def.Prop_s.fst.checked", "Vale.Arch.HeapTypes_s.fst.checked", "Vale.Arch.HeapImpl.fsti.checked", "Vale.Arch.Heap.fsti.checked", "prims.fst.checked", "FStar.Seq.fst.checked", "FStar.Pervasives.Native.fst.checked", "FStar.Pervasives.fsti.checked", "FStar.Mul.fst.checked", "FStar.Map.fsti.checked", "FStar.All.fst.checked" ], "interface_file": false, "source_file": "Vale.PPC64LE.Decls.fsti" }
[ { "abbrev": true, "full_module": "Vale.PPC64LE.Print_s", "short_module": "P" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Semantics_s", "short_module": "S" }, { "abbrev": false, "full_module": "Vale.PPC64LE.StateLemmas", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_Sems", "short_module": "VSS" }, { "abbrev": true, "full_module": "Vale.Lib.Map16", "short_module": "Map16" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Stack_i", "short_module": "SI" }, { "abbrev": true, "full_module": "Vale.PPC64LE.Memory", "short_module": "M" }, { "abbrev": false, "full_module": "Vale.Arch.Heap", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapImpl", "short_module": null }, { "abbrev": false, "full_module": "Vale.Arch.HeapTypes_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.State", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE.Machine_s", "short_module": null }, { "abbrev": false, "full_module": "Vale.Def.Prop_s", "short_module": null }, { "abbrev": false, "full_module": "FStar.Mul", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "Vale.PPC64LE", "short_module": null }, { "abbrev": false, "full_module": "FStar.Pervasives", "short_module": null }, { "abbrev": false, "full_module": "Prims", "short_module": null }, { "abbrev": false, "full_module": "FStar", "short_module": null } ]
{ "detail_errors": false, "detail_hint_replay": false, "initial_fuel": 2, "initial_ifuel": 0, "max_fuel": 1, "max_ifuel": 1, "no_plugins": false, "no_smt": false, "no_tactics": false, "quake_hi": 1, "quake_keep": false, "quake_lo": 1, "retry": false, "reuse_hint_for": null, "smtencoding_elim_box": true, "smtencoding_l_arith_repr": "native", "smtencoding_nl_arith_repr": "wrapped", "smtencoding_valid_elim": false, "smtencoding_valid_intro": true, "tcnorm": true, "trivial_pre_for_unannotated_effectful_fns": false, "z3cliopt": [ "smt.arith.nl=false", "smt.QI.EAGER_THRESHOLD=100", "smt.CASE_SPLIT=3" ], "z3refresh": false, "z3rlimit": 5, "z3rlimit_factor": 1, "z3seed": 0, "z3smtopt": [], "z3version": "4.8.5" }
false
Type0
Prims.Tot
[ "total" ]
[]
[ "Vale.PPC64LE.Machine_s.nat64" ]
[]
false
false
false
true
true
let va_value_reg_opr =
nat64
false